
CSCI 6461 Computer Architecture
C6461 Computer Design and Development Project – Instruction Set Architecture/Assembler

Morris Lancaster – Lecturer August 2024 i

Contents
Project Overview .. 1

C6461 Instruction Set Architecture ... 2

Instruction Set Architecture Overview ... 2

Internal Structures .. 2

C6461 Internal Structure .. 3

Buses ... 3

Programmer Accessible Registers .. 3

Additional Registers .. 4

Memory .. 4

C6461 Operation .. 5

Interrupts ... 5

Machine Faults ... 5

C6461 Instructions .. 6

Miscellaneous Instructions: .. 6

Load/Store Instructions .. 7

Transfer Instructions ... 9

Arithmetic and Logical Instructions ... 10

Register to Register Operations.. 11

Multiply/Divide and Logical Operations .. 11

Shift/Rotate Operations ... 12

I/O Operations .. 13

Floating Point Instructions/Vector Operations .. 14

Building the Assembler .. 18

Assembler High Level Description ... 18

Assembler Source File .. 19

Source File Structure/Content .. 19

Listing Output File .. 20

Load File .. 21

Building the Assembler .. 22

Use two passes .. 22

CSCI 6461 Computer Architecture
C6461 Computer Design and Development Project – Instruction Set Architecture/Assembler

Morris Lancaster – Lecturer August 2024 ii

List of Figures

Figure 1 C6461 Computer Organization ... 3
Figure 2 Overall Flow of C6461 Program Development ... 18
Figure 3 Sample Assembler Source File ... 19
Figure 4 Assembler Listing Output .. 20
Figure 5 Load File ... 21

List of Tables

Table 1: Non Addressible Registers ... 4
Table 2: Reserved Memory Addresses ... 5
Table 3: Miscellaneous Instructions .. 6
Table 4: Field Definitions for Load/Store Instructions ... 7
Table 5: Load/Store Instructions ... 8
Table 6: Transfer Instructions .. 9
Table 7: Add/Subtract Immediate and to Memory Operations ... 10
Table 8: Multiply/Divide and Logical Operations .. 11
Table 9: Shift and Rotate Operations ... 12
Table 10: Floating Point and Vector Operations .. 15

CSCI 6461 Computer Architecture
C6461 Computer Design and Development Project – Instruction Set Architecture/Assembler

Morris Lancaster – Lecturer August 2024 1

Project Overview
This document is the defining source of information for the development of an assembler language
translator for the C6461 Computer. It contains a description of the architecture of the C6461
Simulator to provide the student with suƯicient information to develop the assembler, including a
representation of the internal structure and the binary formats for the instructions that the C6461
must execute.

CSCI 6461 Computer Architecture
C6461 Computer Design and Development Project – Instruction Set Architecture/Assembler

Morris Lancaster – Lecturer August 2024 2

C6461 Instruction Set Architecture

Instruction Set Architecture Overview
The instruction set architecture (ISA) consists of the structures and functions visible to the
assembly language level programmer or to the compiler writer. It acts as the interface between a
computer's hardware and software, defining the set of instructions that a processor can execute,
including operations such as arithmetic, data movement, and control flow. The ISA determines how
software communicates with the hardware, specifying how instructions are formatted, how data is
accessed and manipulated, and how the processor responds to various commands. The design of
an ISA aƯects the eƯiciency, performance, and power consumption of a computer system, as well
as its compatibility with software.

The development of the C6461 begins with the development of a C6461 Assembler. During this
project you will develop a detailed understanding of the machine as described in this document. In
the “which came first” question regarding a particular machine’s hardware design or ISA design,
you will see that the answer is not always clear.

Think of the machine as an object in an Object Oriented (OO) programming language. Assembly
code, often called Machine Code, generated by a compiler or the programmer in the form of binary
numbers, is directly executable on the machine. In our Von Neumann architecture, the C6461
executes assembly code stored in memory by fetching an instruction, determining the type and
function of the instruction, and then executing that instruction. It then proceeds to the next
instruction.

