
Multiscalar Processors

Gurindar S. Sohi Scott E. Breach T.N. Vijaykumar

sohi@cs. wise.edu breach@cs.wise.edu vijay@cs.wise.edu

Computer Sciences Department
University of Wisconsin-Madison

Madison, WI 53706

Abstract

Multiscalar processors use a new, aggressive imple-
mentation paradigm for extracting large quantities of instruc-

tion level parallelism from ordinary high level language pro-

grams. A single program is divided into a collection of tasks

by a combination of software and hardware. The tasks are

distributed to a number of parallel processing units which

reside within a processor complex. Each of these units

fetches and executes instructions belonging to its assigned

task. The appearance of a single logical register file is main-

tained with a copy in each parallel processing unit. Register

results are dynamically routed among the many parallel pro-

cessing units with the help of compiler-generated masks.
Memory accesses may occur speculatively without
knowledge of preceding loads or stores. Addresses are
disambiguated dynamically, many in parallel, and processing

waits only for true data dependence.

This paper presents the philosophy of the multi scalar

paradigm, the structure of multiscalar programs, and the

hardware architecture of a multiscalar processor. The paper

also discusses performance issues in the mttltiscalar model.

and compares the multiscalar paradigm with other para-
digms. Experimental results evaluating the performance of a
sample of multiscalar organizations are also presented.

1. Introduction

The basic paradigm of sequencing through a program,

i.e., the fetch-execute cycle using a program counter, has

been with us for about 50 years. A consequence of this

sequencing paradigm is that programs are written with the

tacit assumption that instructions will be executed in the
same order as they appear in the program. To achieve high
performance, however, modern processors attempt to execute

multiple instructions simultaneously, and in some cases in a

different order than the original program sequence. This
reordering may be done in the compiler, m the hardware at

execution time, or both. Superscalar and VLIW processors
belong to this class of architectures that exploit instruction
level parallelism (ILP).

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery.To copy otherwise, or to republish, requires
a fee and/or specific permission.
ISCA ’95, Santa Margherita Ligure Italy
63 1995 ACM 0-89791 -698 -0/95/0006 ...$3.50

ILP processors and compilers typically convert the
total ordering of instructions as they appear in the original
program into a partial ordering determined by dependence

on data and control. Control dependence (which appear as
conditional branches) present a major obstacle to highly

parallel execution because these dependence must be
resolved before all subsequent instructions are known to be

valid.

Focusing on control dependence, one can represent a

static program as a conlrol flow graph (CFG), where basic

blocks are nodes, and arcs represent flow of control from one

basic block to another. Dynamic program execution can be
viewed as walking through tbe program CFG, generating a

dynamic sequence of basic blocks which have to be executed
for a particular run of the program.

To achieve high performance, an ILP processor must

attempt to walk through the CFG with a high level of paral-

lelism. Branch prediction with speculative execution is one
commonly-used technique for raising the level of parallelism

that can be achieved during the walk. The primary constraint
on any parallel walk, however, is that it must preserve the

sequential semantics assumed in the program.

In the multiscalar model of execution, the CFG is par-

titioned into portions called tasks. A multiscalar processor
walks through the CFG speculatively, taking task-sized steps,

without pausing to inspect any of the instructions within a

task. A task is assigned to one of a collection of processing

units for execution by passing the initial program counter of

the task to the processing unit. Multiple tasks then execute in

parallel on the processing units, resulting in an aggregate

execution rate of multiple instructions per cycle.

At this level, the concept sounds simple, however, the

key to making it work is the proper resolution of inter-task

data dependence. In particular, data that is passed between
instructions via registers and memory must be routed
correctly by the hardware. Furthermore, it is in this area of

inter-task data communication that the multiscalar approach
differs significantly from more traditional multiprocessing

methods.

This paper describes the multiscalar approach to
exploiting fine-grain parallelism (or instruction-level paral-

lelism or ILP). Section 2 provides an overview of the multis-

calar paradigm. A breakdown of the distribution of the avail-
able processing unit cycles in multiscalar execution follows
in Section 3. In Section 4, we compare multiscalar with

other ILP paradigms. A performance evaluation of potential
configurations of a multiscalar processor is given in Section

414

5, In Section 6, we summarize this work and offer conclud-
ing remarks.

2. An Overview of the Multiscalar Paradigm

2.1. Philosophy and Basics

The objective of the non-sequential walk of the CFG

taken by a multiscalar processor is to establish a large and

accurate dynamic window of instructions from which
independent instructions can be extracted and scheduled for

parallel execution. (An instruction window, in ILP parlance,
is an assemblage of instructions under consideration for exe-

cution.) To perform this function, a multi scalar processor
walks through the CFG in large steps, not instruction by

instruction (as is the case in a sequential processor), nor basic

block by basic block, but rather task by task.

A task is a portion of the CFG whose execution

corresponds to a contiguous region of the dynamic instrtrc-

tion sequence (e.g., part of a basic block, a basic block, mtrl-

tiple basic blocks, a single loop iteration, an entire loop, a
function call. etc.). A program is statically partitioned into

tasks which are demarcated by annotations of the CFG (more

on this in Section 2.2). For each step of its walk, a muhis-
calar processor assigns a task to a processing unit for execu-

hon, without concern for the actual contents of the task, and

continues its walk from this point to the next point in the

CFG.

A possible microarchitecture for a multiscalar proces-

sor is shown in Figure 1. In most general terms, consider a

multiscalar processor to be a collection of processing units

with a sequencer which assigns tasks to the processing units.

Once a task is assigned to a processing unit, the unit fetches

and executes the instructions of the task untiI it is complete.
Multiple processing units, each with its own internal instruc-
tion sequencing mechamsm, support the execution of muki-
ple tasks, and thereby multiple instructions, in any given time

step. The instructions contained within the dynamic instruc-

tion window are bounded by the first instruction in the earli-

est executing task and the last instruction in the latest execut-

ing task. Given that each task may contain loops and func-

tion calls, this observation implies that the effective size of

the instruction window may be extremely large. A key point

is that not all the instructions within this wide range are

simultaneously being considered for execution, only a lim-
ited set within each of the processing units.

Consider the CFG in Figure 2 of a program fragment
with five basic blocks, A, B, C, D, and E. Suppose the

dynamic sequence of basic blocks executed is A I B I C! B1

B{ C[D~ A: B2, B; C; D? A; B; C; B; C; D: E In this
sequence, the superscripts and subscripts identify the incar-

nation of the basic block in relation to the outer and inner
loops, respectively. In a sequential processor, the dynamic

instructions corresponding to this sequence of basic blocks

are generated as program control navigates through the CFG,

executing one instruction at a time. To ensure a correct exe-

cution on an ILP processor, it must appear that the instruc-

tions among all basic blocks execute in precisely this same
sequential order, regardless of what actually transpires.

Consider an iteration of the outer loop from the CFG
in Figure 2 as a task. That is, let static basic blocks A, B, C,

and D (as well as the control flow through them) comprise a

G“*

c1Data
Bank

.*.

I J

..* ElData
llan!+

Figure 1: A Possible Microarchitecture
of a Multi scalar Processor.

A B c D

Q70YOYOu

E

Figure 2: An Exalmple Control Flow Graph.

task. We may assign a task corresponding to the first itera-
tion of the outer loop to a processing unit. followed by the

second iteration to the next processing unit, and so on.

