
George Washington University – Dept. of Computer Science
CS6461: Computer Architectures

1

Class Project Description

Purpose:

To give you a deeper understanding of the design, structure and operations of a computer
system, principally focusing on the ISA and how it is executed. In addition, we will also
focus on memory structure and operations, and simple I/O capabilities.

Components:

The class project is structured into four segments of increasing difficulty that build
towards a detailed understanding of the internal design of computer systems and a fairly
complex simulation of a computer system.

Each segment is due to the grader/instructor at about 3 week intervals (see Syllabus).

The four components are:

Component Description
0: Assembler Write an assembler that converts each instruction into its

16 bit representation.
I: Basic Machine Design and implement the basic machine architecture.

Implement a simple memory
Execute Load and Store instructions
Build initial user interface to simulator

II: Memory and Cache
Design

Design and implement the modules for enhanced
memory and cache operations
Implement all instructions except for

 CHK and
 Floating Point/Vector operations
 Trap

Extend the user interface.
Demonstrate 1st program running on your simulator.

III: Execute All
Instructions

Make sure all instructions (as specified below) execute
on your simulator
Demonstrate 2nd program running on your simulator

IV: DO 1 OF:
A. Floating Point and Vector
Operations

B: Enhanced Scheduling

Design and implement the modules for floating point
and vector operations and simple pipelining; extend the
user interface

Design and implement simple branch prediction and
speculative execution, trap if an error occurs to an error
handling routine.

George Washington University – Dept. of Computer Science
CS6461: Computer Architectures

2

Programming Language:

You will program this simulator in Java. Use JDK 1.8 or later.
You will deliver:

 a JAR file that the grader can run to test your simulator.
 two programs in machine code which you have written based on specifications I

will give you.
 the source code of your simulator
 YOUR TEST FILES for the simulator
 a written report describing how to operate your simulator
 a basic design document consisting of the application object models and

interfaces, with brief description of the functions of each module.

There are NO exceptions to the language!

All of the above are to be submitted through Blackboard via the group that you belong to.

Tools:

I strongly recommend that you use an IDE as a development medium for your Java
programs. Some examples: NetBeans, Eclipse, BlueJ. This will facilitate documentation
of the object model as well as increase development productivity.

Documentation:

Good documentation is absolutely essential to any project. During your design process
for your simulator, you should keep good design notes. A compilation of design notes
must be turned in with each segment. Ask your professor for a project rubric.

You should also write a brief description (1-3 pages) of how to operate your simulator
and explain features and operation of your operator’s console. This will be updated for
each segment and submitted with that segment of the project. Be sure that the JAR file
will work on both Windows and Apple platforms so that it is readily graded.

You may also implement a field engineer’s console to help you debug the software. This
would be a panel in the GUI which would allow input and output.

Documentation extends to the software you write for the simulator.

COMMENTS are GOOD in CODE!!
LOTS of COMMENTS are BETTER!!
LOTS AND LOTS of COMMENTS are the BEST of ALL!! As long as they do not
simply repeat the code.

George Washington University – Dept. of Computer Science
CS6461: Computer Architectures

3

More importantly, part of the evaluation of your simulator is how well your code is
commented so that we can understand what you are doing.

C6461 Computer Architecture

The C6461 Computer Architecture is described in an associated document, “C6461
Computer Design and Development Project – Instruction Set Architecture”. It should be
closely followed.

Assembler

The assembler that you write will convert the instructions to octal and output into a text
file with the address of the instruction and the numeric value of the instruction in octal.

As an example, consider the instruction: LDR 3,0,15 (Symbolic Form)
This would be read as: Load register 3 with the contents of the memory location 31.
Since IX = 00, there is no indexing, so 15 is the EA.

This instruction would be encoded as:

Opcode R IX I Address
000001 11 00 0 01111

The octal (base 8) representation would be

0000011100001111
0 0 3 4 1 7

If this instruction is intended to be loaded at location 10 decimal, the output file of the
assembler would be:

000012 003417 LDR 3,0,15

The Source File Might have been as below. Note I used and LOC 10 command just to set
the address. Note* You have to read and translate all inputs. Note a full example is given
below the figures.