Internal Structures

The internal structures consist of register hardware, memory, program counter (location of next
instruction to execute). As with a software defined object, there are internal structures that are not
seen by the programmer and are not necessarily fixed. This allows the development of and
improvements in the internal structure of the hardware. As a common example, the Intel 64
Instruction Set Architecture has several implementations, evolving from the original Pentium
architecture and branching out into other internal designs by, for example, AMD. Like the OO Design
of Software, the external interface remains the same, with the ISA being the focal point of reuse.

CSCI 6461 Computer Architecture
C6461 Computer Design and Development Project – Instruction Set Architecture/Assembler

Morris Lancaster – Lecturer August 2024 3

C6461 Internal Structure
Figure 1 C6461 Computer Organization shows the internal components of the C6461 Computer. The
components of C6461 are as follows:

Buses

 The Main Bus (vertical blue arrow) is a set of 16 data wires (our machine is a 16 bit machine)
along with control information for accessing the bus.

 Memory Bus from MBR to memory, is a 16 bit bus (16 data wires)
 Memory Address Bus from MAR to Memory is a 12 bit bus carrying an address of the

memory location to be accessed (read or write)
 Other lines are directly connected.

Figure 1 C6461 Computer Organization

Programmer Accessible Registers

 Four 16-bit general purpose registers GPR0-GPR3, used for storing fetched or computed
numbers

 Three 16-bit index registers X1-X3 that can hold data but are primarily used to hold
addresses or parts of addresses and be used by instructions to compute addresses (note
that these will be referred to IX1-IX3 in text below. There is no X0. Use of 0 in an index
register field will indicate no indexing.

CSCI 6461 Computer Architecture
C6461 Computer Design and Development Project – Instruction Set Architecture/Assembler

Morris Lancaster – Lecturer August 2024 4

 In a C6461 instruction, a number can be added to a value from an index register to compute
an EƯective Address (EA)

Additional Registers

Mnemonic Size Name

PC 12 bits Program Counter: address of next instruction to be
executed. Note that 212 = 4096.

CC 4 bits Condition Code: set when arithmetic/logical operations
are executed; it has four 1-bit elements: overflow,
underflow, division by zero, equal-or-not. They may be
referenced as cc(0), cc(1), cc(2), cc(3). Or by the names
OVERFLOW, UNDERFLOW, DIVZERO, EQUALORNOT

IR 16 bits Instruction Register: holds the instruction to be
executed

MAR 12 bits Memory Address Register: holds the address of the
word to be fetched from memory

MBR 16 bits Memory BuƯer Register: holds the word just fetched
from or the word to be /last stored into memory

MFR 4 bits Machine Fault Register: contains the ID code if a
machine fault after it occurs

GPRs 0-3 16 bits 4 general purposes registers for computational use.

IXRs 1-3 16 bits 3 index registers for addressing

Other registers
as needed

Defined by
student

Internal registers for your simulator. Note in the diagram
the Y and Z registers are used for input and output of
computations respectively

Table 1: Non Addressable Registers

Memory

 Word addressable (Word size for C6461 is 16 bits
 Memory of 2048 16-bit words, expandable to 4096, we will use 2048
 Read only Memory used for system load or other functions. We will simulate the read only

memory with system memory load and system memory clear functions

Reserved Memory Locations
The C6461 computer, like all computers, has a set of reserved memory locations for use by
operating system functions. Reserved memory locations, in earlier computers, could usually be

CSCI 6461 Computer Architecture
C6461 Computer Design and Development Project – Instruction Set Architecture/Assembler

Morris Lancaster – Lecturer August 2024 5

accessed by a programmer through the front panel. The programmer at the front panel could enter
instructions directly into any place in memory or activate a load program which could read a
program into any place in memory. Once loaded and in execution, reserved memory locations
could not be accessed.

Memory
Address

Usage

0 Used for trap instruction, which when executed, looks in location 0 for the address of
a list of address to up to 16 routines to execute, with the trap code being 0-15

1 Used for machine faults (errors) and contains the address of code to handle machine
faults. Implemented in part III. See the machine fault table below.

2 Location for storing the current PC when a trap occurs. This allows a trap to save the
PC and then use the address at location 0 and the trap code to execute trap
procedures, after which it can return to the program causing the trap.

