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INTRODUCTION 

Currently,  one of the most  active areas in 
computer  architecture is the interconnection 
of computers to form systems which are 
called "distributed processors," "distrib- 
uted-function computers ,"  "computer  net- 
works,"  and similar names. These systems 
range in organization from two processors 
sharing a memory  to large numbers of rela- 
t ively independent computers connected 
over geographically long distances. A dis- 
couraging aspect of this activity,  however, is 
the almost total  lack of published informa- 
tion describing the rationale for various 
designs, or comparing the results achieved 
by various approaches. In  part ,  the authors 
believe this condition exists because there 
has been no common context in which such 
discussion could take place, no set of design 
issues, no list of system characteristics to be 
t raded off, and, in fact, not even a common 
nomenclature for system identification. Our 

paper is an a t t empt  to begin filling this need. 
In  it we present a naming scheme, or taxon- 
omy, for identifying various systems of 
interconnected computers,  and we discuss 
design decisions and system characteristics 
which we believe are germane to these 
architectures. 

The authors know of only one other 
general taxonomy for interconnected com- 
puters  and tha t  is a brief one (having differ- 
ent dimensions) with few system characteris- 
tics and no nomenclature [$1~.w74]. Some 
interconnection topology issues are also 
considered in [CHEN74] and [THtTR72], al- 
though these are primarily concerned with 
the next lower level of the interconnection 
design--control  and communication. One 
level beneath these are a number  of papers 
dealing with the design of "explici t"  
switches, such as crossbars [PIPe75] and 
permutat ion/sor t ing networks [THVR 74]. 
In  addition, there is a wide var ie ty  of digital 
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data communications literature pertaining 
to queueing, routing, multiplexing, etc. 
[MART72] ; much of this is relevant for certain 
computer interconnection architectures and 
implementations. 

For the first step toward developing a 
common nomenclature for system identifi- 
cation we have restricted ourselves in several 
significant ways. First, we are concerned 
solely with interconnected hardware units in 
which "processes" can execute. We use the 
word process in the conventional sense, and 
designate the hardware units as Processing 
Elements, or PEs. By this definition we 
specifically exclude single-instruction stream, 
multiple-data stream machines such as 
ILLIAC IV and PEPE. We further limit our- 
selves to systems in which any PE can 
communicate with any other through the 
system interconnection mechanism. 

Our method for identifying the intercon- 
nection structure of a system is to isolate the 
major hardware units involved in the trans- 

fer of information between processes in 
different PEs. We call this transfer a "mes- 
sage transmission," and do not distinguish 
between instances of message such as data 
blod~s, service requests, semaphores, etc. In 
the interconnection structure itself we dis- 
tinguish two functional entities--paths and 
switching elements. 

A path is the medium by which a message 
is transferred between the other system ele- 
ments. Some examples of paths are wires or 
busses, radio links, common-carrier data- 
transmission facilities, and memories. The 
transmission of a message over a path results 
in no alteration of the message. 

A swilching element is an entity which may 
be thought of as an "intervening intelli- 
gence" between the sender and receiver of a 
message. A switching element affects the 
destination of a message in some way--by 
altering the message (e.g., changing its 
destination address), by routing it to one of 
a number of alternative paths, or by both 
actions. These notions of message, path, 
and switch are basic to the approach we 
have taken. 

Our taxonomy thus describes configura- 
tions of three hardware archetypes: PEs, 
paths, and switching elements. This small 
number of types leads to several simplifica- 
tions which serve on one hand to make 
system organizational issues clear, but on 
the other, admittedly obscure the noninter- 
connection aspects of system design. For 
example, we do not distinguish between a 
computer and its interface to the rest of the 
system--both are part of the PE. Neither 
do we make a distinction between circuit 
switching and message-switching--both are 
accomplished by the switching entity. Per- 
haps the most significant issue that is not 
treated is interprocess communication strate- 
gies and problems, such as message ad- 
dressing, deadlock, etc. By these omis- 
sions we do not imply any relative im- 
portance, but rather, we stress that we have 
taken a limited step in but one of several 
important areas. I t  is our hope that this step 
will stimulate similar work in such comple- 
mentary areas as interprocess communica- 
tion, as well as encourage improvements in 
our taxonomy. 
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FIGURE 1. T h e  taxonomy. 

DESIGN DECISIONS--THE TAXONOMY 

An interconnected computer system is the 
result of a series of design decisions, and the 
decision space can be considered to be a tree. 
Our model for this interconnection design 
process, shown in Figure 1, is a tree of four 
levels with alternative system architectures 
represented as leaves. The root of the tree is 
the decision to interconnect a number of 
computers for complete intercommunication. 
Below this are decision levels representing 
choice of message transfer strategy, the 
method of controling transfers, and choice of 
the type of path over which the transfer is 
to be made. The first two levels are con- 
cerned with strategic (policy) issues, and the 
third and fourth levels with tactical (imple- 
mentation) issues. 

The first strategic choice is between direct 
transmission of messages from source to 
destination, and indirect transmission in 
which an intervening operation is required. 
For purposes of the taxonomy, our criterion 
for distinguishing between these is the exist- 
ence of one or more switching entities which 
make decisions for every message. Thus, 
intervening repeater circuits or storage ele- 
ments are simply instances of paths, and 
do not affect the directness of the com- 
munication; but  an intervenor that  alters the 
message (e.g., address transformation), or an 
intervenor that  routes the message onto one 
of a number of alternative output  paths, is 
effecting an indirect communication. An- 
other way to make this distinction is to 

determine whether control information is 
contained in or sent to the intervenor (e.g., 
address transformation tables). Decisions 
made by the sender (for example, which 
port  to transmit on) and decisions made by 
the receiver (such as whether to accept a 
given message) do not  affect the directness of 
communication. 