 LOC 10
 LDR 3,0,15

George Washington University – Dept. of Computer Science
CS6461: Computer Architectures

4

Figure – Overall assemble data flow

George Washington University – Dept. of Computer Science
CS6461: Computer Architectures

5

The Simulator

The following sections describe the instructions that you must simulate.

A Sample Front Panel for Programs 1 and 2

Description of the CS6461 Computer

The computer system that you will develop a simulator for is a classic instruction set
architecture modeled after, but not equivalent to any known CISC machines. We are
examining a CISC machine so that you get to experience some of the tradeoff decisions
that computer designers make.

1. General Properties

Our computer is a 16-bit processor that will eventually accommodate both fixed point
and floating-point arithmetic operations.

2. Instruction Set Architecture

The instruction set architecture (ISA) consists of 64 possible instructions. There are
several instruction formats as depicted above. However, not all instructions are defined.
What happens if you try to execute an opcode for an undefined instruction? A machine
fault!

3. Specification

In this project you will design, implement, and test a simulator to simulate a basic
machine. There are five elements to this process.

3.1 Central Processor

George Washington University – Dept. of Computer Science
CS6461: Computer Architectures

6

Your CPU simulator should implement the basic registers, the basic instruction set, a
simple ROM Loader, and the elements necessary to execute the basic instruction set.

We will simulate a ROM load. This is a simplification using files as original machines
may have used a card reader (not implemented) You can also use a fixed file name as
long as you include instructions on how to read the file.. In other words the program
could load from a fixed file in the same directory. The program to be loaded will be in a
file on the machine. When the init button is pressed, your program should bring up a
dialog that asks for the location of the file.

You will need a ROM that contains the simple loader. When you press the IPL button on
the console, the ROM contents are read into memory and control is transferred to the first
instruction of the ROM Loader program. The ROM can be either a file on your computer
or just an array of instructions in your program.

Your ROM Loader should read the boot program from the ROM and place it into
memory in a location you designated. The ROM Loader then transfers control to the
program which executes until completion or error.

If your program completes normally, it returns to the boot program to read the next
program (at this point your simulation should stop with PC having the value of the first
address of the boot program). Returning to the boot program means that it prompts the
user to either run the currently loaded program again or to load a new program and run it.

NOTE: Thus, the first address of your program should be greater than the length of your
program.

I suggest you load the boot program beginning at location octal 10 and the first address of
your program at octal address = octal 10 + length of boot program + octal 10.

If the program encounters an error, your program should display an error message on the
console printer and stop.

If an internal error is detected, display an error code in the console lights and stop. But
you should consider handling the error in your system by generating a machine fault.

3.2 Simple Memory

In this project, you should design and implement a single port memory in Part I

Upon powering up your system, all elements of memory should be set to zero.

Your memory simulation should accept an address from the MAR on one cycle. It should
then accept a value in the MBR to be stored in memory on the next cycle or place a value
in the MBR that is read from memory on the next cycle.

George Washington University – Dept. of Computer Science
CS6461: Computer Architectures

7

Remember, your machine can have up to 2048 words maximum! What considerations
must you make?

George Washington University – Dept. of Computer Science
CS6461: Computer Architectures

8

3.3 Simple Cache

You will, in part II, implement a simple cache, which sits between memory and the rest
of the processor.

The cache is just a vector having a format similar to that described in the lecture notes.
It should be a fully associative, unified cache.

What do you need to do?
a. What are the fields of the cache line?
b. Use a simple FIFO algorithm to replace cache lines.
c. How many cache lines? With 2048 words, probably 16 cache lines is enough.
d. Need to think about how to demonstrate caching works.

HINT: When you run your simulator, you may want to write a trace file of things that are
happening inside your simulator. You can use this to help debug your simulator.

REMEMBER: More trace data is always useful!!

3. 4 User Interface

You should design a user interface that simulates the console of the CS6461 Computer.
The UI should include both the console plus some additional capabilities to support the
debugging of your simulator. I will give you some examples of consoles in a later lecture.

Remember that later phases will add more instructions and more complexity to the
computer system and will result in additional displays and switches on your operator
console. So, plan accordingly and allow some growth space as you make your initial
design.

You should consider displaying registers which are not programmer-accessible, but are
required for correct operation of the computer (and your simulator).

