
Computer Interconnection Structures: Taxonomy,
Characteristics, and Examples

GEORGE A. ANDERSON
and

E, DOUGLAS JENSEN

Honeywell, Inc., Systems & Research Center, 2600 R~dgway Parkway NE, Minneapolis, Minnesota 55~1~

This paper presents a taxonomy, or naming scheme, for systems of interconnected
computers. I t is an attempt to provide an implementation-independent method by
which to identify demgns, and a common context in which to discuss them. The
taxonomy is based on interprocessor message handling and hardware interconnection
topology, and distinguishes ten basic multiple-computer architectures. Various
relevant attributes are identified and discussed, and examples of actual designs are
given for each architecture.

Keywords and Phrases: distributed processing, distributed computers,
multiprocessors, multicomputers bus structures, computer networks

CR Categories: 3.81 4.32 6.20

INTRODUCTION

Currently, one of the most active areas in
computer architecture is the interconnection
of computers to form systems which are
called "distributed processors," "distrib-
uted-function computers ," "computer net-
works," and similar names. These systems
range in organization from two processors
sharing a memory to large numbers of rela-
t ively independent computers connected
over geographically long distances. A dis-
couraging aspect of this activity, however, is
the almost total lack of published informa-
tion describing the rationale for various
designs, or comparing the results achieved
by various approaches. In part , the authors
believe this condition exists because there
has been no common context in which such
discussion could take place, no set of design
issues, no list of system characteristics to be
t raded off, and, in fact, not even a common
nomenclature for system identification. Our

paper is an a t t empt to begin filling this need.
In it we present a naming scheme, or taxon-
omy, for identifying various systems of
interconnected computers, and we discuss
design decisions and system characteristics
which we believe are germane to these
architectures.

The authors know of only one other
general taxonomy for interconnected com-
puters and tha t is a brief one (having differ-
ent dimensions) with few system characteris-
tics and no nomenclature [$1~.w74]. Some
interconnection topology issues are also
considered in [CHEN74] and [THtTR72], al-
though these are primarily concerned with
the next lower level of the interconnection
design--control and communication. One
level beneath these are a number of papers
dealing with the design of "explici t"
switches, such as crossbars [PIPe75] and
permutat ion/sor t ing networks [THVR 74].
In addition, there is a wide var ie ty of digital

Copyright © 1976, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted, provided that ACM's copyright notice is
given and that reference is made to this publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.

197
Computing Surveys, Vol. 7, No. 4, December 1975

198 • George A. Anderson and E. Douglas Jensen

CONTENTS

INTRODUCTION
DESIGN DECISIONS--THE TAXONOMY
SYSTEM CHARACTERISTICS
SYSTEM DESIGN TYPES

DDL--Loop
DDC--Complete Interconnectlon
DSM--Multlprocessor
DSB--Globa! Bus
ICDS--Star
ICDL--Loop with Central S~itch
ICS--Bus with Central Switch
IDDR--Regular Network
I DDI--Irregular Network
IDS--Bus Window

FUTURE DIRECTIONS
CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES

T

data communications literature pertaining
to queueing, routing, multiplexing, etc.
[MART72] ; much of this is relevant for certain
computer interconnection architectures and
implementations.

For the first step toward developing a
common nomenclature for system identifi-
cation we have restricted ourselves in several
significant ways. First, we are concerned
solely with interconnected hardware units in
which "processes" can execute. We use the
word process in the conventional sense, and
designate the hardware units as Processing
Elements, or PEs. By this definition we
specifically exclude single-instruction stream,
multiple-data stream machines such as
ILLIAC IV and PEPE. We further limit our-
selves to systems in which any PE can
communicate with any other through the
system interconnection mechanism.

Our method for identifying the intercon-
nection structure of a system is to isolate the
major hardware units involved in the trans-

fer of information between processes in
different PEs. We call this transfer a "mes-
sage transmission," and do not distinguish
between instances of message such as data
blod~s, service requests, semaphores, etc. In
the interconnection structure itself we dis-
tinguish two functional entities--paths and
switching elements.

A path is the medium by which a message
is transferred between the other system ele-
ments. Some examples of paths are wires or
busses, radio links, common-carrier data-
transmission facilities, and memories. The
transmission of a message over a path results
in no alteration of the message.

A swilching element is an entity which may
be thought of as an "intervening intelli-
gence" between the sender and receiver of a
message. A switching element affects the
destination of a message in some way--by
altering the message (e.g., changing its
destination address), by routing it to one of
a number of alternative paths, or by both
actions. These notions of message, path,
and switch are basic to the approach we
have taken.