If indirect communication is chosen, a 
further decision concerning the swi tching,  
method must be made. This is shown at  the 
second level of the tree. The alternatives are 
centralization, in which a single enti ty 
switches all messages, and decentralization, in 
which a number of intervenors are used. 

The third level involves the choice of 
dedicated or shared message transfer paths. 
We define a shared path as one which is 
accessible from more than two points. In 
reality, there are at least three alternatives 
tha t  may be distinguished: paths tha t  are 
unidirectional point-to-point; paths tha t  are 
bidirectional point-to-point; and paths tha t  
are bidirectional and visit more than two 
points. In the first case no contention can 
occur; but  in the second, a rudimentary 
sharing exists, and hence contention can 
occur. In the third case, however, contention 
becomes a major consideration, so we define 
it as the "shared" path case and classify the 
other two as "dedicated" connections. We 
reiterate that  the notion of " p a t h "  does 
not imply an implementation, and that  both 
busses and memories can be appropriately 
used as message transfer paths. I t  should 
also be noted that  paths which are redundant  
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for fault tolerance or bandwidth reasons are 
here considered logically singular. 

The final level of the taxonomical tree 
comprises the leaf nodes representing specific 
system designs. 

Before discussing the characteristics of the 
system types, we digress here to explain the 
various attributes which we feel are most 
significant, and to define our nomenclature. 
Our emphasis will be on the implementation- 
independent issues, and on the qualitative 
characteristics of systems. We avoid quanti- 
tative measures such as bandwidths and 
throughputs because they can only he 
representative of rapidly changing tech- 
nologies and therefore must be evaluated 
within the constraints of a specific applica- 
tion. 

For brevity, we will use sequences of 
capital letters to describe paths down the 
tree, with lower-case "x"s denoting "un- 
made" decisions. A direct, dedicated-path 
system is thus DDx, and so on. 

SYSTEM CHARACTERISTICS 

Modularity, the ability to make incremental 
changes in system capability, is a major 
characteristic to be considered in the design 
of a computer system. In instances where a 
specific design is to be configured for a 
variety of applications, it is often desirable 
to vary the number of processors according 
to the computational requirements of the 
particular problem. This requirement occurs 
both in homogeneous systems (having only a 
single processor type) and in nonhomogene- 
ous systems. One measure of system modu- 
larity is the incremental cost of adding an 
element, such as a processor. If this cost is 
simply that of the element, then the system 
is indeed modular; but if the addition of the 
nth processor requires the addition of n - 1  
interconnection paths, then the system is 
not so modular. At the third level of the 
tree, some decisions involving this cost- 
modularity measure have already been made. 
For instance, selection between Direct 
(Dxx) and Indirect (Ixx) paths involves 
tradeoffs between the poorer cost-modu- 
larity of dedicated paths and the vulner- 
ability of shared paths to bottlenecking. 

Another measure of modularity is the 
degree to which the location and function of 
the incremental element is restricted. For 
insts.nce, in a given design there may be 
particular places where a resource (processor, 
switch, or path) could be easily added to 
produce a specific performance increase, and 
other types of performance increase which 
are difficult or impossible to obtain in a 
modular fashion. Again in this case, decisions 
made in the progression to the third level of 
the tree have affected modularity. For in- 
stance, this place-modularity characteristic of 
Indirect Centralized (ICx) systems is poor 
with respect to the central switch. Replica- 
tion of the central switch to achieve an in- 
crease in throughput changes the basic archi- 
tecture to Indirect Decentralized (IDx). A 
place restriction can also occur in any non- 
homogeneous Indirect (Ixx) architecture, 
since a special-purpose processor which must 
be added to the system usually cannot oc- 
cupy a place that must perform a switching 
function. 

Connection flexibility, a characteristic akin 
to modularity, must be considered for Ixx 
architectures. In Dxx architectures, the 
decision to add a processor requires no 
deliberation on the method of connection; it 
is fixed by the system type. For architec- 
tures allowing indirect communication, there 
can be alternatives with different costs. For 
example, in a geographically dispersed sys- 
tem, the cost of adding another processor at 
the location of an already existing one is 
significantly affected by whether the incre- 
mental processor must have its own paths to 
the rest of the system, or whether it can 
share the paths already installed. 

Another important design characteristic 
is the cost of fault tolerance and the method 
by which a system is reconfigured to mask 
faults in processors and intercommunication 
paths. The first measure of goodness here is 
the effect of a fault. In designs where specific 
elements are shared (DSx, ICx, IDSx), a 
single failure of the shared element can com- 
pletely halt system operation. In other de- 
signs the structure is such that failures have 
less catastrophic results. In addition to this 
failure-effect aspect, it is also necessary to 
determine the costs of alternative methods 
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of masking faults to allow operation in a 
degraded mode. (We maintain that a system 
operating in the presence of a fault is func- 
tioning in a degraded mode, regardless of 
whether or not the effect is observable using 
a performance measure.) Design decisions 
allow this failure-re'configuration measure to 
range from excellent in systems requiring no 
overt reconfiguration and having minimal 
spare hardware, to very poor for those re- 
quiring that the entire intercommunication 
system be made redundant. A reconfigura- 
tion may even change the system's basic 
architecture. For instance, an ICx architec- 
ture that experiences a failure of the cen- 
tralized switching resource may reconfigure 
to allow decentralized communication (be- 
coming IDx) and thus avoid the cost of 
replicating all or part of the switch. This is 
an obvious area in which a hardware/soft- 
ware tradeoff exists, since a dynamic recon- 
fguration from one taxonomic architecture 
to another has significant software ramifica- 
tions. 