The processing unit that is assigned the first iteration

sequences through its task to execute the dynamic i nstruc-
tions of basic blocks A! B~ Cl B: Bj C; D!. ILikewise, the

following processing units execute the dynamic instructions

of basic blocks A; B; B; C? D; and A] B; C; B: C; D;, as

per the second and third iterations respectively. In this

example, the potential result of this approach is the execution

of three useful instructions in a cycle. For instance, in a

given cycle, the processing units might executt instructions

from dynamic basic blocks B~, C;, and B;, simultaneously.

It is important to observe that tasks, although separate

groups of instructions, are not independent. 13ecause tasks
are portions of a sequential instruction stream. the data and
control relations among individual instructions must be
honored during execution. A key issue in a multiscalar

implementation is the communication of data and control

information among the parallel processing units. That is,
how do we provide the appearance of a sequential walk even
though in reality we perform a non-sequential walk (perhaps

considered radically non-sequential) through the CFG?

To maintain a sequential appearance we employ a

twofold strategy. First, we ensure that each processing unit

adheres to sequential execution semantics for the task
assigned to it. Second, we enforce a loose sequential order

over the collection of processing units, which in turn imposes
a sequential order on the tasks. The sequential order on the
processing units is maintained by organizing the units into a
circular queue. Head and tail pointers indicate the units that

415

are executi rrg the earliest and the latest of the current tasks,

respectively. For instance in the example of Figure 2, the

processing unit at the head is executing the first iteration,
preceding the unit executing the second iteration, preceding
the tail unit executing the third iteration.

As instructions in a task execute, values are both con-

sumed and produced. These values are bound to storage

locations, namely registers and memory. Because a sequen-

tial execution model views storage as a single set of registers

and memory locations, multi scalar execution must maintain

this view as well. Furthermore, multiscalar execution must

ensure that the values consumed and produced by instruc-

tions are the same as those in a sequential execution. In the
example, values consumed by an instruction in dynamic

basic block B; must be the values resulting from the execu-
tion of instructions in A ~ B{ Cl Bj B~ C: D! A: By, as well

as preceding instructions in B;. In order to provide this
behavior, we must synchronize communication between
tasks.

In the case of registers, the control logic synchronizes

the production of register values in predecessor tasks with
the consumption of these values in successor tasks via reser-

vations on registers. The register values a task may produce

can be determined statically and maintained in a create mask

(more details in Section 2.2). At the time a register value in

the create mask is produced, it is forwarded to later tasks,
i.e., to processing units which are logical successors of the
unit, via a circular unidirectional ring (see Figure l). The
reservations on registers for a successor task are given in the

acctmr mask, which is the union of the create masks of
current] y active predecessor tasks. As values arrive from

predecessor units, reservations are cleared in the successor

units. If a task uses one of these values, the consuming

instruction can proceed only if the value has been received;

otherwise it waits for the value to arrive.

In the case of memory, the situation is somewhat dif-

ferent. Unlike register vahtes, it cannot be precisely deter-

mined ahead of time which memory values are consumed or
produced by a task. If it is known that a task consumes a
memory value (via a load instruction) that is produced (via a

store instruction) in an earlier task, it is possible to synchron-
ize the consumption and production of this value. That is,
the load in the successor task can be made to wait until the

store in the predecessor task has completed (similar in con-

cept to the situation for registers. although the exact syn-
chronization mechanism would be different due to the dispar-

ity in the sizes of the name-spaces).

In the more common case where such knowledge is

not available, either a conservative or an aggressive approach

may be undertaken. The conservative approach is to wait

until it is certain that the load will read the correct value.
This option typically implies holding back loads within a
task until all predecessor tasks have completed all stores,

with the likely outcome being near-sequential execution.
The aggressive approach is to perform loads speculative] y,

with the expectation that a predecessor task will not store a
value into the same location at a later time. A check must be

made dynamically to ensure that no predecessor task writes a

value into a memory location previously read by a successor

task. If this check identifies a load and store that conflict (do
not occur in the proper order), the later task must squash its
execution and initiate appropriate recovery action. (A

mttltiscalar processor takes the aggressive approach.)

Due to the speculative nature of multiscalar execution,

it must be possible to both confirm correct execution as well

as recover from incorrect execution. The execution of
instructions within tasks may be considered as speculative

for two reasons: (i) control speculation, and (ii) data specula-

tion. As tasks execute, the correct path of execution through

the program CFG is resolved. If control speculation, i.e.,

prediction of the next task, is incorrect, the following task(s)

must be squashed and the correct task sequence resumed.

Likewise, if a task uses an incorrect data value, the offending

task must be squashed and the correct data value recovered.

In any case, the action of squashing a task results in the

squashing of all tasks in execution following the task (other-
wise, maintaining sequential semantics becomes complex).

To facilitate maintaining sequential semantics, a mul-
tiscalar processor retires tasks from the circular queue of

units in the same order as it assigns them. During specula-

tive execution, a task produces values which may or may not

be correct. It is only certain the values produced by a task

are correct, and may be consumed safely by other tasks, at
the time the retirement of a task is imminent. Nevertheless,

values are optimistically forwarded for speculative use

throughout the execution of a task. Because a task forwards
values to other tasks as it produces them (more details in

Section 2.2 and Section 2,3), most, if not all, of its values

have been forwarded by the time it becomes the head. Thus,
retiring the task may simply be a matter of updating the head

pointer to free the processing unit so a new task may be

assigned.

To illustrate the power of the multiscalar model of

execution, consider the example in Figure 3. In this code

segment, execution repeatedly takes a symbol from a buffer

and runs down a linked list checking for a match of the sym-

bol. If a match is found, a function is called to process the

symbol. If no match is found, an entry in the list is allocated

for the new symbol. After an initial startup, additions to the
list become infrequent, because most symbols match an ele-

ment already in the list. In a multiscalar execution, a task
assigned to a processing unit comprises one complete search
of the list with a particular symbol. The processing units per-
form a search of the linked list in parallel, each with a

for (Indx = O: indx < BUFSIZE: indx++) {
/. get the symbol for which to search “/
symbol = SYMVAL(buffer[indx]);

/% do a linear search for the symbol in the list */
for (list = listhd; list; list= LNEXT(list)) {

/< if symbol already present, process entry “/
if (symbol == LELE(list)) (

process(hst);
break;

P’ if symbol not found in the list, add to the tml ,:/
if (!list) {

addlist(symbol);

)
)

Figure 3: An Example Code Segment,

416

symbol, resulting in an overall execution of multiple instruc-

tions per cycle. The details of the parallel execution of what

at first appears to be a serial program are presented
throughout the rest of this paper.

2.2. Multiscalar Programs

A multi scalar program must provide the means to sup-

port a fast walk (through the CFG) that distributes tasks en
masse to processing units. Below, we describe three distinct

types of information maintained within a machine-level mul-
tiscalar program to facilitate this end: (i) the actual code for
the tasks which comprises the work, (ii) the details of the

structure of the CFG, and (iii) the communication charac-

teristics of individual tasks.

The specification of the code for each task is routine.

A task is specified as a set of instructions, in the same

fashion as a program fragment for a sequential machine.

Although the instruction set architecture (ISA) in which the

code is represented affects the design of each individual pro-

cessing unit, it has little influence on the rest of the design of
a mukiscalar processor. Hence, the instruction set used to

specify the task is of secondary importance. (The
significance of this fact is that an existing ISA may be used
without a major overhaul.)

The sequencer of a multiscalar processor requires

information about the program control flow structure to facil-

itate a rapid traversal of the CFG. [n particular, it needs to

know which tasks are possible successors of any given task

in the CFG. The mtdtiscalar sequencer uses this information

to predict one of the possible successor tasks and to continue
the CFG walk from this point. (Unlike the corresponding

case in a sequential execution, control proceeds to a succes-
sor task before the current task is complete.) Such informa-

tion can be determined statically and placed in a task descrip-

tor. The task descriptors may be interspersed within the pro-
gram text (for instance, before the code of the task) or placed

in a single location beside the program text (for instance, at

the end).