Our taxonomy thus describes configura-
tions of three hardware archetypes: PEs,
paths, and switching elements. This small
number of types leads to several simplifica-
tions which serve on one hand to make
system organizational issues clear, but on
the other, admittedly obscure the noninter-
connection aspects of system design. For
example, we do not distinguish between a
computer and its interface to the rest of the
system--both are part of the PE. Neither
do we make a distinction between circuit
switching and message-switching--both are
accomplished by the switching entity. Per-
haps the most significant issue that is not
treated is interprocess communication strate-
gies and problems, such as message ad-
dressing, deadlock, etc. By these omis-
sions we do not imply any relative im-
portance, but rather, we stress that we have
taken a limited step in but one of several
important areas. I t is our hope that this step
will stimulate similar work in such comple-
mentary areas as interprocess communica-
tion, as well as encourage improvements in
our taxonomy.

Computtng Surveys, Vol 7, No 4, December 1075

Computer Interconnection Structures • 199

TRANSFER
STRATEGY

TRANSFER
CONTROL
METHOD

TRANSFER
PATH
STRUCTURE

SYSTEM
ARCHITECTURE

°,ii cT
(NONE)

DEDICATED
PATH

(DDL) (DDC)
LOOP COMPLETE

INTERCONNECTION

SHARED
PATH

INTERCONNECTION
FOR COMMUNICATION -H

INDIRECT
II

- - I - - - t
CENTRAL,ZED OECENTRAU EO

PATH PATH PATH PATH

(DSM) (DSB) (ICDS) (ICDL) (ICS) (IDDR) (IDOl) riDS)
CENTRAL GLOBAL STAR LOOP BUS REGULAR IRREGULAR BUS
MEMORY BUS WITH WITH NETWORK NETWORK WINDOW

CENTRAL CENTRAL
SWITCH SWITCH

FIGURE 1. T h e taxonomy.

DESIGN DECISIONS--THE TAXONOMY

An interconnected computer system is the
result of a series of design decisions, and the
decision space can be considered to be a tree.
Our model for this interconnection design
process, shown in Figure 1, is a tree of four
levels with alternative system architectures
represented as leaves. The root of the tree is
the decision to interconnect a number of
computers for complete intercommunication.
Below this are decision levels representing
choice of message transfer strategy, the
method of controling transfers, and choice of
the type of path over which the transfer is
to be made. The first two levels are con-
cerned with strategic (policy) issues, and the
third and fourth levels with tactical (imple-
mentation) issues.

The first strategic choice is between direct
transmission of messages from source to
destination, and indirect transmission in
which an intervening operation is required.
For purposes of the taxonomy, our criterion
for distinguishing between these is the exist-
ence of one or more switching entities which
make decisions for every message. Thus,
intervening repeater circuits or storage ele-
ments are simply instances of paths, and
do not affect the directness of the com-
munication; but an intervenor that alters the
message (e.g., address transformation), or an
intervenor that routes the message onto one
of a number of alternative output paths, is
effecting an indirect communication. An-
other way to make this distinction is to

determine whether control information is
contained in or sent to the intervenor (e.g.,
address transformation tables). Decisions
made by the sender (for example, which
port to transmit on) and decisions made by
the receiver (such as whether to accept a
given message) do not affect the directness of
communication.

If indirect communication is chosen, a
further decision concerning the swi tching,
method must be made. This is shown at the
second level of the tree. The alternatives are
centralization, in which a single enti ty
switches all messages, and decentralization, in
which a number of intervenors are used.

The third level involves the choice of
dedicated or shared message transfer paths.
We define a shared path as one which is
accessible from more than two points. In
reality, there are at least three alternatives
tha t may be distinguished: paths tha t are
unidirectional point-to-point; paths tha t are
bidirectional point-to-point; and paths tha t
are bidirectional and visit more than two
points. In the first case no contention can
occur; but in the second, a rudimentary
sharing exists, and hence contention can
occur. In the third case, however, contention
becomes a major consideration, so we define
it as the "shared" path case and classify the
other two as "dedicated" connections. We
reiterate that the notion of " p a t h " does
not imply an implementation, and that both
busses and memories can be appropriately
used as message transfer paths. I t should
also be noted that paths which are redundant

Computing Surveys, Vol. 7, No. 4, December 1975

200 • George A. Anderson and E. Douglas Jensen

for fault tolerance or bandwidth reasons are
here considered logically singular.

The final level of the taxonomical tree
comprises the leaf nodes representing specific
system designs.

Before discussing the characteristics of the
system types, we digress here to explain the
various attributes which we feel are most
significant, and to define our nomenclature.
Our emphasis will be on the implementation-
independent issues, and on the qualitative
characteristics of systems. We avoid quanti-
tative measures such as bandwidths and
throughputs because they can only he
representative of rapidly changing tech-
nologies and therefore must be evaluated
within the constraints of a specific applica-
tion.