Inherent performance limitations, and the 
cost incurred in overcoming them, must also 
be considered in the choice of an architecture. 
The problem here is one of bottlenecks in 
resources, due either to a nonuniform flow of 
communication within a system, or to 
saturation of a shared resource. At the third 
level of the tree, DSx, IDSx and ICx archi- 
tectures can be seen to be limited (i.e., to 
have poor cost-modularity for increased 
communications rates), since increasing their 
performance in areas served by the single 
shared path or switch requires significant 
hardware changes. 

The nature and number of decisions that 
must be made to effect communications 
within a system are an important considera- 
tion. We call this attribute logical complexity 
and use the term to refer to the totality of 
decisions made during communications, 
whether made by source and destination 
processes, or by switching entities. Logical 
complexity is a characteristic that is signifi- 
cantly affected by the architecture, but its 
major effect is on software cost. From the 
standpoint of the architect, this makes logi- 
cal complexity an almost unquantifiable 
element in tradeoffs, and the best that can be 

done is to make relative rankings for systems 
under consideration. In Ixx systems, the 
method by which the switching information 
is communicated is a major logical com- 
plexity issue. A "chicken and egg" puzzle 
pertains; the switching information that 
must be communicated (from somewhere in 
the system) to the switching resource com- 
prises a message, but messages cannot be 
sent unless information for switching them 
exists in the switching resource. The magni- 
tude of problems arising in the communica- 
tion of switching information depends both 
on the system's type and on its operating 
environment. ICx systems are better in this 
regard than IDx systems; the more dynamic 
the processing environment, the more com- 
plicated the problem. 

In addition to the characteristics just 
listed, which are largely determined by 
strategic decisions, there are a number of 
characteristics that are the result of imple- 
mentation decisions. Among these are the 
physical dispersibility of the system, com- 
patibility with commercial communication 
paths, message transfer delay between 
sender and receiver, and the cost of the 
interconnection paths. These, together with 
the strategy-dependent characteristics, are 
detailed in the following sections describing 
the architectural alternatives. 

SYSTEM DESIGN TYPES 

In the following paragraphs we discuss the 
significant features of each of the system 
species in our taxonomy. Our first attempts 
at these descriptions were made from a com- 
pletely implementation-independent view- 
point, a perspective which we found unten- 
able unless important design issues were to 
be omitted. Because of this, the discussions 
represent a compromise and certain observa- 
tions are made both from a strict taxonom- 
ical viewpoint as well as from research and 
experience with actual designs. We also 
identify particular implementations of each 
interconnection type. 

DDL--Loop 

Loop architectures (Figure 2) have evolved 
from the data communications environ- 
ment, and consist of a number of individual 
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FmVRE 2. DDL (Loop). 

processing elements (PEs), each of which 
is connected to two neighboring processing 
elements. The traffic in a loop could, in 
principle, flow both directions. In practice, 
the complexity of bidirectional traffic has 
constrained all the loops (of which the 
authors are aware) to only unidirectional 
traffic. In a unidirectional loop, one neighbor 
of a PE can be regarded as the source 
neighbor and the other as the destination 
neighbor. A given PE receives messages only 
from its source neighbor and sends messages 
only to its destination neighbor. Messages 
circulate around the loop from source to 
destination with intermediate PEs acting as 
relay or buffer units. DDL systems may 
allow one [FARM69] or more [REAM75] mes- 
sages to circulate simultaneously, and 
messages are of either fixed or variable length 
[WEST72]. Some systems which have been 
referred to in the literature as loops contain 
a centralized switching function, and thus 
appear as ICDL in our taxonomy. Other 
systems are coupled loops with decentralized 
control, which we classify as IDDI. 

Both the cost-modularity and the place- 
modularity of DDL systems are very good. 
An additional PE can be inserted anywhere 
in the loop with the addition of a single com- 
munication path, and the flow of messages is 
not significantly affected by its presence. The 

failure-effect and failure-reconfiguration 
characteristics of DDL systems are poor, 
however. A single failure in a path or a PE 
interface causes intercommunication to stop 
(at least between PEs separated by the failed 
resource). If reconfiguration to mask the 
fault is necessary, there must be a fully re- 
dundant path structure and some type of by- 
pass. switching in the PE interfaces. Recon- 
figuration from DDL to another structure is 
not an obvious option either, since the paths 
are unidirectional and the interfaces are rela- 
tive|y simple. The logical complexity of com- 
munications in a DDL system is low; a PE 
must only relay messages, originate messages 
and transmit them to a single destination, 
recognize messages destined for itself, and 
strip off messages according to the discipline. 
The. bandwith of the single loop is, of course, 
a potential bottleneck as communication 
rates increase. In addition, some loop disci- 
plines have the weakness that a single user, 
possibly with malicious intentions, can satu- 
rate the entire available bandwidth. 

DDL architectures that have been pro- 
posed or implemented have almost all used 
bit-serial data links as the communication 
paths between PEs. This, together with the 
delay involved in relaying the messages, has 
resulted in significant increases in message 
transit times around the loop. In general, 
these systems have been designed for appli- 
cations where reliability and performance 
constraints were not stringent. The primary 
goal of most designs has been the intercon- 
nection of geographically dispersed mini- 
computer systems to allow file and resource 
sharing. Thus, reconfiguration after failure 
has not been performed, nor has the message 
delay-time been a problem. 