3 Not used
4 Store PC for machine fault. Similar to location 2
5 Not used

Table 2: Reserved Memory Addresses

C6461 Operation

Interrupts

The C6461 does not implement interrupts or complex I/O.

Machine Faults

Implemented in Part III of the project): (How to set the Machine Fault Register-MFR)

An erroneous condition in the machine will cause a machine fault. The machine traps to memory
address 1, which contains the address of a routine to handle machine faults. Your simulator must
check for faults.

The possible machine faults that are predefined are:

ID Fault

0 Illegal Memory Address to Reserved Locations MFR set to binary 0001
1 Illegal TRAP code MFR set to binary 0010
2 Illegal Operation Code MFR set to 0100
3 Illegal Memory Address beyond 2048 (memory installed) MFR set to binary 1000

When a Trap instruction or a machine fault occurs, the processor saves the current PC and MFR
saves (stored with MFR register) contents to the locations specified in Table 2: Reserved Memory
Addresses above, then fetches the address from Location 0 (Trap) or 1 (Machine Fault) into the PC
which becomes the next instruction to be executed. This address will be the first instruction of a
routine which handles the trap or machine fault.

CSCI 6461 Computer Architecture
C6461 Computer Design and Development Project – Instruction Set Architecture/Assembler

Morris Lancaster – Lecturer August 2024 6

Traps are not implemented until phase III. It is recommend that location 1 contain the number 6
(first available non-protected location) and that location 6 contain a halt to be able to view the fault.

C6461 Instructions

Miscellaneous Instructions:
Miscellaneous instructions do not fit into another category (given the size of the machine). The
formats are:

Note that areas that are blocked out in the above formats are not used in the decoding or
interpretation of the instruction . The numbers below the figures illustrate bit positions.

OpCode8 Instruction Description

00 HLT Stops the machine.

30 TRAP code Traps to memory address 0, which contains the
address of a table in memory. Stores the PC+1 in
memory location 2. The table can have a
maximum of 16 entries representing 16 routines
for user-specified instructions stored elsewhere in
memory. Trap code contains an index into the
table, e.g., it takes values 0 – 15. When a TRAP
instruction is executed, it goes to the routine
whose address is in memory location 0, executes
those instructions, and returns to the instruction
stored in memory location 2. The PC+1 of the
TRAP instruction is stored in memory location 2.

Table 3: Miscellaneous Instructions

Do not implement the TRAP instruction until Part III.

CSCI 6461 Computer Architecture
C6461 Computer Design and Development Project – Instruction Set Architecture/Assembler

Morris Lancaster – Lecturer August 2024 7

Load/Store Instructions
Load/Store instructions only move contents between memory and registers. Memory addresses are
computed and denoted as EƯective Addresses (EA). The basic instruction format is shown below:

Field #Bits Description

Opcode 6 Specifies one of 64 possible instructions.
Not all may be defined in this project

IX 2 Specifies one of three index registers; may be
referred to by X1 – X3. O value indicates no
indexing.

R 2 Specifies one of four general purpose registers;
may be referred to by R0 – R3

I 1 If I =1, specifies indirect addressing; otherwise, no
indirect addressing.

Address 5 Specifies one of 32 locations - Unsigned
Table 4: Field Definitions for Load/Store Instructions

To address all of memory, indexing will be required. We will use a base address indexing scheme. The
value of IX is used to select an index register and to specify indirect addressing:

 00 No Indexing
 01 Index Register 1
 10 Index Register 2
 11 Index Register 3

Computing the EƯective Address:
 EƯective Address = //First add Address Field and Index Register

If IX field =00 Then
 EA = c(Address) // contents of the Address Field
Else IF c(IX) = 1..3 Then // IX field has a valid index register number
 EA = c(IX) + c(Address)
EndIf

If I field = 1 Then //indirection – the EA computed above is the
 EA = c(EA) //address in Memory of the EA, so fetch it.
EndIf

The eƯective address is the location of the operand in memory. The operand could be a source or a
destination.

CSCI 6461 Computer Architecture
C6461 Computer Design and Development Project – Instruction Set Architecture/Assembler

Morris Lancaster – Lecturer August 2024 8

Load/Store instructions move data from/to memory and a register. The access to memory may be
indirect (by setting the I bit).