To coordinate execution among different tasks, it is

necessary to characterize each task according to the set of

values that may be consumed by the task and the set of

values that may be produced by the task. In a sequential exe-

cution, this information is discovered during the instruction
decode process as instructions are fetched and inspected.
However, the objective in a muhiscalar execution is to assign

a task to a processing unit and to proceed to the next task
without inspecting the contents of the assigned task.

The procedure to handle register values is straightfor-

ward. (Memory values are handled as described in Section

2.3.) A static analysis of the CFG is performed by the com-

piler to supply the create mask that indicates the register

values a task may produce (. A natural location for the create

mask is within the task descriptor. Since a task may contain

‘ It IS not strictly required to specify which values a tmk may
consume. As a task executes and consumes values, it waits for a par-
ticular value only if the value has not yet been produced (by an active
predecessor task) Otherwise, it finds the value within local storage
[1] The VdUe ~,-e.ent dthi~ 10cJ st~,.age is the product of an ew

Iier task that has forwarded a value around the ring.

multiple basic blocks whose execution is gc~verned by

(dynamically resolved) control conditions, it is not possible

to determine statically which register values will be created

dynamically. As such, the create mask must be conservative,

and thereby includes all register values that may be produced.

As a processing unit executes the instructions in a

task, register values are produced which must be forwarded
to succeeding tasks. Because the unit cannot cletermine a
priori which instructions comprise its assigned task (the
instructions may not even have been fetched), it cannot know
which instruction performs the update to a register that must

be forwarded to other tasks. In accordance with sequential
semantics, only the last update of a register in the task should

be forwarded to other tasks. The option exists to wait until

all instructions in a task have been executed (i. e., no further

updates of registers are possible). However, this strategy is

not expedient since it often implies that other tasks must

wait, possibly a considerable period of time, for a value that

is already available,

The compiler, on the other hand, has knowledge of the

last instruction in a task to update a particular register. It can

mark this instruction as a special (operate-and-forward)
instruction that, in addition to carrying out the specified

operation, forwards the result to following processing units.
Furthermore, as a unit executes the instructions clf its task, it

can identify those registers for which values are not going to

be produced (although statically it appeared a value might be

produced). By virtue of the fact that later tasks must wait for

any register that an earlier task indicates it might produce

(regardless of whether a value is actually procluced), it is
necessary to release such registers in order to continue exe-

cution. When a register is released, the value is forwarded to
later units.

For the same reasons a processing unit cannot deter-

mine which dynamic instructions comprise its assigned task,
it likewise cannot determine a priori on which instruction a
task will complete, i.e., at what point control flows out of the

task, At the time the CFG is partitioned by the compiler, the

boundaries of a task and the control edges leaving the task

are known. An instruction at one of these exiting edges may

be marked with special stopping conditions so that at the

time such an instruction is encountered by the processing

unit the appropriate conditions can be evaluated. If the stop-

ping conditions associated with the instruction are satisfied,
the task is complete.

The specification of forwarding and stopping informa-

tion is best viewed as the addition of a few tag bits (forward

and stop bits, respectively) to each instruction in a task.

Nevertheless, it may be necessary to implement these tag bits
differently if the basic ISA is not to be changed. One possi-

ble implementation is to provide a table of tag bits to be asso-

ciated with each static instruction. As the hardware fetches

the instructions from the program text and the corresponding

tag bits from the table, it concatenates the pair to produce a
new instruction. The new instructions can be maintained in
the instruction cache, so that the overhead of accessing two

memory locations (one for the instructions and one for the
bits) is incurred only in the case of a cache miss. The release
of a register may be indicated by adding a special re/ease

]nstructlon to the base ISA or by overloading an eximin~

instruction of the base ISA.

417

A pictorial representation of the information assem-

bled within a task of a multiscalar program is given in Figure
4, This depiction centers around the assembly language for
the example of Figure 3. In addition to the assembly

language, the figure contains a task descriptor, a set of for-
ward bits, and a set of stop bits. Recall that the task under

consideration consists of one iteration of the outer loop. The

task executes the iterations of the inner loop to search for a

match of a symbol in a linked list. If a match is found, a

function is called to process the symbol. If no match is

found, an entry in the list is allocated for the symbol. Thus,

the task has two possible successor tasks, both of which are

the targets of a branch instruction. The successor tasks are

either the next iteration of the outer loop (Targl = OUTER),
or an exit from the outer loop (Targ2 = OUTERFALLOUT).
The task completes when the end of the outer loop is
reached. Consequently, the last instruction in the outer loop

is tagged with a set of bits which indicate a “Stop Always”

condition.

The task creates values that are bound to the registers:

$4,$8,$17,$20.$23. The last instruction to write into regis-
ters $4, $20, and $23 has a forward bit set. Since $8 and $17

are updated repeatedly in the inner loop, and only the last
update needs to be forwarded, the registers are released at the

exit of the inner loop. Along the same lines, $4 is released if
the inner loop is skipped, since the instruction that last

updates and forwards $4 (in the inner loop) is not executed in

this case. It should be noted that a value bound to a register
is only sent once per task. Hence, all subsequent forwards

and releases of a value already forwarded or released are

ignored. To illustrate, the release of $4 is encountered (and

ignored) if the instruction that last updates and forwards $4

(in the inner loop) is executed. (An alternative to this

approach, which may have the undesirable effect of creating

complex intra-task control structures, is to incorporate addi-

tional basic blocks to eliminate such a scenario.)

So far in our discussion we have assumed that all
values which are created by a task are communicated to other

tasks. To maintain program semantics, however, we do not
need to communicate all values created by a task. Rather,

only values that are potentially live outside a task, i.e., are
not dead at the end of a task, need to be communicated.

Going back to the example of Figure 3, we can see that the

only register value that is live outside the task is the induc-

tion variable, $20; only $20 must appear in the create mask.
No other register value needs to be forwarded, and no release

instructions need be present. Furthermore, any stores made

to the stack frame inside the process function need not be
communicated to later tasks. Since the live ranges of regis-
ters are already known to a compiler, incorporating dead
register analysis is fair] y straightforward. At the time of

writing of this paper, we are sti 11investigating the subject of

dead memory value analysis.

A mrrltiscalar program may be generated from an

existing binary by augmenting the binary with task descrip-

tors and tag bits. This muhiscalar information may be
located within or perhaps to the side of the program text.

The job of migrating a mukiscalar program from one genera-

tion to another generation of hardware might be as simple as
taking an old binary, determining the CFG (a routine task),
deciding upon a task structure, and producing a new binary.
The old multiscalar information is removed and replaced by
new multiscalar information to form an updated version of

OUTER:
addu
ld
move
teq

INNER

Id
bne

move

Jd
Jump

SKIPCALL
Id
h,,,

$20,$20>16
$23, SYIWAL-16($20)
$17.$21
$17,$0, SKIPINNER

$8, LELE($17)
$8,$23. SKIPCALL
$4,$17
plocess

INNERFALLOUT

$17,NEXTLIST($17)
$17,$0. INNER

lNNERFALLOUT
vslease $8.$17
bne $17.$0. SKIPINNER
move $4,$23
Jai addlm

SKIPINNER
Ieleme $4
bne $20.$16. OUTER

OUTERFALLOUT
L

Figure 4: An Example of a Multiscalar

stop
\lway!

rogram.

the binary. The core of the binary, however, the fundamental

instructions which describe the work of each task remain vir-

tually the same. Only multiscalar specific instructions and

any adjustments to relative addresses need be accommo-

dated. This approach bodes well for a smooth software

growth path from one hardware generation to the next, espe-

cially if recompilation from the source code is not practical.