The best-known example of a DDL com- 
puter system is the Distributed Computer 
System at the University of California, 
Irvine [FARB72]. This system originally de- 
veloped out of an interest in data communi- 
cations rather than from a concern with dis- 
tributed computing, although that emphasis 
was reversed early in the history of the 
project. The Distributed Computer System 
currently consists of five minicomputers and 
a number of peripheral devices looped 
around the Irvine campus. The loop (or 
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"ring") is bit-serial and operates at a data 
rate of 2.3 Mbs. A multiplicity of variable- 
length messages can circulate simultane- 
ously. Fault tolerance is provided by a 
redundant loop and bypass switches. 

The already good place-modularity in- 
herent in loops has been enhanced in the 
Distributed Computer System by the incor- 
poration of "soft" or "associative" address- 
ing of messages. Rather than sending a mes- 
sage to a physical processor, it is sent to a 
logical process; the "Ring Interface" corre- 
sponding to the processor in which the 
destination process currently resides recog- 
nizes the address and accepts the messages. 
This allows communication to be independ- 
ent of the number of processors in the 
system, and of process/processor assign- 
ments. This idea has also been incorporated 
into other distributed architectures. 

A loop version of the CAMAC data multi- 
plexing system has been defined for both 
bit-serial and byte-serial transfers [AEC73]. 
Originally designed for nuclear laboratory 
instrumentation, the CAMAC loop is appear- 
ing in distributed computing schemes, 
although its protocol is not well suited for 
such use. 

DDC--Complete Interconnection 

The DDC architecture is perhaps the con- 
ceptually simplest design type in the taxon- 
omy. In it (Figure 3), each processor is con- 
nected by a dedicated path to every other 
processor in the system, and messages 
between processors are transferred only on 
the path connecting them. The source 
processor must choose the path to the destin- 
ation processor from the alternative paths 
available, and all processors must be 
equipped to handle incoming messages on a 
multiplicity of paths. 

The most significant characteristic of 
DDC systems is their poor cost-modularity. 
The addition of the nth processor to a DDC 
system requires not only the addition of n-1 
paths between it and the other processors, 
but also, all processors in the system must 
have facilities for accepting the incremental 
PE as a data source. Thus, their interfaces 
must have at least M-1 ports, where M is the 

DIRECT INDIRECT 

D E D I C ~ A R E D  / ' x  
LOOP COMPLETE 

FZGURE 3. DDC (Complete intereonneetion). 

maximum size of the system. Alternatively, 
it must be possible for all processors to 
accept extra connections when the number 
of PEs must be increased beyond the number 
of available ports. Place-modularity of DDC 
systems is good, as are failure-effect and 
faihire-reconfiguration characteristics. The 
DDC architecture is one which can be easily 
degraded in the event of a failure without 
changing its interconnection class--a failed 
processor, or one of the two processors 
terminating a failed path, can simply be 
disconnected from the system. In addition, 
reconfiguration to an Ixx system could be 
used in event of a failed path if the software 
cost and increased message transit time 
incurred were acceptable. DDC systems 
have no obvious bottlenecks, and their 
logical complexity is relatively low. It 
should be noted, though, that the architec- 
ture forces a location-addressing policy on 
interprocess communication, since switch- 
ing within the processors and message 
relaying activities would put a design into 
the ICDx or IDDx categories. 

DDC systems may be geographically ei- 
ther localized or dispersed, although there are 
few examples of either case. The best-known 
instance of a localized DDC architecture is 
a fully connected version of the IBM At- 
tached Support Processor System [IBM], 
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FIGURE 4. DSM (Multiprocessor). 

in which up to four System/360 or /370 
computers may be linked through I/O 
channel couplers. 

Virtually all extant examples of geographi- 
cally dispersed DDC systems are small 
(_<3 PEs), and appear to be ad hoc inter- 
connections of formerly existing computer 
installations, as exemplified by the fully 
connected configuration of the MERIT 
system [BEcH72]. MERIT consists of two 
IBM 360/67s and a CDC 6500 located on 
three separate Michigan University cam- 
puses, and connected by common carrier 
lines. The MERZT system design does have 
the potential for less fully connected con- 
figurations (such as IDDI) to reduce com- 
munications costs. 

DSM--Multiprocessor 
Certainly the most common way to inter- 
connect computer systems is the DSM or 
multiprocessor architecture (Figure 4), in 
which two or more processors communicate 
by leaving messages for one another in a 
commonly-accessible memory. The key 
characteristic of DSM architectures is that 
the memory is, or can be, used as a path 
rather than solely as storage. 

The place-modularity of DSM systems is 
very good; it is possible to add processors 
arbitrarily (since the processors are not 
topologically distinguished), and it is also 
possible to increase the in-transit message 
capacity of the path simply by increasing the 

size of the memory. The cost-modularity of 
DSM systems depends almost completely 
on the path structure by which the proces- 
sors access the memory system. If each 
processor is provided with a direct path, 
then cost-modularity can be poor, since an 
incremental processor can possibly bring 
the total to greater than the number of avail- 
able.' memory ports. Alternatively, if the 
memory is accessed through a single bus 
with a suitable allocation mechanism, cost- 
modularity can be very good. A DSM 
system is quite vulnerable to a bottleneck in 
which the memory's bandwidth becomes a 
restriction on communication rates. Cost- 
modularity is poorer in this case, as it is ex- 
pensive to increase bandwidth of the memory 
or the access path. Logical complexity of 
DSM systems is quite low. The failure- 
effect and failure-reconfiguration charac- 
teristics of DSM systems are good in the 
case of processor failures, but poor in the 
event of failure of the central memory unit 
(or of a shared access bus). There is also a 
software failure-effect problem because 
processors normally have unrestricted access 
to the central memory, thus faulty or ma- 
licious software can prevent or damage 
message transactions to which it is not a 
party. 