Notation:
c(EA) means “fetch the contents of the memory location specified by EA,” where EA = 0 … maximum
memory size, or c(IX) means “get the contents of the field IX in the instruction”.

[,I] in an instruction indicates that the indirect bit in assembly code is optional. So, the instruction
might not have the ,I at the end.

OpCode8 Instruction Description

01 LDR r, x, address[,I] Load Register From Memory, r = 0..3
r c(EA)
note that EA is computed as given above

02 STR r, x, address[,I] Store Register To Memory, r = 0..3
Memory(EA) c(r)

03 LDA r, x, address[,I] Load Register with Address, r = 0..3
r EA

41 LDX x, address[,I] Load Index Register from Memory, x = 1..3
Xx <- c(EA)

42 STX x, address[,I] Store Index Register to Memory. X = 1..3
Memory(EA) <- c(Xx)

Table 5: Load/Store Instructions

As an example, consider the instruction: LDR 3,0,31 (Symbolic Form)

This would be read as: Load register 3 with the contents of the memory location 31. Since IX = 00,
there is no indexing, so 31 is the EA.

This instruction would be encoded as:

Opcode R IX I Address
000001 11 00 0 11111

Note that in this representation, the contents of the A field are always considered positive.

CSCI 6461 Computer Architecture
C6461 Computer Design and Development Project – Instruction Set Architecture/Assembler

Morris Lancaster – Lecturer August 2024 9

Transfer Instructions
The Transfer instructions change control of program execution. Conditional transfer instructions
evaluate the value of a register. Note R = 0…3. They have the same format as the Load/Store
instructions.

Notation: c(r) means “the contents of register r,” r = 0..3

OpCode8 Instruction Description

10 JZ r, x, address[,I] Jump If Zero:
If c(r) = 0, then PC EA
Else PC <- PC+1

11 JNE r, x, address[,I] Jump If Not Equal:
If c(r) != 0, then PC - EA
Else PC <- PC + 1

12 JCC cc, x, address[,I] Jump If Condition Code
cc replaces r for this instruction
cc takes values 0, 1, 2, 3 as above and specifies
the bit in the Condition Code Register to check;
If cc bit = 1, PC EA
Else PC <- PC + 1

13 JMA x, address[,I] Unconditional Jump To Address
PC <- EA,
Note: r is ignored in this instruction

14 JSR x, address[,I] Jump and Save Return Address:
R3 PC+1;
PC EA
R0 should contain pointer to arguments
Argument list should end with –1 (all 1s) value

15 RFS Immed Return From Subroutine w/ return code as Immed
portion (optional) stored in the instruction’s
address field.
R0 Immed; PC c(R3)
IX, I fields are ignored.

16 SOB r, x, address[,I] Subtract One and Branch. R = 0..3
r c(r) – 1
If c(r) > 0, PC <- EA;
Else PC <- PC + 1

17 JGE r,x, address[,I] Jump Greater Than or Equal To:
If c(r) >= 0, then PC <- EA
Else PC <- PC + 1

Table 6: Transfer Instructions

OpCode 016 allows you to support simple loops. I like this instruction. It was included on the Data
General Eclipse S/200 and many other computers of the minicomputer era.

CSCI 6461 Computer Architecture
C6461 Computer Design and Development Project – Instruction Set Architecture/Assembler

Morris Lancaster – Lecturer August 2024 10

Arithmetic and Logical Instructions
Arithmetical and Logical instructions perform most of the computational work in the machine.
For immediate instructions, the Address portion is the Immediate value.
The condition codes are set for the arithmetic operations. The maximum absolute value of the
Immediate value is 31. (5 bits without sign).