2.3. Multiscalar Hardware

The function of the multi scalar hardware is to walk
through the CFG, assign tasks to the processing units, and
execute these tasks with the appearance of sequential execu-
tion. The job of determining the order of the tasks is the
responsibility of the sequencer. Given the address of a task

descriptor, the sequencer fetches the task descriptor and
invokes the task on the processing unit by (i) providing the

address of the first instruction, (ii) specifying the create

mask, and (iii) constructing the accum mask for the task.

The sequencer determines the next task to be assigned by

using information in the task descriptor to predict one of the
possible successor tasks (using a static or dynamic prediction
scheme). A processing unit independently fetches and exe-
cutes the instructions of its task (until it encounters an
instruction with the stop bit set, which indicates the task is
complete). The processing unit~ are connected via a uni.
directional ring which is used to forward information (reser-
vations, values, etc.) from one unit to the next [1].

The data cache banks and the associated interconnect
(between the data cache banks and the units) are straightfor-

ward (except for the scale). Updates of the data cache are

not performed speculatively. Instead, additional hardware,
known as an Address Resolution Buffet-or ARB [3-5], is pro-
vided to hold speculative memory operations, detect viola-

tions of memory dependence, and initiate corrective action

418

as neededz. The ARB may be viewed as a collection of the

speculative memory operations of the active tasks. The

values corresponding to these operations reside in the ARB

and update the data cache as their status changes from specu-

lative to non-speculative. In addition to providing storage for

speculative operations, the ARB tracks the units which per-

formed the operations with load and store bits. A memory

dependence violation is detected by checking these bits (if a
load from a successor unit occurred before a store from a

predecessor unit, a memory dependence was violated). As

the ARB is a finite resource, it may run out of space. If this

situation should occur, a simple solution is to free ARB

storage by squashing tasks. This strategy guarantees space in

the ARB and forward progress. No deadlock problems exists

because, in the worst case, all tasks which consume ARB

storage may be squashed (the head which does not require
ARB storage is not squashed). A less drastic alternative is to

stall all processing units but the head. As the head advances,

entries are reclaimed and the stall lifted (we are investigating
the use of this approach).

Going back to tbe example of Figure 3, if two sym-
bols being processed concurrently happen to be the same,

and a call to the process function for the first search

updates the memory location corresponding to the symbol,

the second search must see the updated memory location.

That is, if the unit processing the second symbol loads from

the memory location before the unit processing the first sym-

bol stores into the memory location, a squash must occur. (A

squash does not occur if the dynamic sequence of events is

such that the second unit loads from the memory location

after the first unit stores to the memory location.) Likewise,
when a symbol is inserted into the list, subsequent searches
must see the updated list. [n the same fashion, the cases

where later tasks do not see the updated list are detected and
the tasks squashed accordingly. Moreover, the storage pro-
vided by the ARB is used to rename memory such that mtrlti-

ple function calls can be executed in parallel, yet retain

sequential semantics. That is, if multiple calls to process

are to proceed in parallel, each call requires its own (suitably
renamed) stack frame which, as per a sequential execution,
reuses the same memory locations.

The microarchitecture illustrated in Figure 1 is just
one possible configuration for a mtthiscalar processor: other

microarchitectures are certainly possible. The invariant that
has to be preserved is the appearance of a sequential ordering

amongst the instructions, with the register and memory
values flowing from earlier tasks to later tasks. An alterna-

tive microarchitecture might share the functional units (such

as the floating point units) between the different processing

units. Another possible microarchitecture is one in which the

ARB and the data caches are moved across the interconnect

to the same side as the processing units. (In this case, the
functionality of the ARB and data caches is provided by a

collection of temporally inconsistent caches/buffers with
memory values forwarded between them on a ring, analo-

gous to the mechanism for registers.) A proper discussion of
these alternate microarchitectures is beyond the scope of this

2 Since the task at the head is the only task that is guaranteed
to be non-speculative. memory operations carmed out by 011unit~, ex-
cept the head, are speculative,

paper.

3. Distribution of Cycles in Multiscalar Execution

We now take a more detailed look at the mttkiscalar

model by considering the distribution of the ilvailable pro-

cessing unit cycles in mttkiscalar execution. Recall that our

objective is to have each processing umt performing useful

computation, with the processing units collectively executing
multiple instructions in a given cycle. The best case is to

perform as much useful computation per cycle as the proces-

sor complex is capable. The best case (of all useful computa-

tion) may not be realized because of cycles in which o unit (i)

performs non-useful computation, (ii) performs no computa-

tion, or (iii) remains idle. Each cycle spent in these

categories is a cycle that is lost from the best case.

The non-useful computation cycles represent work

that is ultimately squashecl; computation may be squashed as
a result of the use of (i) an incorrect data value or (ii) an
incorrect prediction. The no computation cycles may be

attributed to (i) waiting for a value created by an instruction
in a predecessor task, (ii) waiting for a value (created by an

instruction in the same task (for example, a high-latency

operation or a cache miss), or (iii) waiting for the task to be

retired at the head (because all instructions within the task

have executed). The idle cycles account for time in which a

processing unit has no assigned task (due for the most part to

re-assigning tasks in squash recovery). Below, we discuss

several concepts and see the influence on the non-useful and

no computation cycles in mttltiscalar execution. (We do not

address the loss due to idle cycles as it amounts to a rela-
tively insignificant portion of the total in most cases.)
Although we discuss a concept/issue under one heading, the
impact typically spans multiple headings.

3.1. Non-Useful Computation Cycles

Since squashing a particular task means likewise
squashing all tasks that follow it, a squash may have a severe
impact on the performance of a mtthiscalar processor. Recall
that computation may be squashed as a result of the use of (i)
an incorrect value or (ii) an incorrect prediction. To reduce

the impact of this squash overhead. we may (i) reduce the
chances of a squash by synchronizing data communication or

(ii) determine early, before much non-useful computation has
been performed, that a squash is inevitable.

3.1.1. Synchronization of Data Communication

The communication of register data values is syn-

chronized as a consequence of the register file mechanism (as

intended). On the other hand, the communication of memory

data values must be synchronized explicitly. A memory

order squash occurs if a later task loads from a memory loca-

tion before an earlier task stores to this same memory loca-
tion.

Our experience in the programs that we have exam-
ined is that such squashes do indeed occur in practice, but

rarely are the squashes due to updating an arbil.rdry memory
location. Almost all memory order squashes that we have
encountered in our experiments occur due to updates of glo-
bal scalars and structures. typically file and blJffCr pointers
and counters. (Typically these variables have their address
taken, and therefore cannot be register allocated.)

419

Fortunately, accesses to static global variables are

amongst the easiest memory accesses for a compiler to
analyze, much easier than accesses to arbitrary heap loca-

tions. Once (potentially) offending accesses are recognized,

accesses to the memory location can be synchronized to

ensure that conflicting loads and stores occur in the proper

order.

Such synchronization may be accomplished in a

variety of ways. It may possible [o create an artificial depen-

dence on a register (to synchronize memory communication
with register communication), to delay the load for a given

number of cycles (to reduce the probability of it occurring

before the store), or to use explicit signal-await synchroniza-
tion. Note that any synchronization may create inter-task
dependence which, as we shall see, can contribute to no

computation cycles.