Almost every implementation of a DSM 
system has occurred because the designer(s) 
wished the memory to be shared as a storage 
place for programs and data--use of the 
memory as a communication path has almost 
been a side effect. In implementing this mul- 
tipurpose sharing, it has been found that 
the systems' performance has increased more 
slowly as the number of processors increased 
and, in general, systems consisting of more 
than about four processors have not been 
cost-effective. The leason for this has been 
the extreme contention for memory band- 
width when the (functionally) single memory 
must serve for all purposes. The bandwidth 
required for communications alone is, how- 
ever, unlikely to cause bottlenecking in a 
memory solely dedicated to this function. 

An example of a contemporary multi- 
processor is the Carnegie-Mellon C.mmp 
[WuLF72], which allows up to 16 processors 
to share up to 16 memory modules through a 
crossbar switch. Currently, five PDP-11/20 
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processors are operating with negligible 
interference. 

The surveys of Miller, et al. [MILL70], and 
Enslow [ENSL74] include a wide variety of 
both commercial and aerospace DSM 
machines. 

DSB--Global Bus 

The DSB architecture, shown in Figure 5, 
comprises a number of processing elements 
interconnected by a common, or global, bus. 
Access to this bus is shared among the 
processors by some allocation scheme, and 
messages are sent directly from the source 
PE onto the bus, to be recognized and ac- 
cepted by the proper destination(s). 

Both the cost- and the place-modularity 
of DSB systems are good with respect to the 
PEs. Depending on the choice of bus alloca- 
tion scheme, it can be possible to add a 
processor to the system in any position with 
little or no effect on the other PEs. Cost- and 
place-modularity of the communications 
path are poor, however. It is not possible to 
increase the bandwidth easily as needed, nor 
is .it often possible to increase performance 
only where needed. Rather, to increase per- 
formance it is usually necessary to change 
the implementation of the entire bus or to 
replicate it, alternatives which have signifi- 
cant design impact on the bus interfaces of 
all PEs in the system. Similarly, the failure- 
effect and failure-reconfiguration charac- 
teristics of DSB systems are very good with 

respect to the processors, and poor with 
respect to the bus. For PE failures, the 
DSB architecture requires no overt hard- 
ware reconfiguration activity to continue 
operation as a DSB system. Given reason- 
able care in the design of the bus interfaces, 
processor failures will have little effect on 
system operation. Failures of the bus, how- 
ever, are inevitably catastrophic, and repli- 
cation is required if the ,DSB architecture is 
to be retained after configuration. The 
global bus is, of course, a potentiM band- 
width bottleneck. 

Much of the current interest in DSB 
systems has occurred in the aerospace en- 
vironment, where both serial and parallel 
paths are being used. In these applications, 
the place- and cost-modularity characteris- 
tics of DSB systems are particularly advan- 
tageous, and allow flexibility in configuring 
systems for specific applications, including 
both homogeneous and nonhomogeneous 
instances of the same basic system. The 
failure-reconfiguration characteristics of the 
DSB architecture are useful for these ap- 
plications, too, because most aerospace ap- 
plications are of a real-time nature and, 
therefore, excessive reconfiguration delays 
must be avoided. Serial bussing for the com- 
munication path seems to be the more popu- 
lar approach, primarily because the system 
applications tend to have high costs associ- 
ated with physical wiring, a need for phys- 
ical dispersibility over electrically long 
distances, and relatively low data rates. 
Replication of the communications path is 
the predominant technique for mitigating 
both the bandwidth restriction and the fault 
vulnerability of the shared bus. 

Most of the aerospace DSB-like architec- 
tures have been hybrids with respect to our 
taxonomy [Sv~is72], [ANDE73]. However, the 
military services are beginning to establish 
data multiplexing standards [USAF73] that 
will require the use of DSB approaches in 
future aerospace systems (although these 
initial standards leave something to be de- 
sired, from a distributed computing stand- 
point). 

A pure DSB architecture is typified by one 
utilizing word-wide busses [J~Ns75], and a 
philosophical derivative of it (using a bit- 
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serial bus), which has been constructed by 
the authors for the US Navy (for which 
there are as yet no public references). 

DSB is also a popular line-sharing disci- 
pline in industrial and laboratory automa- 
tion applications [ARoN71], as exemplified 
by the CAMAC [COST72] and IEEE standard 
488-1975 (originally Hewlett-Packard [KNOB 
75]) data-multiplexing systems. 

ICDS--Star 

ICDS systems (Figure 6) consist of a central 
switching resource to which a number of 
processors are connected, each by a func- 
tionally single, bidirectional path. Messages 
are exchanged among the PEs using the 
central switch as an intermediary; it is the 
apparent destination and source for all 
messages. The function of the switching re- 
source is usually seen as "insulating" the 
processes running on a given PE from 
physical knowledge of the system, and pro- 
tecting them from each other. 