For brevity, we will use sequences of
capital letters to describe paths down the
tree, with lower-case "x"s denoting "un-
made" decisions. A direct, dedicated-path
system is thus DDx, and so on.

SYSTEM CHARACTERISTICS

Modularity, the ability to make incremental
changes in system capability, is a major
characteristic to be considered in the design
of a computer system. In instances where a
specific design is to be configured for a
variety of applications, it is often desirable
to vary the number of processors according
to the computational requirements of the
particular problem. This requirement occurs
both in homogeneous systems (having only a
single processor type) and in nonhomogene-
ous systems. One measure of system modu-
larity is the incremental cost of adding an
element, such as a processor. If this cost is
simply that of the element, then the system
is indeed modular; but if the addition of the
nth processor requires the addition of n - 1
interconnection paths, then the system is
not so modular. At the third level of the
tree, some decisions involving this cost-
modularity measure have already been made.
For instance, selection between Direct
(Dxx) and Indirect (Ixx) paths involves
tradeoffs between the poorer cost-modu-
larity of dedicated paths and the vulner-
ability of shared paths to bottlenecking.

Another measure of modularity is the
degree to which the location and function of
the incremental element is restricted. For
insts.nce, in a given design there may be
particular places where a resource (processor,
switch, or path) could be easily added to
produce a specific performance increase, and
other types of performance increase which
are difficult or impossible to obtain in a
modular fashion. Again in this case, decisions
made in the progression to the third level of
the tree have affected modularity. For in-
stance, this place-modularity characteristic of
Indirect Centralized (ICx) systems is poor
with respect to the central switch. Replica-
tion of the central switch to achieve an in-
crease in throughput changes the basic archi-
tecture to Indirect Decentralized (IDx). A
place restriction can also occur in any non-
homogeneous Indirect (Ixx) architecture,
since a special-purpose processor which must
be added to the system usually cannot oc-
cupy a place that must perform a switching
function.

Connection flexibility, a characteristic akin
to modularity, must be considered for Ixx
architectures. In Dxx architectures, the
decision to add a processor requires no
deliberation on the method of connection; it
is fixed by the system type. For architec-
tures allowing indirect communication, there
can be alternatives with different costs. For
example, in a geographically dispersed sys-
tem, the cost of adding another processor at
the location of an already existing one is
significantly affected by whether the incre-
mental processor must have its own paths to
the rest of the system, or whether it can
share the paths already installed.

Another important design characteristic
is the cost of fault tolerance and the method
by which a system is reconfigured to mask
faults in processors and intercommunication
paths. The first measure of goodness here is
the effect of a fault. In designs where specific
elements are shared (DSx, ICx, IDSx), a
single failure of the shared element can com-
pletely halt system operation. In other de-
signs the structure is such that failures have
less catastrophic results. In addition to this
failure-effect aspect, it is also necessary to
determine the costs of alternative methods

Computing Surveys, Vo|. 7, No. 4, December 1975

Computer Interconnection Structures • 201

of masking faults to allow operation in a
degraded mode. (We maintain that a system
operating in the presence of a fault is func-
tioning in a degraded mode, regardless of
whether or not the effect is observable using
a performance measure.) Design decisions
allow this failure-re'configuration measure to
range from excellent in systems requiring no
overt reconfiguration and having minimal
spare hardware, to very poor for those re-
quiring that the entire intercommunication
system be made redundant. A reconfigura-
tion may even change the system's basic
architecture. For instance, an ICx architec-
ture that experiences a failure of the cen-
tralized switching resource may reconfigure
to allow decentralized communication (be-
coming IDx) and thus avoid the cost of
replicating all or part of the switch. This is
an obvious area in which a hardware/soft-
ware tradeoff exists, since a dynamic recon-
fguration from one taxonomic architecture
to another has significant software ramifica-
tions.

Inherent performance limitations, and the
cost incurred in overcoming them, must also
be considered in the choice of an architecture.
The problem here is one of bottlenecks in
resources, due either to a nonuniform flow of
communication within a system, or to
saturation of a shared resource. At the third
level of the tree, DSx, IDSx and ICx archi-
tectures can be seen to be limited (i.e., to
have poor cost-modularity for increased
communications rates), since increasing their
performance in areas served by the single
shared path or switch requires significant
hardware changes.