3.1.2. Early Validation of Prediction

The determination of whether a task should be

squashed due to an incorrect prediction is normally made at

such time as the exit point of the immediately preceding task

is known. As one might expect, this point is in most cases at

the end of the execution of a task. During this passage of
time, many cycles of non-useful computation may have been
performed in later tasks.

For example, if loop back is predicted each time for a

loop, we may have to wait for all instructions in the last itera-
tion to be executed before we recognize the following itera-

tions are non-useful computation that must be squashed. If

an iteration consists of hundreds of instructions, the time

taken to determine that no more iterations should be executed

may represent many hundreds of cycles of non-useful com-

putation.

To minimize the loss due to these cycles, we may con-
sider validating prediction early. If some computation is per-
formed soon after a task is initiated to determine whether the
next task was indeed predicted correctly, the time spent for

non-useful computation may be significantly reduced.

Returning to the loop example, if the last loop iteration is

recognized soon after the iteration begins execution, the next

unit may be redirected to the task at the loop exit rather than

execute another (non-useful) loop iteration.

Several options exist for validating prediction early.
One option is to introduce explicit validate prediction
instructions into a task. Another option, directed specifically

at loop iterations, which does not require new instructions
(but still requires additional instructions as compared to
sequential execution), is to change the structure of the (com-
piled) loop so that the test for loop exit occurs at the begin-

ning of the loop.

3.2. No Computation Cycles

It is important to distinguish between idle cycles and

no computation cycles. In the idle cycles case, the process-
ing unit does not perform useful computation because it has
no assigned task. In the no computation cycles case, the pro-
cessing unit does have an assigned task, but it is unable to
perform useful computation. Of these lost cycles, some may

be an unavoidable characteristic inherent in the sequential
code, while others may be a by-product of the task partition-
ing and scheduling for mukiscalar execution.

3.2.1, Intra-Task Dependence

An obvious source of no computation cycles is depen-

dence between the instructions of the same task. As each

task is like a small program, and each processing unit is like

a uniprocessor, any of the plethora of techniques available to

reduce lost cycles in a uniprocessor may be applied to reduce

the impact of such cycles. Examples of these techniques

include (but need not be limited to) code scheduling, out-of-

order execution, and non-blocking caches.

3.2.2. Inter-Task Dependence

A more significant source of no computation cycles in
muhiscalar execution are depenclences between the instruc-

tions of different tasks. That is, cycles in which a later task
waits for values from an earlier task. If a producing instruc-

tion is encountered late and a consuming instruction is

encountered early among tasks executing concurrently, the

consuming task may stall on the producing task. In such a

case, near-sequential execution may result.

Consider our working example. [f the induction vari-

able for the outer loop had been updated at the end of the
loop (as would normally be the case in code compiled for a
sequential execution), then all iterations of the outer loop
would be serialized, since the next iteration needs the induc-

tion variable early in order to proceed. If, on the other hand,
we update and forward the induction variable early in the

task, but keep a copy of the induction variable for local use
or modify the local use to factor in the update (as we have

done in the code of Figure 4), then the critical path through

the computation is not unnecessarily aggravated, and the

tasks may proceed in parallel.

In our experience with benchmark programs, we have
found this sequential outlook to be quite pervasive. The

sequential point of view is understandable, since the pro-
grammer assumes a sequential machine model. Furthermore,

there is no reason to assume a performance improvement is
to be gained by making local copies of variables or by mak-
ing arcane modifications to existing code. Nevertheless, for

efficient muhiscalar execution, it is crucial to remove such

limitations. In many cases, a compiler may have great suc-

cess (for example, arithmetic induction variables). In other

cases, a compiler may have only limited success (for exam-

ple, memory induction variables). In some cases, these

impediments may be unavoidable or require changes to the
source program to be overcome.

3.2,3. Load Balancing

In multiscalar execution, since tasks must be retired in
order, cycles may be lost if tasks are not of the proper granu-
larity and (roughly) the same size in terms of dynamic
instructions. That is, a processing unit which completes a
comparatively short task performs no computation while it

waits for all predecessor tasks to be retired at the head~.

3 These no computation cycles may be reduced if we provide a
somewhat more complicated implementation of the ‘ ‘circular queue”
which connects the units and addnional resources to maintain the
results of speculative task execution.

42o

A key factor in minimizing cycles lost due to load

balancing (and many of the other lost cycles for that matter)

is to choose tasks of an appropriate granularity. Flexibility in

the choice of the grain size of a task implies that only

minimal restrictions be placed on what may be contained in a

task. [n particular, a task should be free to contain function

calls. (In our working example, the appropriate granularity

for a task is an iteration of the outer loop, which contains a
function call.)

Since a function may have many call sites, we provide
differing views onhowafunction shotrld be executed. From

one call site we may want the function to be executed as a

collection of tasks. Whereas, from another call site we may

want the entire function to be executed as part of a single

task. To accommodate such differing views with a single
version of the code, a function may be treated as a

s~~p{~ressecl~~{r~criolt,i.e., a function in which all mttltiscalar-
specific annotations are ignored under appropriate cir-

cumstances.

4. Comparison of Multiscalar with Other Paradigms

4.1. Conventional Wisdom

The muhiscalar paradigm challenges conventional
wisdom in ILP processing in several respects. Herein, we

examine a number of cases in which the multiscalar approach

counters the tenets of conventional wisdom.

Branch prediction accuracy must limit ILP.

The issue at hand is the ability to establish a large and accu-

rate instruction window for ILP extraction. The usual argu-
ment supposes that if the average branch prediction accuracy

is 90910,then speculating five branches ahead means there is

only about a 60% chance that instructions beyond the fifth

branch are along the correct dynamic execution path (an 85%

accuracy yields less than 45~0 chance).

A multiscalar processor can speculate across many

more than tive branches, while still having a very high proba-

bility of following the correct dynamic path. In essence,

such behavior may be provided by only selectively predicting
branches. A multiscalar processor breaks the sequential
instruction stream into tasks. Although the tasks may contain

internal branches, the sequencer only needs to predict the
branches that separate tasks. The branches contained within

a task do not have to be predicted (unless they are predicted

separately within the processing unit).

In the example of Figure 3, branches in the outer loop
delineate the tasks and are predicted (with high accuracy).

No branches within the linked list search have to be

predicted. In fact, the individual branches that are part of the

process of traversing the linked list would likely be predicted
not taken because a symbol only matches one element of the
list. Nevertheless, the branch for the match will eventually

be taken. Suppose we encounter an average of 20 branches

(match tests) in traversing the linked list, the execution of an
8-unit multiscalar processor might span 160 conditional

branches, yet still be following the correct dynamic path.

The conventional approach, which must sequentially
predict all branches as it proceeds, is practically guaranteed

to predict wrong eventually (and will never have instructions
from more than one list search in progress simultaneously).

The muitiscalar approach, on the other hand, may overcome

this limitation. The ability of a multiscalar processor to

selectively bypass branches possibly obviates the need for

techniques such as guarded execution, whose net result is

also avoiding the prediction of “bad” branches (albeit non-

Ioop branches), but at the expense of executing extra instruc-

tions [7, 9, 10].

A wide window of pending instructions requires the com-

plexity of concurrently monitoring the issue state of all
individual instructions in this window.

in genera], instructions from a wide window ar,: selected for

execution in parallel and often out-of-order with respect to

the sequential program. In a multiscalar implementation, the

window can be very wide, yet at any given time only a few

instructions need to be inspected for the ability to issue (as

few as one for each processing unit). The boundaries of the
window of pending instructions can be identified among the

active tasks as the first instruction being considered for issue
at the head and the last instruction at the tail. As a task may

contain a hundred or more dynamic instructions (consider the
linked list example in Figure 3), the effective window size

can be many hundreds of instructions.