OpCode8 Instruction Description

04 AMR r, x, address[,I] Add Memory To Register, r = 0..3
r c(r) + c(EA)

05 SMR r, x, address[,I] Subtract Memory From Register, r = 0..3
r c(r) – c(EA)

06 AIR r, immed Add Immediate to Register, r = 0..3
r c(r) + Immed
Note:
1. if Immed = 0, does nothing
2. if c(r) = 0, loads r with Immed
IX and I are ignored in this instruction

07 SIR r, immed Subtract Immediate from Register, r = 0..3
r c(r) - Immed
Note:
1. if Immed = 0, does nothing
2. if c(r) = 0, loads r1 with –(Immed)
IX and I are ignored in this instruction

Table 7: Add/Subtract Immediate and to Memory Operations

As an example, add to r2 the contents of memory location 523.
ADD 2,1,23 where c(X1) = 500

Transfer the immediate value 10 to register 3 so that the value of register 3 is 10.
But register 3 may already have something in it!

STR 3,0,20 ; store register 3 contents in location 20
SMR 3,0,20 ; clear register 3!
AIR 3,10 ; load register 3 with 10

How do we test for overflow? Underflow? How do you know this occurs?
Hennessey and Patterson discuss this.

CSCI 6461 Computer Architecture
C6461 Computer Design and Development Project – Instruction Set Architecture/Assembler

Morris Lancaster – Lecturer August 2024 11

Register to Register Operations

Certain arithmetic and logical instructions are register to register operations. The format of these
instructions is:

The blacked-out portion means that portion of the instruction is ignored. Rx and Ry refer to one of
R0-R3.

Multiply/Divide and Logical Operations

OpCode8 Instruction Description

70 MLT rx,ry Multiply Register by Register
rx, rx+1 <- c(rx) * c(ry)
rx must be 0 or 2
ry must be 0 or 2
rx contains the high order bits, rx+1 contains the
low order bits of the result
Set OVERFLOW flag, if overflow

71 DVD rx,ry Divide Register by Register
rx, rx+1 <- c(rx)/ c(ry)
rx must be 0 or 2
rx contains the quotient; rx+1 contains the
remainder
ry must be 0 or 2
If c(ry) = 0, set cc(3) to 1 (set DIVZERO flag)

72 TRR rx, ry Test the Equality of Register and Register
If c(rx) = c(ry), set cc(4) 1; else, cc(4) 0

73 AND rx, ry Logical And of Register and Register
c(rx) c(rx) AND c(ry)

74 ORR rx, ry Logical Or of Register and Register
c(rx) c(rx) OR c(ry)

75 NOT rx Logical Not of Register To Register
C(rx) NOT c(rx)

Table 8: Multiply/Divide and Logical Operations

The logical instructions perform bitwise operations.

TRR 0,2 where r0 = 0 000 000 000 000 001 and r2 = 0 000 000 000 000 001.
Then the condition code register cc(4) gets 1, indicating equality
NOT 3 where r3 = 1 000 000 000 110 110
Then r3 = 0 111 111 111 001 001

CSCI 6461 Computer Architecture
C6461 Computer Design and Development Project – Instruction Set Architecture/Assembler

Morris Lancaster – Lecturer August 2024 12

Shift/Rotate Operations

Shift and Rotate instructions manipulate a datum in a register.

Arithmetic Shift (A/L = 0) instructions move a bit string to the right or left, with excess bits discarded
(although one or more bits might be preserved in flags). The sign bit is not shifted in this instruction.

Logical Shift (A/L = 1) instructions move a bit string left or right, with excess bits discarded and
zero(es) inserted at the opposite end.

Logical Rotate (A/L = 1) instructions are like shift instructions, except that rotate instructions are
circular, with the bits shifted out one end returning on the other end. Rotates can be to the left or
right.

The format for shift and rotate instructions is:

Note: We have 16-bit words, but the maximum value for Count can be 16. So, what happens when
the Count is specified to be 15?

OpCode Instruction Description
31 SRC r, count, L/R, A/L Shift Register by Count

c(r) is shifted left (L/R =1) or right (L/R = 0) either
logically (A/L = 1) or arithmetically (A/L = 0)
XX, XXX are ignored
Count = 0…15
If Count = 0, no shift occurs

32 RRC r, count, L/R, A/L Rotate Register by Count
c(r) is rotated left (L/R = 1) or right (L/R =0) either
logically (A/L =1)
XX, XXX is ignored
Count = 0…15
If Count = 0, no rotate occurs

Table 9: Shift and Rotate Operations

On arithmetic shifts to the right, the sign bit is replicated in the position 1 for each shift.
There is a lot going on here with these instructions. These are examples of some early machines
which packed a lot of functionality into a few instructions.