The nature and number of decisions that
must be made to effect communications
within a system are an important considera-
tion. We call this attribute logical complexity
and use the term to refer to the totality of
decisions made during communications,
whether made by source and destination
processes, or by switching entities. Logical
complexity is a characteristic that is signifi-
cantly affected by the architecture, but its
major effect is on software cost. From the
standpoint of the architect, this makes logi-
cal complexity an almost unquantifiable
element in tradeoffs, and the best that can be

done is to make relative rankings for systems
under consideration. In Ixx systems, the
method by which the switching information
is communicated is a major logical com-
plexity issue. A "chicken and egg" puzzle
pertains; the switching information that
must be communicated (from somewhere in
the system) to the switching resource com-
prises a message, but messages cannot be
sent unless information for switching them
exists in the switching resource. The magni-
tude of problems arising in the communica-
tion of switching information depends both
on the system's type and on its operating
environment. ICx systems are better in this
regard than IDx systems; the more dynamic
the processing environment, the more com-
plicated the problem.

In addition to the characteristics just
listed, which are largely determined by
strategic decisions, there are a number of
characteristics that are the result of imple-
mentation decisions. Among these are the
physical dispersibility of the system, com-
patibility with commercial communication
paths, message transfer delay between
sender and receiver, and the cost of the
interconnection paths. These, together with
the strategy-dependent characteristics, are
detailed in the following sections describing
the architectural alternatives.

SYSTEM DESIGN TYPES

In the following paragraphs we discuss the
significant features of each of the system
species in our taxonomy. Our first attempts
at these descriptions were made from a com-
pletely implementation-independent view-
point, a perspective which we found unten-
able unless important design issues were to
be omitted. Because of this, the discussions
represent a compromise and certain observa-
tions are made both from a strict taxonom-
ical viewpoint as well as from research and
experience with actual designs. We also
identify particular implementations of each
interconnection type.

DDL--Loop

Loop architectures (Figure 2) have evolved
from the data communications environ-
ment, and consist of a number of individual

Computing Surveys, Vol. 7, No. 4, December 1975

202 • George A. Anderson and E. Douglas Jensen

DIRECT INDIRECT

DEDICATED StIARED

LOOP COMPLETE

~ ~ 2 ~ PROCESSING
ELEMENT

CO ON,CAT,ONS

FmVRE 2. DDL (Loop).

processing elements (PEs), each of which
is connected to two neighboring processing
elements. The traffic in a loop could, in
principle, flow both directions. In practice,
the complexity of bidirectional traffic has
constrained all the loops (of which the
authors are aware) to only unidirectional
traffic. In a unidirectional loop, one neighbor
of a PE can be regarded as the source
neighbor and the other as the destination
neighbor. A given PE receives messages only
from its source neighbor and sends messages
only to its destination neighbor. Messages
circulate around the loop from source to
destination with intermediate PEs acting as
relay or buffer units. DDL systems may
allow one [FARM69] or more [REAM75] mes-
sages to circulate simultaneously, and
messages are of either fixed or variable length
[WEST72]. Some systems which have been
referred to in the literature as loops contain
a centralized switching function, and thus
appear as ICDL in our taxonomy. Other
systems are coupled loops with decentralized
control, which we classify as IDDI.

Both the cost-modularity and the place-
modularity of DDL systems are very good.
An additional PE can be inserted anywhere
in the loop with the addition of a single com-
munication path, and the flow of messages is
not significantly affected by its presence. The

failure-effect and failure-reconfiguration
characteristics of DDL systems are poor,
however. A single failure in a path or a PE
interface causes intercommunication to stop
(at least between PEs separated by the failed
resource). If reconfiguration to mask the
fault is necessary, there must be a fully re-
dundant path structure and some type of by-
pass. switching in the PE interfaces. Recon-
figuration from DDL to another structure is
not an obvious option either, since the paths
are unidirectional and the interfaces are rela-
tive|y simple. The logical complexity of com-
munications in a DDL system is low; a PE
must only relay messages, originate messages
and transmit them to a single destination,
recognize messages destined for itself, and
strip off messages according to the discipline.
The. bandwith of the single loop is, of course,
a potential bottleneck as communication
rates increase. In addition, some loop disci-
plines have the weakness that a single user,
possibly with malicious intentions, can satu-
rate the entire available bandwidth.

DDL architectures that have been pro-
posed or implemented have almost all used
bit-serial data links as the communication
paths between PEs. This, together with the
delay involved in relaying the messages, has
resulted in significant increases in message
transit times around the loop. In general,
these systems have been designed for appli-
cations where reliability and performance
constraints were not stringent. The primary
goal of most designs has been the intercon-
nection of geographically dispersed mini-
computer systems to allow file and resource
sharing. Thus, reconfiguration after failure
has not been performed, nor has the message
delay-time been a problem.

The best-known example of a DDL com-
puter system is the Distributed Computer
System at the University of California,
Irvine [FARB72]. This system originally de-
veloped out of an interest in data communi-
cations rather than from a concern with dis-
tributed computing, although that emphasis
was reversed early in the history of the
project. The Distributed Computer System
currently consists of five minicomputers and
a number of peripheral devices looped
around the Irvine campus. The loop (or

Computing Surveys. Vol 7, No 4, December 1975

Computer Interconnection Structures • 203

"ring") is bit-serial and operates at a data
rate of 2.3 Mbs. A multiplicity of variable-
length messages can circulate simultane-
ously. Fault tolerance is provided by a
redundant loop and bypass switches.