To issue n instructions simultaneouslv. there must be. .
logic of n2 complexity to perform dependence cross-

checks among the instructions.

That is, issue complexity grows as n 2 to support n-way issue.

[n a superscalar processor, this observation constrains the

capacity of the issue logic. In a multiscalar processor,
though, issue logic is distributed to simultaneously fetch and
execute multiple instruction streams. Each processing unit
issues its instructions in an independent manner. The com-

plexity only consists of multiple copies of relatively simple

low-dimension scalar issue logic. The sequencer logic does

not have to examine individual instructions as is typically the

case in the superscalar approach.

All loads and stores must be identified, and the refer-

enced addresses must be computed, before memory

accesses can be re-ordered.

In a conventional implementation, loads and stores are given

sequence numbers (or are kept in original sequence) and
maintained in a buffer along with the address c~f the associ-

ated memory access. If a load is to be issued, the buffer is
checked to ensure that no earlier store to the same address or
an unresolved address is pending. If a store is to be issued,

the buffer is checked to ensure that no earlier loi~d or store to

the same address or an unresolved address is pending. In a
multiscalar implementation, loads and stores may be issued

independently without knowledge of loads and stores in

predecessor or successor tasks.

4.2. Other Paradigms

The superscalar and VLIW approaches, for the most

part, follow the conventional wisdom outlined above. A typ-
ical superscalar processor fetches the stream of instructions,
examining all instructions as it proceecls (perhaps multiple
instructions are examined at once, but all are examined).

Generally, this examination is done to extract and process

branch instructions, to identify instruction types so that they
may be l-outed to the proper instrucoon buffers or reservation

stations, and to do some processing to alleviate data depen-

dence, e.g., register renaming [8, 1I]. A typical VLIW pro-

cessor relies on the compiler to perform statically these same

421

functions performed by the superscalar processor dynami-

cally.

In the superscalar approach, it is possible, to generate

a fairly accurate window that may be a few branches deep

(using a sophisticated dynamic branch predictor), because

run-time information is available. Moreover, it is possible to

generate a very flexible instruction schedule. For example, it
may be possible to allow a load in a callee function to exe-

cute in parallel with a store from a caller function. Neverthe-
less, a superscalar processor has no advance knowledge of
the program CFG; it must discover the CFG as it decodes

branches. This lack of vision regarding “what lies ahead”
and the need to predict every branch limits its ability to

create as large or as accurate a window as is possible. More-

over, to extract parallelism from the window requires

predominantly centralized resources, including much associ-

ative logic, which can be difficult to engineer as the level of

ILP increases.

In the VLIW approach, the resulting window may not

be very large or may contain inaccuracies arising from static

branch prediction, since run-time information is not available
to the compiler. Due to this lack of run-time information and
the presence of inherent “boundaries” in the program, the
abi lit y to move operations in a VLIW processor may be hin-
dered. For example, it may not be possible to provide a static

guarantee to allow a load operation in a callee function to

execute in parallel with a store operation from a caller func-

tion (especially if the callee function is determined dynami-

cally). Furthermore, a VLIW implementation requires a

large storage name-space, mukiported register files, exten-

sive crossbar interconnects, and stalls if the run-time situa-

tion is different from the situation assumed when a code

schedule was generated (for example, a cache miss at run-
time). Moreover, going from one generation to another may
require the problematic re-engineering of program binaries.

In many ways a mtrkiscalar processor is similar to a

multiprocessor with very low scheduling overhead4. (Both

are capable of dispatching large blocks of parallel code.)

However, there is a major difference. Whereas a mukipro-

cessor requires a compiler to divide a program into tasks
where all dependence relations between tasks are known (or

are conservatively provided for) [2], a multi scalar processor

requires no such knowledge of control and data indepen-

dence. If a compiler can divide a program into tasks that are

guaranteed to be independent (for example iterations of a
vectorizable loop), of course a multiscalar processor can exe-
cute them in parallel. However, the strength in the multis-
calar approach lies in executing tasks that are very likely
independent or where dependence is relatively low (and
therefore ILP exists), but in the cases for which this informa-

tion cannot be determined statically (such as the code of

4 When compared to a multiprocessor with a low
synchronization/scheduling overhead, it is worth noting that the
name-space used to synchronize the various units in multiscalar is a
common register name-space -- the same register name-space that is

used for all computations. In a multiprocessor, we would need
separate name-spaces (private registers) for local computation, and
(shared registers or main memory) for shared communication, with
(possibly explicit) movement of values from one name-space to
another. Thk movement adds overhead.

Figure 3).

A multiprocessor with low scheduling overhead, as
could be achieved with multiple processors on a chip with a

shared cache, is still a multiprocessor. The fundamental

automatic parallelization problem is no different from the

one computer scientists have struggled with for many years.
It may increase the amount of parallelism over conventional

parallel processors by differences in scale rather than differ-

ences in kind. That is, the lower communication overhead
may make some small pieces of code efficient for mttkipro-
cessing in more instances than are possible in a conventional

multiprocessor. However, new kinds of parallelism are no
easier to discover.

A multiscalar processor should also not be confused

with a mttltithreaded processor. In a mukithreaded proces-

sor, there are multiple threads, or loci of control, which are

control independent and (typically) data independent. In

contrast, the different “threads” executing on a multiscalar

processor are related as different parts of a sequential walk

through the same program, and are not control and data

independent.

5. Performance Evaluation

5.1. Methodology

All of the results in this paper have been collected on

a simulator that faithfully represents a mukiscalar processor.
The simulator accepts annotated big endian MIPS instruction

set binaries (without architected delay slots of any kind) pro-

duced by the mtdtiscalar compiler, a modified version of

GCC 2.5.8. In order to provide results which reflect reality

with as much accuracy as possible, the simulator performs all

of the operations of a mttltiscalar processor and executes all
of the program code, except system calls, on a cycle-by-cycle

basis. (System calls are handled by trapping to the OS of the
simulation host.)

The pipeline structure of a processing unit is a tradi-

tional 5 stage pipeline (IF/ID/EX/MEM/WB) which can be

configured with in-order/out-of-order and 1-way/2-way issue

characteristics. Instructions complete out-of-order and are

serviced by a collection of pipelined functional units (1 or 2

simple integer FU, 1 complex integer FU, I floating point

FU, 1 branch FU, and 1 memory FU) according to the class

of the particular instruction with the Iatencies indicated in

Table 1. The unidirectional ring connecting a multi scalar
configuration of the processing units imposes a cycle for
communication latency between units and matches the ring

Integer Latency Float Latency

Add/Sub

I

1

II

SP AddiSub

I

2
Shift/Logic 1 SP Multiply 4

Table 1: Functional Unit Latencies.

2
2

5

8

422

width to the issue width of the individual units.

All memory requests are handled by a single 4-word

split transaction memory bus. Each memory access requires

a 10 cycle access latency for the first 4 words and 1 cycle for

each additional 4 words. Both loads and stores are non-

blocking. In addition, each processing unit is configured
with 32 kbytes of direct mapped instruction cache in 64 byte

blocks. (An instruction cache access returns 4 words in a hit

time of 1 cycle with an addition penalty of 10+3 cycles, plus
any bus contention, on a miss.) A crossbar interconnects the

units to twice as many interleaved data banks. Each data

bank is configured as 8 kbytes of direct mapped data cache in
64 byte blocks with a 256 entry address resolution buffer, for

a total of 64 kbytes and 128 kbytes of banked data storage for

4-unit and 8-unit mtrhiscalar processors respectively. (A

data cache access returns 1 word in a hit time of 2 cycles and

1 cycle for muhiscalar and scalar processors, respectively,
with an additional penalty of 10+3 cycles, plus any bus con-

tention, on a miss.)