The ICDS architecture has most features 
in common with the DSx architectures be- 
cause both have shared message transfer 
facilities. Its cost- and place-modularity are 
good with respect to the PEs, and poor with 

respect to the central resource. Similarly, 
failure-effect and failure-reconfiguration 
characteristics are good for the PEs, and 
poor with respect to the switch. Bottleneck- 
ing in the switch is a potential problem. The 
connection flexibility of ICDS systems is 
poor because incremental PEs must always 
be provided with individual paths to the cen- 
tral switch. The logical complexity of ICDS 
systems is moderate. Sufficient information 
(e.g., routing tables) must be provided 
within the switching resource to allow com- 
munications to take place, but the fact that 
there is only a single copy of this (usually 
dynamic) information simplifies its handling 
during reconfiguration. The poor failure- 
effec¢ and failure-reconfiguration character- 
istics of the central resource are extended to 
one of the PEs in the system if switching 
information is maintained outside the re- 
source (i.e., where the switch uses address 
translation to accomplish message routing, 
and the mapping registers are under control 
ot one of the PEs). ICDS architectures are 
quite common. One example is IBM's Net- 
work/440 [McKA70], in which remote 
System/360 user nodes are connected over 
leased lines to a 360/91 central controler. 

ICDI.--Loop with Central Switch 

In a manner analogous to Direct, Dedicated 
path (DDx) systems, the direct connections 
required for ICDx architectures can be 
implemented either in the ICDS star pattern 
or in a loop, which we call ICDL (Figure 7). 
In such a system, messages are placed on the 
loop by senders, removed for an address- 
mapping operation by a central switching 
element, then replaced on the loop properly 
addressed to their intended destination. 

ICDL systems share characteristics with 
both the ICDS and the DDL organizations. 
Their failure characteristics are those of 
DDL with respect to the data paths, and 
those of ICDS with respect to the central 
resource. Connection flexibility is improved 
over the star in that the incremental PE 
need be connected only to its physically 
nearest neighbors, not to a possibly remote 
control element. As in DDL systems, bottle- 
necks and vulnerability to malicious users 
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are potential problems, but since these are 
risks inherent also in the centralized switch- 
ing of the ICx approach, they do not neces- 
sarily weaken the system over ICDS. The 
logical complexity of ICDL systems is 
moderate, though slightly increased over 
ICDS due to the additional demands the 
loop discipline places on the PE interfaces. 

An example of the ICDL architecture is 
SPIDER, an experimental data communica- 
tions system interconnecting eleven com- 
puters at Bell Laboratories in Murray Hill, 
N. J. [FRAs75]. In this system, multiple 
fixed-size data messages circulate over 
1.544 Mbs common carrier lines; currently 
there are three loops, but only one is in use. 
The central switch for all loops is a mini- 
computer. Any computer in the loop (except 
the central switch) can be switched to 
receive-only in case of failure. 

ICS--Bus with Central Switch 

The ICS architecture shown in Figure 8 is 
functionally equivalent to ICDS, with the 
major exception that the processors are not 
individually connected to the switching re- 
source but, instead, share a path by which 
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to access it. Thus, when a PE wishes to 
transmit a message, it must first acquire the 
bus, then transmit the message to the switch. 
From the switch, the message is retrans- 
mitted over the (functionally) same bus to its 
proper destination. (This retransmission is 
the characteristic by which ICS systems can 
be distinguished from DSB organizations 
and from DSM systems using a single bus to 
memory.) 

As might be expected, the characteristics 
of the ICS architecture are similar to those 
of ICDS systems. By the failure-effect 
measure it is poorer, since the access path is 
no longer replicated once for each processor. 
The existence of the shared path to the 
switch need not contribute significantly to 
bottlenecking, however, since it is quite 
feasible to balance its performance with that 
of the switch. Then, as long as the two satu- 
rate at the same time, or the switch saturates 
first, the bottlenecking risk is not increased 
over the ICDS organization. The cost- 
modularity of the ICS system is influenced 
positively by the fact that the incremental 
processor need only be connected to the 
shared bus, not directly to the (possibly 
remote) switch. As mentioned in the discus- 
sion of direct, shared bus (DSB) systems, 
certain bus designs make this connection 
cost very low. 

The low popularity of ICS systems may be 
inferred from the fact that there is no corn- 
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FmURE 8. ICS (Bus with central switch). 
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mon name for them. The designs that do 
exist, however, use processors as the switch- 
ing resource, with processors dispersed over 
geographically short, but electrically long 
distances. Although nothing intrinsic to the 
architecture prevents the use of hardware 
(such as a crossbar) for the switch, the speed 
implications on the bus, if balance is to be 
achieved, probably preclude its use as a 
practical matter. As mentioned previously, 
the shared bus is not normally available 
from commercial carriers, so ICS systems 
are restricted geographically. 

An ICS system has been designed by 
Hughes for the US Navy [Row•74]. The 
centralized switching resource is a special- 
purpose processor called the Network 
Manager, which interfaces with a number of 
functional nodes over one or more shared 
busses. In addition to handling interproc- 
essor communication, the Network Manager 
also provides a variety of other executive 
services for the nodes. Because the system is 
physically localized, the bus(ses) to the Net- 
work Manager are bit-parallel. 

The ALOHA system [ABRA73] is a unique 
ICS computer network which uses a radio 
"bus." Hardwired and incoherent light links 
are also accommodated. A 24K-baud full 
duplex radio channel connects the central 
IBM 360/65 to remote terminals, which in- 
clude a number of minicomputers. 