The already good place-modularity in-
herent in loops has been enhanced in the
Distributed Computer System by the incor-
poration of "soft" or "associative" address-
ing of messages. Rather than sending a mes-
sage to a physical processor, it is sent to a
logical process; the "Ring Interface" corre-
sponding to the processor in which the
destination process currently resides recog-
nizes the address and accepts the messages.
This allows communication to be independ-
ent of the number of processors in the
system, and of process/processor assign-
ments. This idea has also been incorporated
into other distributed architectures.

A loop version of the CAMAC data multi-
plexing system has been defined for both
bit-serial and byte-serial transfers [AEC73].
Originally designed for nuclear laboratory
instrumentation, the CAMAC loop is appear-
ing in distributed computing schemes,
although its protocol is not well suited for
such use.

DDC--Complete Interconnection

The DDC architecture is perhaps the con-
ceptually simplest design type in the taxon-
omy. In it (Figure 3), each processor is con-
nected by a dedicated path to every other
processor in the system, and messages
between processors are transferred only on
the path connecting them. The source
processor must choose the path to the destin-
ation processor from the alternative paths
available, and all processors must be
equipped to handle incoming messages on a
multiplicity of paths.

The most significant characteristic of
DDC systems is their poor cost-modularity.
The addition of the nth processor to a DDC
system requires not only the addition of n-1
paths between it and the other processors,
but also, all processors in the system must
have facilities for accepting the incremental
PE as a data source. Thus, their interfaces
must have at least M-1 ports, where M is the

DIRECT INDIRECT

D E D I C ~ A R E D / ' x
LOOP COMPLETE

FZGURE 3. DDC (Complete intereonneetion).

maximum size of the system. Alternatively,
it must be possible for all processors to
accept extra connections when the number
of PEs must be increased beyond the number
of available ports. Place-modularity of DDC
systems is good, as are failure-effect and
faihire-reconfiguration characteristics. The
DDC architecture is one which can be easily
degraded in the event of a failure without
changing its interconnection class--a failed
processor, or one of the two processors
terminating a failed path, can simply be
disconnected from the system. In addition,
reconfiguration to an Ixx system could be
used in event of a failed path if the software
cost and increased message transit time
incurred were acceptable. DDC systems
have no obvious bottlenecks, and their
logical complexity is relatively low. It
should be noted, though, that the architec-
ture forces a location-addressing policy on
interprocess communication, since switch-
ing within the processors and message
relaying activities would put a design into
the ICDx or IDDx categories.

DDC systems may be geographically ei-
ther localized or dispersed, although there are
few examples of either case. The best-known
instance of a localized DDC architecture is
a fully connected version of the IBM At-
tached Support Processor System [IBM],

Computing Surveys, Vol. 7, No. 4, December 1975

204 • George A. Anderson and E. Douglas Jensen

DIRECT INDIRECT

DCDICATED SHARED

MEMORY BUS

FIGURE 4. DSM (Multiprocessor).

in which up to four System/360 or /370
computers may be linked through I/O
channel couplers.

Virtually all extant examples of geographi-
cally dispersed DDC systems are small
(_<3 PEs), and appear to be ad hoc inter-
connections of formerly existing computer
installations, as exemplified by the fully
connected configuration of the MERIT
system [BEcH72]. MERIT consists of two
IBM 360/67s and a CDC 6500 located on
three separate Michigan University cam-
puses, and connected by common carrier
lines. The MERZT system design does have
the potential for less fully connected con-
figurations (such as IDDI) to reduce com-
munications costs.

DSM--Multiprocessor
Certainly the most common way to inter-
connect computer systems is the DSM or
multiprocessor architecture (Figure 4), in
which two or more processors communicate
by leaving messages for one another in a
commonly-accessible memory. The key
characteristic of DSM architectures is that
the memory is, or can be, used as a path
rather than solely as storage.