CSCI 6461 Computer Architecture
C6461 Computer Design and Development Project – Instruction Set Architecture/Assembler

Morris Lancaster – Lecturer August 2024 13

So, suppose r3 = 0 000 000 000 000 110
Then, SRC 3,3,1,1 would yield r0 = 0 000 000 000 110 000
e.g., shift left bits 13…15

So, suppose r1 = 1 000 000 000 000 110
Then, SRC 1,2,0,0 would yield r1 = 1 110 000 000 000 001
e.g., shift right 2 bits
And underflow would be set. Why?

I/O Operations
I/O operations communicate with the peripherals attached to the computer system. This is a simple
model of I/O meant to give you a flavor of how I/O works. For character I/O, the instruction format is:

OpCode Instruction Description
61 IN r, devid Input Character To Register from Device, r = 0..3
62 OUT r, devid Output Character to Device from Register, r = 0..3
63 CHK r, devid Check Device Status to Register, r = 0..3

c(r) <- device status

We will assume the devices whose DEVIDs are:

DEVID Device
0 Console Keyboard
1 Console Printer
2 Card Reader
3-31 Console Registers, switches, etc

Notes:
(1) You may only use the IN and CHK instructions with the console keyboard and the card reader.
(2) You may only use the OUT and CHK instruction with the console printer.
(3) Devices 3 – 31 are aƯected only by the IN and OUT opcodes. Some of these devices may be
aƯected by only one of these opcodes. Can you think of an example now?

CSCI 6461 Computer Architecture
C6461 Computer Design and Development Project – Instruction Set Architecture/Assembler

Morris Lancaster – Lecturer August 2024 14

Floating Point Instructions/Vector Operations

Do not implement floating point numbers until Part IV

We have limited space in our instruction set, with only six bits for opcodes. So, we must limit our
floating point and vector operations. This will give you a chance to think about how to write a software
routine to do multiplication and division for both floating point numbers.

There are two floating point registers: FR0 and FR1. Each is 16 bits in length.

The format of a floating point number is the same as that for a load/store instruction, except that the
r field takes only 2 values: 0 or 1 to specify the two floating point registers.

Vector operations are performed from memory to memory. This was used on several models of vector
processors as opposed to using lots of expensive registers to hold vectors (unless you were Seymour
Cray).

Floating Point numbers are 16 bits in length. So, a floating point number has the representation:

There are 7 bits for the exponent and 8 bits for the mantissa. The first bit of the exponent is its sign
bit. The S bit (bit 0) is the sign of the entire floating point number. The exponent ranges from –63 to 64,
e.g., -26-1 to 26.

CSCI 6461 Computer Architecture
C6461 Computer Design and Development Project – Instruction Set Architecture/Assembler

Morris Lancaster – Lecturer August 2024 15

OpCode Instruction Description
33 FADD fr, x, address[,I] Floating Add Memory To Register

c(fr) c(fr) + c(EA)
c(fr) c(fr) + c(c(EA)) if I bit set
fr must be 0 or 1.
OVERFLOW may be set

34 FSUB fr, x, address[,I] Floating Subtract Memory From Register
c(fr) c(fr) - c(EA)
c(fr) c(fr) - c(c(EA)) if I bit set
fr must be 0 or 1
UNDERFLOW may be set

35 VADD fr, x, address[,I] Vector Add
fr contains the length of the vectors
c(EA) or c(c(EA)), if I bit set, is address of first vector
c(EA+1) or c(c(EA+1)), if I bit set, is address of the
second vector
Let V1 be vector at address; Let V2 be vector at
address+1
Then, V1[i] = V1[i]+ V2[i], i = 1, c(fr).

36 VSUB fr, x, address[,I] Vector Subtract
fr contains the length of the vectors
c(EA) or c(c(EA)) if I bit set is address of first vector
c(EA+1) or c(c(EA+1)) if I bit set is address of the second
vector
Let V1 be vector at address; Let V2 be vector at
address+1
Then, V1[i] = V1[i] - V2[i], i = 1, c(fr).