The sequencer maintains a 1024 entry direct mapped
cache of task descriptors. The control flow prediction of the

sequencer uses a PAs configuration [12] with 4 targets per
prediction and 6 outcome histories. The prediction storage is

composed of a first level history table that contains 64 entries
of 12 bits each (2 bits for each outcome due to 4 targets) and

a set of second level pattern tables that contain 4096 entries

of 3 bits each (1 bit target takerr/not taken and 2 bits target
number). The control flow prediction is supplemented by a

64 entry return address stack.

5.2. Benchmarks

We used the following programs as benchmarks (with
inputs other than standard and/or modifications indicated in

parentheses): compress, eqntott, espresso (ti.in), gcc
(integrate. i), sc (Ioadal), and xlisp (6 queens) from the
SPECint92 suite, tomcatv (N= 129) from the SPECfp92 suite,

wc from the GNU textutils 1.9 and cmp from the GNU diffu-

tils2.6 (two Unix utilities used as benchmarks by the
IMPACT group [6], with inputs provided by them), as well

as the example from Figure 3 (with an input file of 16 tokens,
each appearing 450 times in the file).

Program

Compress
Eqntott

Espresso
Gcc
Sc
Xlisp
Tomcatv

Cmp
Wc

Example

Instruction

Count

Scalar

71.04M

1077.50M

526.50M

66.48M
409.06M

46.61M

582.22M

0.98M

1.22M

1.05M

Multiscalar

81.21M

1237.73M

615.95M

75.31M
460.79M

54.34M
590.66M

1.09M

1.43M

1.09M

Percent

Increase

14.3~o

14.9910

17.0%

13.3%
12.6%
16.6%

] .4%
10.9%

17.3%

4.2%

Table 2: Benchmark Instruction Counts.

Table 2 presents the dynamic instruction counts for

both scalar and multiscalar execution. (We have only one

version of a multiscalar program; the same mtdtiscalar binary

is used for all the mukiscalar configurations in our experi-

ments.) The extra instructions in a mukiscalar program serve

to ensure correct execution (such as the use of release
instructions) or to enhance performance (such as the creation

of local copies of loop induction variables and validating
prediction). At present, these instructions unavoidably

increase the overall instruction count.

5.3. Results

In Tables 3 and 4 we present the instructions per cycle
(IPC) for a scalar execution, the speedups (over the

corresponding scalar execution) for 4-unit and 8-unit mtrltis-

calar configurations, and the task prediction accuracies. In
each case, we report results of the entire execution of the

benchmark, not just isolated parts. The results of Table 3
reflect the performance for processing units with in-order I-
way or 2-way issue. Similarly, the results of the Table 4

reflect the performance for processing units with out-of-order
1-way or 2-way issue. The speedups are for a mukiscalar

processor compared to a scalar processor. in which both use
identical processing umts. From the data presented in Tables

2, 3, and 4, it is possible to determine the cycle counts in

each case. (For example, with 2-way, out-of-ordler issue pro-
cessing units. a scalar processor takes 817,845 cycles to exe-

cute Emmp/e, whereas an 8-unit multiscalar processor takes
228,771 cycles.)

In interpreting the results, it is useful to keep a few

points in mind. First, Amdahl’s law: achieving infinite

speedup in only 50% of the code speeds up total performance

by only a factor of 2. Second, the IPC of our base scalar

configurations is fairly high due to our use of aggressive pro-

cessing units. Third, we have made no attempt, at this point,

to schedule the mukiscalar code to tolerate the additional

cycle of latency it experiences (as compared to a scalar

configuration) for cache hits. Fourth, we have not spent

sufficient effort in reducing the additional instructions
encountered in mukiscalar execution. Finally, we do not

give the mtrkiscalar code any “unfair” optimization advan-

tages; any optimizations such as loop unrolling are made on
both scalar and mrrhiscalar code.

In compress all time is spent in a single (big) loop,

which contains a complex flow of control within. This loop

is bound by a recurrence (getting the index into the hash

table) that results in a long critical path through the entire

program. The problem is further aggravated by Ihe huge size

of the hash table, which results in a high rate of cache misses.

Most (85%) of the instructions in eqntotf are in the

cmppt function, which is dominated by a loop. “rhe compiler
automatically encompasses the entire loop body into a task,
allowing multiple Iterations of the loop to execute in parallel.

The top function in espresso is mczssive..count (37%

of instructions). The rnassive_count function has two main
loops. In both cases, the loop body is a task, allowing the

multiple iterations to run in parallel. In the first loop, each

iteration executes a variable number of instructions (cycles

are lost due to load balance). In the second loop (which con-
tains a nested loop), an iteration of outer loop includes all the
iterations of the inner loop (in this situation. the task

423

1-Way Issue 1

Mult

lits

:alar

8-Unit

2-Way Issue

Mult

4-Unit

Iits

:alar

8-1

Speedup

1.34

2.58

1.41

0.98
1.56

0.88
3.96
5.82

4.27

3.47

It

Pred

86.4%

94.6%

85.2%

80.9%
89.5%

78.7%
99.2%
99.4%

99.9%
99.9%

I

Program

Compress

Eqntott
Espresso

Gcc

Sc

Xlisp
Tomcatv
Cmp

Wc
Example

Program

Compress

Eqntott

Espresso

Gcc

Sc

Xlisp

Tomcatv

Cmp

Wc
Example

Scalar

IPC

0.69

0.83
0.85

0.81

0.75
0.80

0.80
0.95

0.89
0.79

Scalar

IPC

0.87

1.10

1.11

1.04

0.94

1.03
0.97
1.32

1.09

I .07

4-Unit

Speedup

1.17

2.05

1.34

1.02

1.36

0.91
3.00
3.23

2.37

2.79

Pred

86.8%

94.8%

85.9%

81.2%

90.5%

80.6%
99.2%
99.4~o

99.9~o

99.9%

Speedup

1.50

2.91

1.59

1.08
1.68

0.94
4.65

6.24

4.33

3.96

Pred

86.1%

Speedup

1,04

1.82

1.22

0.92
1.28

0.86
2.71

3.02

2.36

2.43

Pred

86.8%

94.8%

85.3%

81.2%

90.0%

80.0%
99.2%
99.4%

99.9%

99.9%

94.6%

85.9%

80.9%
90.0%

79.5%
99.2%
99.4%

99.9%

99.9%

Table 3: In-Order Issue Processing Units.

1-Way Issue Units 2-Way Issue Units

Multiscalar Multiscalar

4-Unit 8-u
Scalar

IPC

0.94

1.21

1.31

1.15

1.10

1.12

1.43

1.68

1.13
1.28

Scalar

IPC

0.72

0.84

0.88

0.83

0.80

0.82

0.96

0.95
0.89
0.86

4-Unit 8-Unit
-
It

Pred

86.370

94.5%

85.4’%

80.6%

90.2%

76.5%

99.2%

99.2%
99.9%
99.9%

SEE2!!Q
1.23

2.23

1.47

1.06

1.42

0.95
2.92

3.24
2.37
3.27

Pred

86.7%

94.8%

85.9%

81.1%

90.5%

75.6%

99.2%

99.2~o

99.9%
99.9%

Speedup

1.56

3.35

1.73

1.13

1.75

1.01

4.17

6.28
4.34
4.86

Pred

86.070

94.6%

85.8%

80.6%

90.0%

77.1%

99.2%

99. 1%

99.9%
99.9%

Speedup

1.07

1.79

1.12

0.91

1.24

0.85

2.16

2.76
2.34
2.41 L

94.8% 2.64

85.3% 1.25

81.1% 0.95

90.2% I .50

‘74.6Y0 0.90
99.2% 2.93
99.2% 5.30
99.9% 4.26
99.9% 3.57

Table 4: Out-Of-Order Issue Processing Units.

partitioning needed a manual hint to select this granularity). called to evaluate it, else no action M taken at the cell. Since

RealEvalOne executes for hundreds of cycles, the load
imbalance between the work at each cell is enormous.