The place-modularity of DSM systems is
very good; it is possible to add processors
arbitrarily (since the processors are not
topologically distinguished), and it is also
possible to increase the in-transit message
capacity of the path simply by increasing the

size of the memory. The cost-modularity of
DSM systems depends almost completely
on the path structure by which the proces-
sors access the memory system. If each
processor is provided with a direct path,
then cost-modularity can be poor, since an
incremental processor can possibly bring
the total to greater than the number of avail-
able.' memory ports. Alternatively, if the
memory is accessed through a single bus
with a suitable allocation mechanism, cost-
modularity can be very good. A DSM
system is quite vulnerable to a bottleneck in
which the memory's bandwidth becomes a
restriction on communication rates. Cost-
modularity is poorer in this case, as it is ex-
pensive to increase bandwidth of the memory
or the access path. Logical complexity of
DSM systems is quite low. The failure-
effect and failure-reconfiguration charac-
teristics of DSM systems are good in the
case of processor failures, but poor in the
event of failure of the central memory unit
(or of a shared access bus). There is also a
software failure-effect problem because
processors normally have unrestricted access
to the central memory, thus faulty or ma-
licious software can prevent or damage
message transactions to which it is not a
party.

Almost every implementation of a DSM
system has occurred because the designer(s)
wished the memory to be shared as a storage
place for programs and data--use of the
memory as a communication path has almost
been a side effect. In implementing this mul-
tipurpose sharing, it has been found that
the systems' performance has increased more
slowly as the number of processors increased
and, in general, systems consisting of more
than about four processors have not been
cost-effective. The leason for this has been
the extreme contention for memory band-
width when the (functionally) single memory
must serve for all purposes. The bandwidth
required for communications alone is, how-
ever, unlikely to cause bottlenecking in a
memory solely dedicated to this function.

An example of a contemporary multi-
processor is the Carnegie-Mellon C.mmp
[WuLF72], which allows up to 16 processors
to share up to 16 memory modules through a
crossbar switch. Currently, five PDP-11/20

Computing Surveys, Vol 7, No. 4, December 1975

Computer Interconnechon Structures • 205

DIRECT {NDLRECT

DEDICATED SHARED

MEMORY BUS

FmURE 5. DSB (Glol (Global bus) .

processors are operating with negligible
interference.

The surveys of Miller, et al. [MILL70], and
Enslow [ENSL74] include a wide variety of
both commercial and aerospace DSM
machines.

DSB--Global Bus

The DSB architecture, shown in Figure 5,
comprises a number of processing elements
interconnected by a common, or global, bus.
Access to this bus is shared among the
processors by some allocation scheme, and
messages are sent directly from the source
PE onto the bus, to be recognized and ac-
cepted by the proper destination(s).

Both the cost- and the place-modularity
of DSB systems are good with respect to the
PEs. Depending on the choice of bus alloca-
tion scheme, it can be possible to add a
processor to the system in any position with
little or no effect on the other PEs. Cost- and
place-modularity of the communications
path are poor, however. It is not possible to
increase the bandwidth easily as needed, nor
is .it often possible to increase performance
only where needed. Rather, to increase per-
formance it is usually necessary to change
the implementation of the entire bus or to
replicate it, alternatives which have signifi-
cant design impact on the bus interfaces of
all PEs in the system. Similarly, the failure-
effect and failure-reconfiguration charac-
teristics of DSB systems are very good with

respect to the processors, and poor with
respect to the bus. For PE failures, the
DSB architecture requires no overt hard-
ware reconfiguration activity to continue
operation as a DSB system. Given reason-
able care in the design of the bus interfaces,
processor failures will have little effect on
system operation. Failures of the bus, how-
ever, are inevitably catastrophic, and repli-
cation is required if the ,DSB architecture is
to be retained after configuration. The
global bus is, of course, a potentiM band-
width bottleneck.

Much of the current interest in DSB
systems has occurred in the aerospace en-
vironment, where both serial and parallel
paths are being used. In these applications,
the place- and cost-modularity characteris-
tics of DSB systems are particularly advan-
tageous, and allow flexibility in configuring
systems for specific applications, including
both homogeneous and nonhomogeneous
instances of the same basic system. The
failure-reconfiguration characteristics of the
DSB architecture are useful for these ap-
plications, too, because most aerospace ap-
plications are of a real-time nature and,
therefore, excessive reconfiguration delays
must be avoided. Serial bussing for the com-
munication path seems to be the more popu-
lar approach, primarily because the system
applications tend to have high costs associ-
ated with physical wiring, a need for phys-
ical dispersibility over electrically long
distances, and relatively low data rates.
Replication of the communications path is
the predominant technique for mitigating
both the bandwidth restriction and the fault
vulnerability of the shared bus.

Most of the aerospace DSB-like architec-
tures have been hybrids with respect to our
taxonomy [Sv~is72], [ANDE73]. However, the
military services are beginning to establish
data multiplexing standards [USAF73] that
will require the use of DSB approaches in
future aerospace systems (although these
initial standards leave something to be de-
sired, from a distributed computing stand-
point).