37 CNVRT r, x, address[,I] Convert to Fixed/FloatingPoint:
If F = 0, convert c(EA) to a fixed point number and store
in r.
If F = 1, convert c(EA) to a floating point number and
store in FR0.
The r register contains the value of F before the
instruction is executed.

50 LDFR fr, x, address [,i] Load Floating Register From Memory, fr = 0..1
fr c(EA), c(EA+1)
fr <- c(c(EA), c(EA)+1), if I bit set

51 STFR fr, x, address [,i] Store Floating Register To Memory, fr = 0..1
EA, EA+1 c(fr)
c(EA), c(EA)+1 <- c(fr), if I-bit set

Table 10: Floating Point and Vector Operations

CSCI 6461 Computer Architecture
C6461 Computer Design and Development Project – Instruction Set Architecture/Assembler

Morris Lancaster – Lecturer August 2024 16

Note: Opcode 037 is a strange beast! It latches the result to FR0 when converting from integer to
floating point – no other choices allowed!

So, the vector add instruction might be encoded as:

VADD 0, 1, 31 w/ I = 0

In memory this would look like:
Opcode fr I IX Address
011110 00 0 01 11111

R field designates either FR0 or FR1.

At memory location c(X0) + 31: address of first vector
At memory location c(X0) + 32: address of second vector
Each of these vectors would be c(fr) words long

CSCI 6461 Computer Architecture
C6461 Computer Design and Development Project – Instruction Set Architecture/Assembler

Morris Lancaster – Lecturer August 2024 17

There is a lot for you to think about here!

CSCI 6461 Computer Architecture
C6461 Computer Design and Development Project – Instruction Set Architecture/Assembler

Morris Lancaster – Lecturer August 2024 18

Building the Assembler

Assembler High Level Description
An assembler translates “assembly language” instructions for a particular instruction set
architecture into a numeric representation that can be loaded into the computer and executed. As
seen in Figure 2 Overall Flow of C6461 Program Development below, a Source Program (text file) is
developed by the programmer for input into the assembler. The assembler reads the source
program and generates two types of files. One file is a Listing File that shows the results of
processing the code by the assembler, and could include errors for the programmer to correct. A
Load File is also generated. This is a numeric file containing, in the case of C6461 computer, two
numbers per line. The first number is an octal address, and the second number is the octal
contents of the number at that address. This file is sometimes called an object file. It can be loaded
into the machine using an initiation sequence (Init) button.

Figure 2 Overall Flow of C6461 Program Development

Note that in our simulator, we will be simulating a load when the Init button is pressed. This is
artificial as a real machine will execute internal read only memory that looks for specific locations
from which to load the file. The file being loaded is a binary file, in binary notation (as opposed to
text).

CSCI 6461 Computer Architecture
C6461 Computer Design and Development Project – Instruction Set Architecture/Assembler

Morris Lancaster – Lecturer August 2024 19

Assembler Source File
Figure 3 Sample Assembler Source File below is a sample assembler language source file for our
simulator.

Source File Structure/Content
A source file for our assembler contains lines of code broken into 4 possible fields. These fields are:

1. Label – text followed by a colon “:” . This field is used to define locations. Note that the
value of the label is its location as we will see below

2. Operation Code (Op Code) or Assembler Directive. Op codes are provided in the above
sections on the ISA. Assembler Directives are as follows:

o LOC n - This tells the assembler to set the load location to the number specified by
n which provides a means for the programmer to specify where the instructions are
placed in memory. Note that n is provided by the programmer in DECIMAL.

o Data – This tells the assembler to allocate 1 word (16 bits) of memory at the
location (kept by the assembler) and place at that location the value specified by a
DECIMAL number n or the location of a label. Note that in the fourth line we see
“Data End” which instructs the assembler to allocate a word and put the location of
the label “End” into that location. You may choose to allow text in parentheses, but
this is not required. If you provide this, only two characters can be specified per line.