IDDR--Regular Network 

The IDDR organization (Figure 9) com- 
prises a number of PEs interconnected with 
dedicated paths and having identical neigh- 
bor relationships (except, perhaps, at the 
boundaries). In the figure, each PE has 
"left," "right," "above," and "below" 
neighbors, although other geometries have 
been proposed. Messages are routed through 
the network from source to destination with 
each intervening PE determining which of 
its alternative neighbors should be the next 
recipient of the message. (It may be noted 
that DDL is a special IDDR case in which 
each PE has two neighbors and there is no 
switching decision to be made.) 

The modularity and failure characteristics 
of IDDR systems are significantly and nega- 
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FIGURE 9. IDDR (Regular network). 

tively affected by the requirement for abso- 
lute regularity. It is not possible to add only 
a single PE or path; rather, the size of the 
increment depends on the number of PEs in 
the system, the number of neighbors per PE, 
and the interconnection pattern. Thus, 
both cost-modularity and place-modularity 
are extremely poor. There is no connection 
flexibility. Logical complexity of the design 
is moderate; although many switches exist, 
the regularity of connection simplifies 
routing. The failure-effect measure of IDDR 
systems is moderate-to-good, depending on 
the method by which message routing is per- 
formed. A single PE or path failure does not 
stop communication entirely in any case, 
nor need it stop any messages to which the 
failed element is not a party. Failure- 
reconfiguration of IDDR systems is ex- 
ceedingly poor, with 100% sparing of PEs 
and paths being required if the basic struco 
ture is to be unaltered after reconfiguration. 
If reconfiguration to an irregular structure 
(IDDI) is acceptable, however, this short- 
coming is eliminated. 

The elegance of IDDR structures has 
caused significant academic interest but, 
to the authors' knowledge, their practical 
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difficulties have prevented actual imple- 
mentations. Paper designs have usually 
been for four-neighbor (rectangular) sys- 
tems, with either busses or memories pro- 
posed as paths. One nonrectangular IDDR 
system is TREE, designed at the US Navy 
Postgraduate School [GooD73]. This machine 
comprises a number of PEs connected as a 
tree. A PE may communicate with its 
superior or any of its subordinates in the 
hierarchy; because there is only one path 
between any two nodes in a tree, the logical 
complexity of the message routing is not 
severe. TREE was envisioned primarily as 
being physically centralized, but could in- 
stead be implemented with common carrier 
lines for greater dispersal. 

IDDl--lrregulor Networks 

The distinction between IDDR and IDDI 
(Figure 10) systems is simply that consistent 
neighbor relationships are not required for 
IDDI. Thus, a given PE may have from one 
to an arbitrary number of neighbors with 
which it communicates. Many of the system 
characteristics vary with the degree of inter- 
connection regularity. Place-modularity of 
IDDI systems tends to be extremely good, 
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with both processors and paths added as, and 
where needed. Cost-modularity is similarly 
good, with incremental PEs being archi- 
tecturally required to have only one (or two 
in loop-oriented approaches) connections to 
the rest of the system. Connection flexibility 
is another advantage, with connections 
allowed to any PE in the system. The more 
irregular the interconnection pattern, the 
more the system's failure-effect and fail- 
ure-reconfiguration characteristics can be 
enhanced by providing a multiplicity of po- 
tential paths between PEs. Likewise, ir- 
regularity improves the extent to which re- 
configuration can be performed without 
departing from the IDDI category. The logi- 
cal complexity of IDDI systems is usually 
very high; at each switch, routing decisions 
must be based on knowledge of the overall 
system topology. Due to the good place-mod- 
ularity, bottlenecks are not a likely problem. 

The dominant current application of IDDI 
interconnection is to geographically dis- 
persed computer networks. In such systems 
the paths are supplied by a common carrier 
and the switching is done by processors 
dedicated to that function. The (significant) 
cost due to logical complexity, and repre- 
sented by the switch-processors, is incurred 
to minimize the number of high-cost inter- 
connection paths required. Routing al- 
gorithms are usually inelegant, especially 
for the less regular systems, and ad hoc 
solutions are apparent. It  is the authors' 
feeling that hardware switching facilities 
are ruled out by the complexity of the de- 
cisions to be made, and that the current 
practice of using processors for this func- 
tion must necessarily continue. 

Most systems commonly called "computer 
networks" are IDDI structures. These are 
discussed in the surveys by Schneider 
[ScHN73], Abramson [ABaA73a], and Rustin 
[RusT72], and in the bibliography by 
Blanc, et al. [BLAN73]. 

A more regular sort of IDDI  system is 
represented by the coupled loops of Pierce 
[PIER72], [COKE72], [KROP72], intended 
for telecommunications. A number of inde- 
pendently controled DDL "local" loops 
are coupled together, directly and/or by 
"trunk" loops (which may themselves be 
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DDL). A variety of alternate, redundant, 
and bypass-switched loops is proposed to 
provide failure protection. 

IDS--Bus Window 

In IDS architectures, an example of which is 
shown in Figure 11, access to the switching 
resources is via a path shared by multiple 
PEs. Switching is performed by more than 
one resource, and messages may be retrans- 
mitred onto the path from which they were 
received, or onto another. 

The modularity characteristics of the 
IDS architecture are similar to those of the 
IDDI structure. The failure-effect and 
failure-reconfiguration characteristics are 
poorer, however, because multiple PEs and 
switches can be affected by the failure of a 
single path. Also, systems of this type are 
not easily dispersible due to the shared 
busses. 