Accordingly, we restructured the RealEvalOne loop to build

a work list of the cells to be evaluated and to call
RealEvalOne for each of the cells on the work list.

For tomcatv nearly all time is spent in a loop whose

iterations are independent. Accordingly, we achieve good
speedup for 4-unit and 8-unit multiscalar processors. The

higher-issue configurations are stymied because of the con-

tention on the cache to memory bus.

The programs cmp and wc are straightforward, with

each spending almost all its time in a loop. The loops, how-

ever, contain an inner loop (the loop in wc also contains a
switch statement). hr these cases, the performance loss may

be attributed mainly to cycles lost due to branches and loads
inside each task (intra-task dependence).

Our example spends 80% of its time in the code
shown in Figure 3, performmg the symbol fetch, match, and
process or add sequence. The remaining time is spent in
fetching the data from the input file into the buffer. Since the
iterations of the outer loop are mostly independent (dynami-

cally), we attain excellent speedups. Interestingly, other
known ILP paradigms such as superscalar and VLIW are

Both gcc and xlisp distribute execution time uniformly

across a great deal of code. These are also the programs that
we have, to date, spent the least amount of time analyzing.

In both these cases, for the task partitioning that we use
currently, squashes (both prediction and memory order)
result in near-sequential execution of the important tasks.
Accordingly, the overheads in our multiscalar execution
(extra instructions and extra cache hit latency) result in a

S1OW down in some cases. (Incidentally, the instruction
count is slightly lower than what is typically observed

because we unroll the memset and memcpy functions.) For

gcc our experience to date suggests that parallelism, which
may be exploited by muhiscalar, exists; we are less confident
about x[isp at this point.

In SC, the dominant user routine is RealEvalAll,

though it only accounts for less than 12’ZOof the total instruc-
tions. RealEvalAll contains a two-level nested loop that
makes a call to RealEvalOne for appropriate cells of the

spreadsheet. RealEva/One further calls eval which is a recur-
sive function to evaluate a cell. The body of the inner loop
of RealEvalAll is a task with the call to RealEvalOne

suppressed manually. The loop in RealEvalAll visits every
cell of the spreadsheet. If a cell is not empty, RealEvalOne is

424

unlikely to extract any meaningful parallelism, in an efficient

manner, for this example.

6. Summary and Conclusions

This paper presented the multlscalar processing para-
digm, a new paradigm for exploiting fine-grain, or

instruction-level parallelism. A multiscaiar processor uses a

combination of hardware and software to extract ILP from
ordinary programs. [t does so by dividing the program con-

trol flow graph (CFG) into tasks, and stepping through the

CFG speculatively, taking large steps, a task at a time.

without pausing to inspect the contents of a task. The tasks

are distributed to a collection of processing units, each of

which fetches and executes the instructions in its task. Col-

lectively, this processor complex uses multiple program

counters to sequence through different parts of the program
CFG simultaneously, resulting in multiple instructions being

executed in a cycle.

We described the philosophy of the mukiscalar para-

digm, the structure of multiscalar programs, and the
hardware architecture of a multiscalar processor. We also

discussed several issues related to the performance of a mul-

tiscalar processor, and compared the mukiscalar paradigm

with other ILP processing paradigms. Finally, we carried out

a performance evaluation of several multiscalar

configurations on an ensemble of well-known benchmarks.

The performance results presented in this paper, in our

opinion, only hint at the possibilities of the mukiscalar
approach. As we investigate the dynamics of multiscalar
execution, we continue to evolve the compiler and to better
understand its interaction with the hardware. At present, we

optimistically view performance impediments as problems

for which we have not yet developed solutions. Our expecta-

tion is that with improved software support, and more
streamlined hardware, multiscalar processors will be able to

extract levels of ILP that are far beyond the capabilities of

existing paradigms. (We plan to make updated results avail-

able on the multi scalar Www page: URL

http://www.cs.wisc. edu/-mscala).)

Acknowledgements

This work was supported in part by NSF grant CCR-

9303030 and by ONR grant NOOOI4-93-1-0465. We would
like to thank Jim Smith for his contributions to the multis-

calar project in general, and this paper in particular.

References

[1] S. E. Breach, T. N. Vijaykumar, and G. S. Sohi, “The
Anatomy of the Register File in a Mrrltiscalar Proces-

sor,” Proc. MICRO-27, pp. 181-190, December

1994.

[2] D. K. Chen, H. M. Su, and P. C. Yew, “The Impact

of Synchronization and Granularity on Parallel Sys-

tems,” Proc. 17th Annual [international Symposium

on Computer Architecture, pp. 239-248, May 1990.

[4]

[5]

[6]

[7]

[8]

[9]

[lo]

[11]

[12]

M. Franklin and G. S. Sohi, “The Expandable Split
Window Paradigm for Exploiting Fine-Grain Paral-

lelism,” in Proc. 19th Amzua/ Swnposium on Ccvm

puter’ Architecrare, Queensland, Australia, pp. 58-67,
May 1992.

M. Franklin, ‘ ‘The Multi scalar Architecture.” Ph. D.
Thesis, Computer Sciences Techmcal Report #1 196,

University of Wisconsin-Madison. Madison. WI
53706, November 1993.

R. E. Hank, S. A. Mahlke, R. A. Bringmann, J. C.

Gyllenhaal, and W. W. Hwu, “Superblock Formation

Using Static Program Analysis,” Proc. MICRO-26,

pp. 247-255, December 1993.

P. Y.-T. Hsu and E. S. Davidson, “Highly Con-
current Scalar Processing,” Proc. /3t/t Anntml Sym-

posuon on Computer Architecture. pp. 386-395, June
1986,

R. M. Keller. “Look-Ahead Processors,” ACM Cov-

parmg Sarve]ts. vol. 7, pp. 66-72. December 1975.

S. A. Mahlke, D. C. LIU, W Y. Chen. IR. E. Hank.
and R. A. Brlngmann, “Effective Compiler Support

for Predicated Execution Using the Hyperblock,” in

MICRO-25. Portland, Oregon, pp. 45-54, December

1992.

D. N. Pnevmatikatos and G. S. Sohi, “Guarded Exe-

cution and Branch Prediction in Dynamic ILP Proces-

sors, ‘‘ in Proc. 21tbAnnaal International .symposiam

on Compater Architecture. Chicago, Illinois, pp.
120-129, April 1994.

G. S. Tjaden and M. J. Flynn, “Detection and Parallel

Execution of Independent Instructions,” /E.EE Tran-

sactions on Computers. vol. C-19, pp. 889-895, Oc-

tober 1970.

T.-Y. Yeh and Y. N. Patt, “A Comparison of Dynam-

ic Branch Predictors that Use Two Levels of Branch

Hi story,” in Proc. 2W Anmlal Inter-national Svmpo-

siam on Compurer A rcbitec~ure. San Diego. Califor-
nia, pp. 257-266, May 1993.

[3] M. Franklin and G. S. Sohi, ‘ ‘ARB: A Hardware
Mechanism for Dynamic Memory Disambiguation, ”

submitted to IEEE Transactions on Computers.

425