 LOC 6 ;BEGIN AT LOCATION 6
 Data 10 ;PUT 10 AT LOCATION 6
 Data 3 ;PUT 3 AT LOCATION 7
 Data End ;PUT 1024 AT LOCATION 8
 Data 0
 Data 12
 Data 9
 Data 18
 Data 12
 LDX 2,7 ;X2 GETS 3
 LDR 3,0,10 ;R3 GETS 12
 LDR 2,2,10 ;R2 GETS 12
 LDR 1,2,10,1 ;R1 GETS 18
 LDA 0,0,0 ;R0 GETS 0 to set CONDITION CODE
 LDX 1,8 ;X1 GETS 1024
 JZ 0,1,0 ;JUMP TO End IF R0 = 0
 LOC 1024
End: HLT ;STOP

Figure 3 Sample Assembler Source File

CSCI 6461 Computer Architecture
C6461 Computer Design and Development Project – Instruction Set Architecture/Assembler

Morris Lancaster – Lecturer August 2024 20

3. Instruction code operands. These vary by instruction as provided in the ISA description
section.

4. Comments – a semicolon followed by text describing the program operation.

Note in the example source file that fields may be optional, depending upon the use of the
instruction.

Listing Output File

Figure 4 Assembler Listing Output is a listing output file for Figure 3 Sample Assembler Source File
above. Note that the assembler has added two columns, both in OCTAL, (000012 is the 16 bit octal
representation for decimal 10).

Note the following:

 The LOC directive is a message to the assembler to begin counting the location at the
number provided. The number following LOC is in decimal. Note that it will get translated to
Octal on the listing. The LOC does not allocate memory.

 LOC 6 ;BEGIN AT LOCATION 6
000006 000012 Data 10 ;PUT 10 AT LOCATION 6
000007 000003 Data 3 ;PUT 3 AT LOCATION 7
000010 002000 Data End ;PUT 1024 AT LOCATION
000011 000000 Data 0
000012 000014 Data 12
000013 000011 Data 9
000014 000022 Data 18
000015 000014 Data 12
000016 102207 LDX 2,7 ; X2 GETS 3
000017 003412 LDR 3,0,10 ;R3 GETS 12
000020 003212 LDR 2,2,10 ;R2 GETS 12
000021 002652 LDR 1,2,10,1 ;R1 GETS 18
000022 006000 LDA 0,0,0 ;R0 GETS 0
000023 102110 LDX 1,8 ;X1 GETS 1024
000024 020100 JZ 0,1,0 ;JUMP TO End if R0 = 0
 LOC 1024
002000 000000 End: HLT ;STOP

Figure 4 Assembler Listing Output

CSCI 6461 Computer Architecture
C6461 Computer Design and Development Project – Instruction Set Architecture/Assembler

Morris Lancaster – Lecturer August 2024 21

 The location of End (a label) ends up in location 8 (000010). This means that the
assembler must determine label addresses.

 Note that no code is generation for the LOC or commented locations. If you put 0’s in
these spaces the machine would halt.

Load File

A load file for the code is shown in Figure 5 Load File. Note that it does not have blank spaces.

In the implementation of the load file, this file will be simulated as a text file rather than a
binary file. Only non-blank lines should be loaded.

000006 000012
000007 000003
000010 002000
000011 000000
000012 000014
000013 000011
000014 000022
000015 000014
000016 102207
000017 003412
000020 003212
000021 002652
000022 006000
000023 102110
000024 020100
002000 000000

Figure 5 Load File

CSCI 6461 Computer Architecture
C6461 Computer Design and Development Project – Instruction Set Architecture/Assembler

Morris Lancaster – Lecturer August 2024 22

Building the Assembler
The following hints are provided for building the assembler.

Use two passes
Eary assemblers read the program twice.

Pass 1:

1. Set code location to 0
2. Read a line of the file
3. Use the split command to break the line into its parts
4. Process the line, if it is a label, add the label to a dictionary with the code location. Process

the rest of the line (it could be blank, if so no code is generated). Check for errors in the
code.

5. If code or data was generated increment the code location and go to step 2 until
termination.

Pass 2:

1. Set code location to 0
2. Read a line of the file
3. Use the split command to break the line into it parts
4. Convert the code according to the second field.
5. Add line to listing file and to load file.
6. If code or data generated, increment the code counter, and go to step2 until termination.

A two pass assembler is a simpler form from the standpoint of tracing errors and separating
functionality.