A pure DSB architecture is typified by one
utilizing word-wide busses [J~Ns75], and a
philosophical derivative of it (using a bit-

Computing Surveys, Vol. 7, No. 4, December 1975

206 • George A. Anderson and E. Douglas Jensen

DIRECT INDIRECT

CENTRA~NTRALIZED

DEDICATED SHARED

STAR LOOP

FmURE 6. ICDS (Star).

serial bus), which has been constructed by
the authors for the US Navy (for which
there are as yet no public references).

DSB is also a popular line-sharing disci-
pline in industrial and laboratory automa-
tion applications [ARoN71], as exemplified
by the CAMAC [COST72] and IEEE standard
488-1975 (originally Hewlett-Packard [KNOB
75]) data-multiplexing systems.

ICDS--Star

ICDS systems (Figure 6) consist of a central
switching resource to which a number of
processors are connected, each by a func-
tionally single, bidirectional path. Messages
are exchanged among the PEs using the
central switch as an intermediary; it is the
apparent destination and source for all
messages. The function of the switching re-
source is usually seen as "insulating" the
processes running on a given PE from
physical knowledge of the system, and pro-
tecting them from each other.

The ICDS architecture has most features
in common with the DSx architectures be-
cause both have shared message transfer
facilities. Its cost- and place-modularity are
good with respect to the PEs, and poor with

respect to the central resource. Similarly,
failure-effect and failure-reconfiguration
characteristics are good for the PEs, and
poor with respect to the switch. Bottleneck-
ing in the switch is a potential problem. The
connection flexibility of ICDS systems is
poor because incremental PEs must always
be provided with individual paths to the cen-
tral switch. The logical complexity of ICDS
systems is moderate. Sufficient information
(e.g., routing tables) must be provided
within the switching resource to allow com-
munications to take place, but the fact that
there is only a single copy of this (usually
dynamic) information simplifies its handling
during reconfiguration. The poor failure-
effec¢ and failure-reconfiguration character-
istics of the central resource are extended to
one of the PEs in the system if switching
information is maintained outside the re-
source (i.e., where the switch uses address
translation to accomplish message routing,
and the mapping registers are under control
ot one of the PEs). ICDS architectures are
quite common. One example is IBM's Net-
work/440 [McKA70], in which remote
System/360 user nodes are connected over
leased lines to a 360/91 central controler.

ICDI.--Loop with Central Switch

In a manner analogous to Direct, Dedicated
path (DDx) systems, the direct connections
required for ICDx architectures can be
implemented either in the ICDS star pattern
or in a loop, which we call ICDL (Figure 7).
In such a system, messages are placed on the
loop by senders, removed for an address-
mapping operation by a central switching
element, then replaced on the loop properly
addressed to their intended destination.

ICDL systems share characteristics with
both the ICDS and the DDL organizations.
Their failure characteristics are those of
DDL with respect to the data paths, and
those of ICDS with respect to the central
resource. Connection flexibility is improved
over the star in that the incremental PE
need be connected only to its physically
nearest neighbors, not to a possibly remote
control element. As in DDL systems, bottle-
necks and vulnerability to malicious users

Computing Surveys, Vol. 7, No. 4, December 1975

/ %
DIRECT INDIRECT

CENTRALIZED DECENTRALIZED

DEDICATED SHARED

STAR LOOP

FIGURE 7. ICDL (Loop with central switch).

are potential problems, but since these are
risks inherent also in the centralized switch-
ing of the ICx approach, they do not neces-
sarily weaken the system over ICDS. The
logical complexity of ICDL systems is
moderate, though slightly increased over
ICDS due to the additional demands the
loop discipline places on the PE interfaces.

An example of the ICDL architecture is
SPIDER, an experimental data communica-
tions system interconnecting eleven com-
puters at Bell Laboratories in Murray Hill,
N. J. [FRAs75]. In this system, multiple
fixed-size data messages circulate over
1.544 Mbs common carrier lines; currently
there are three loops, but only one is in use.
The central switch for all loops is a mini-
computer. Any computer in the loop (except
the central switch) can be switched to
receive-only in case of failure.

ICS--Bus with Central Switch

The ICS architecture shown in Figure 8 is
functionally equivalent to ICDS, with the
major exception that the processors are not
individually connected to the switching re-
source but, instead, share a path by which

Computer Interconnection Structures • 207

to access it. Thus, when a PE wishes to
transmit a message, it must first acquire the
bus, then transmit the message to the switch.
From the switch, the message is retrans-
mitted over the (functionally) same bus to its
proper destination. (This retransmission is
the characteristic by which ICS systems can
be distinguished from DSB organizations
and from DSM systems using a single bus to
memory.)