Digital Equipment Corporation manufac- 
tures a device called the DA11-F Unibus ® 
Window to facilitate the implementation of 
IDS architectures [FITz73], [DEC75]. Similar 
mechanisms have been designed at Carnegie- 
Mellon University for their Computer 
Module System [FULL73], and at BBN for 
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their PLVmBUS IMP [HEAR73] (which we 
classify as a hybrid, as discussed in the Con- 
clusion of this paper). All of these units 
provide a bidirectional path between the 
busses of two minicomputers. Blocks or 
segraents in the source-address space are 
translated to the destination-address space. 
A number of these interfaces may be used 
to construct hierarchies of processing ele- 
ments. Simulation and programming ex- 
perience by users of all three mechanisms 
indicate that the logical complexity of this 
approach grows rapidly as the number of 
translation levels increases, and as the trans- 
lation binding becomes more dynamic. This 
type of interconnection is also subject to 
deadlock [BELL73], [CHEN74], unless de- 
signed and used with great care. 

FUTURE DIRECTIONS 

Current activity in distributed architectures 
is undeniably more on paper than in hard- 
ware, but there do seem to be trends emerg- 
ing in designs for several application areas. 

DDL organizations seem to predominate 
in designs where their excellent modularity 
and compatibility with common-carrier data 
paths can be used to advantage, and where 
their poor failure characteristics and long 
message transit-times are not a problem. 
Typically, the DDL designs are used to con- 
nect. multiple minicomputer systems, dis- 
persed over electrically long distances in 
university, research laboratory, or industrial 
automation environments. The individual 
PEs are usable both as stand-alone systems 
and with other PEs for resource (file, periph- 
eral,) and load sharing. 

The DSB organization with serial bussing 
is becoming the dominant architecture in 
real.time control environments. These ap- 
plications typically have a number of itera- 
rive, sampled-data control loop functions 
loosely connected by a requirement for in- 
formation exchange and centralized monitor- 
ing. The environment occurs in both the 
conventional process-control type applica- 
tion and in aerospace applications such as 
integrated avionics processing. In such sys- 
tems, the good place-modulal:ty for proces- 
sors in DSB organizations is particularly 
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valuable. DSB is chosen over DDL because 
simple redundancy of the global bus allows 
fast and almost automatic reconfiguration 
after failures, and because of the reduced 
message transit-time. 

In environments where sophisticated inter- 
process communication is a requirement, the 
ICx organizations are a common choice. 
Compared to IDx, the lower logical com- 
plexity of centralized switching is believed 
to outweigh its failure-effect and failure-re- 
configuration disadvantages. There is a 
great variety of system designs, particu- 
larly in the ICDS category, with varying 
levels of performance in the central switch 
area. It is the feeling of the authors that as 
understanding of interprocess communica- 
tion matures, movement toward IDx 
structures may occur. 

The fourth "dominant" system is IDDI, 
which is uniquely suited to applications re- 
quiring interconnection of relatively large 
computers over geographically long dis- 
tances. In such systems, the high inter- 
connection cost necessitates that only large 
computers be involved. Furthermore, sig- 
nificant processing power should be dedi- 
cated to the switching function in order to 
minimize those interconnection costs. At 
this time, such applications have used al- 
most exclusively ad hoe solutions to con- 
troling the complex IDDI structures, with 
the majority of the efforts going toward 
more fundamental problems of intercom- 
munications protocols and experiments in 
load sharing. I t  is hoped that future work in 
such areas as routing algorithms and re- 
covery techniques for IDDI structures will 
complement interprocess communication 
research currently being conducted with 
ICDx structures, to the ultimate benefit of 
both. 

In our opinion, the remaining five system 
types each have one or more significant 
weaknesses not sufficiently compensated for 
by strengths that are useful in real-world 
applications. DDC systems have poor modu- 
larity and high interconnection costs, to the 
extent that large systems are impractical. 
DSM architectures, from an intercommunica- 
tions viewpoint, have little to offer over DDL 
or DSB structures except an ability to corn- 

municate large messages quickly by use of 
pointers. (They will undoubtedly continue to 
exist for their other advantages, which are 
not related to communications.) IDDR and 
IDS organizations both incur significant 
logical complexity with few compensating 
advantages. Further, IDDR has the poorest 
modularity and failure characteristics of 
any of the organizations. 

CONCLUSIONS 

The notion of a taxonomy requires both that 
all species be clearly identified, and that the 
methods used to make distinctions be clear 
and unambiguous. Our discussion here has 
failed to achieve either of these goals com- 
pletely, but has, we hope, been a worthwhile 
beginning. All species (systems) are not 
clearly identified; there are many hybrids 
using combinations of our leaf-node archi- 
tectures. The PRIME system at the Uni- 
versity of California, Berkeley [QuAT72] is 
physically a combination of DSM (multi- 
processor) and ICDS (star), although logi- 
cally it is purely ICDS since all interprocessor 
communication goes over the External 
Access Network, rather than through the 
shared memory. Honeywell's DP/M system 
for the US Air Force [ANDE73], with its 
global and local busses, uses two levels of 
DSB. The BBN PLURIBUS IMP for the 
ARPANET [HEAR73] is structurally an amal- 
gam of DSM (although by convention there 
is no interprocessor communication using 
the local memories), IDS (for accessing 
shared memory), and ICS (the Pseudo-In- 
terrupt Device). 

Neither are all distinctions crystal clear; 
we have classified systems on the basis of 
"dominant" features, and to some degree 
even on our understanding of the intent, as 
well as on prima facie evidence. Our goals 
in attempting to construct a taxonomy will 
be satisfied, however, if two effects occur. 
First, we hope to stimulate a refinement of 
this approach or the development of a 
better one. Secondly, we hope to have con- 
tributed to a common ground for discussion 
in the meantime. 
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