3.3.1 Operators Console

Your operators console should include:

 Display for all registers
 Display for machine status and condition registers
 An IPL button (to start the simulation)
 Switches (simulated as buttons) to load data into registers, to select displays, and

to initiate certain conditions in the machine.

We will assume that when you start up the simulator that your computer is powered on. If
you want to simulate a “Power” light, that is OK.

George Washington University – Dept. of Computer Science
CS6461: Computer Architectures

9

Some suggestions for switches and displays that you might want to consider are:

Displays:
Current Memory Address
Various Registers (as mentioned above)
You may wish to think about some sense switches that the user can inform the program.
You have ample device IDs to accommodate these. One DEVID accesses one sense
switch.

Switches:
Run, Halt, Single Step, the IPL button, switches to load the registers,

3.3.2 Field Engineers Console

Your field engineer’s console design and contents are left up to you. As the simulator
designer, you will understand the structure of your machine best, so you will know what
additional data and switches you will need to diagnose your simulator.

For example, you may want to display the contents of internal registers within your
simulated CPU. The operator doesn’t need to see these, but the operator or field engineer
certainly would when he or she is debugging the machine.

George Washington University – Dept. of Computer Science
CS6461: Computer Architectures

10

Test Programs:

You need to write two programs using the instructions in the instruction set and
demonstrate that they execute using your simulator.

Program 1: A program that reads 20 numbers (integers) from the keyboard, prints the
numbers to the console printer, requests a number from the user, and searches the 20
numbers read in for the number closest to the number entered by the user. Print the
number entered by the user and the number closest to that number. Your numbers should
not be 1…10, but distributed over the range of 0 … 65,535. Therefore, as you read a
character in, you need to check it is a digit, convert it to a number, and assemble the
integer.

Program 2: A program that reads a set of a paragraph of 6 sentences from a file into
memory. It prints the sentences on the console printer. It then asks the user for a word. It
searches the paragraph to see if it contains the word. If so, it prints out the word, the
sentence number, and the word number in the sentence.

Part 0 Deliverable (See syllabus) (10 points)

Your assembler, packaged as a JAR file
Simple documentation on how to unload and run your assembler
Basic Design Notes
A test case for the assembler
A copy of the listing file for the test case

Part I Deliverable (See syllabus

Your simulator, packaged as a JAR file.
Simple documentation describing how to use your simulator, what the console layout is
and how to operate it.
Your team’s design notes
Source code – well documented.

You should be able to enter data into any of R0 – R3; enter data into memory via
switches; enter the various Load and Store instructions instructions into memory; enter
address into PC and press Single Step switch to execute the instruction at that address.

For this deliverable, when the IPL button is pushed the machine should pre load a
program that shows that the machine works and stop at the beginning, ready for the user
to hit run or single step. This program will be short but show all addressing modes for
the load and store instructions, allowing single step through. The program. Memory
contents at the address given in the MAR should be on the user console.

Part II Deliverables

George Washington University – Dept. of Computer Science
CS6461: Computer Architectures

11

1. Cache Design and Implementation
2. Have all instructions working except Part IV
3. Have your cache design at least coded out if not working

Demonstrate that individual instructions work.
Your user interface, e.g., operator’s console should be used to test instructions, etc.
Include source code for Program 1.
Your simulator, packaged as a JAR file, running program 1.
File containing program 1 as machine code.
Demonstration that Program 1 works.

Simple documentation describing how to use your simulator, what the console layout is
and how to operate it.

Your team’s design notes
Source code – well documented.

Part III Deliverables

Your simulator, packaged as a JAR file, running program 2
Load instructions from a file.
Simple documentation describing how to use your simulator, what the console layout is
and how to operate it. Include source code for program 2.
File containing program 2 as machine code.
Your team’s design notes
Source code – well documented.
Demonstration that Program 2 works.

Part IV Deliverable TBD points - TBD

Your simulator, packaged as a JAR file, running programs 1 and 2.
Updated documentation for your simulator. Include source code for programs 1, 2.
Files containing programs 1, 2 as machine code.
Additional design notes.
Source code – well documented.

If you choose IVa, you should write a simple program that demonstrates floating point
add/subtract, vector add/subtract, and floating point conversion.