As might be expected, the characteristics
of the ICS architecture are similar to those
of ICDS systems. By the failure-effect
measure it is poorer, since the access path is
no longer replicated once for each processor.
The existence of the shared path to the
switch need not contribute significantly to
bottlenecking, however, since it is quite
feasible to balance its performance with that
of the switch. Then, as long as the two satu-
rate at the same time, or the switch saturates
first, the bottlenecking risk is not increased
over the ICDS organization. The cost-
modularity of the ICS system is influenced
positively by the fact that the incremental
processor need only be connected to the
shared bus, not directly to the (possibly
remote) switch. As mentioned in the discus-
sion of direct, shared bus (DSB) systems,
certain bus designs make this connection
cost very low.

The low popularity of ICS systems may be
inferred from the fact that there is no corn-

DIRECT INDIRECT

CENTRALIZED DECENTRALIZED

DEDICATED SHARED

1
BUS

FmURE 8. ICS (Bus with central switch).

Computing Surveys, Vol. 7. No. 4, December 1975

208 • George A. Anderson and E. Douglas J ensen

mon name for them. The designs that do
exist, however, use processors as the switch-
ing resource, with processors dispersed over
geographically short, but electrically long
distances. Although nothing intrinsic to the
architecture prevents the use of hardware
(such as a crossbar) for the switch, the speed
implications on the bus, if balance is to be
achieved, probably preclude its use as a
practical matter. As mentioned previously,
the shared bus is not normally available
from commercial carriers, so ICS systems
are restricted geographically.

An ICS system has been designed by
Hughes for the US Navy [Row•74]. The
centralized switching resource is a special-
purpose processor called the Network
Manager, which interfaces with a number of
functional nodes over one or more shared
busses. In addition to handling interproc-
essor communication, the Network Manager
also provides a variety of other executive
services for the nodes. Because the system is
physically localized, the bus(ses) to the Net-
work Manager are bit-parallel.

The ALOHA system [ABRA73] is a unique
ICS computer network which uses a radio
"bus." Hardwired and incoherent light links
are also accommodated. A 24K-baud full
duplex radio channel connects the central
IBM 360/65 to remote terminals, which in-
clude a number of minicomputers.

IDDR--Regular Network

The IDDR organization (Figure 9) com-
prises a number of PEs interconnected with
dedicated paths and having identical neigh-
bor relationships (except, perhaps, at the
boundaries). In the figure, each PE has
"left," "right," "above," and "below"
neighbors, although other geometries have
been proposed. Messages are routed through
the network from source to destination with
each intervening PE determining which of
its alternative neighbors should be the next
recipient of the message. (It may be noted
that DDL is a special IDDR case in which
each PE has two neighbors and there is no
switching decision to be made.)

The modularity and failure characteristics
of IDDR systems are significantly and nega-

/ %
DIRECT INDIRECT

CENTRALIZED DECENTRALIZED

DEDICATED SHARED

REGULAR {RREGULAR

F--
FIGURE 9. IDDR (Regular network).

tively affected by the requirement for abso-
lute regularity. It is not possible to add only
a single PE or path; rather, the size of the
increment depends on the number of PEs in
the system, the number of neighbors per PE,
and the interconnection pattern. Thus,
both cost-modularity and place-modularity
are extremely poor. There is no connection
flexibility. Logical complexity of the design
is moderate; although many switches exist,
the regularity of connection simplifies
routing. The failure-effect measure of IDDR
systems is moderate-to-good, depending on
the method by which message routing is per-
formed. A single PE or path failure does not
stop communication entirely in any case,
nor need it stop any messages to which the
failed element is not a party. Failure-
reconfiguration of IDDR systems is ex-
ceedingly poor, with 100% sparing of PEs
and paths being required if the basic struco
ture is to be unaltered after reconfiguration.
If reconfiguration to an irregular structure
(IDDI) is acceptable, however, this short-
coming is eliminated.

The elegance of IDDR structures has
caused significant academic interest but,
to the authors' knowledge, their practical

Computing Surveys, Vol. 7, No 4. December 1975

Computer Interconnection Structures • 209

difficulties have prevented actual imple-
mentations. Paper designs have usually
been for four-neighbor (rectangular) sys-
tems, with either busses or memories pro-
posed as paths. One nonrectangular IDDR
system is TREE, designed at the US Navy
Postgraduate School [GooD73]. This machine
comprises a number of PEs connected as a
tree. A PE may communicate with its
superior or any of its subordinates in the
hierarchy; because there is only one path
between any two nodes in a tree, the logical
complexity of the message routing is not
severe. TREE was envisioned primarily as
being physically centralized, but could in-
stead be implemented with common carrier
lines for greater dispersal.

IDDl--lrregulor Networks

The distinction between IDDR and IDDI
(Figure 10) systems is simply that consistent
neighbor relationships are not required for
IDDI. Thus, a given PE may have from one
to an arbitrary number of neighbors with
which it communicates. Many of the system
characteristics vary with the degree of inter-
connection regularity. Place-modularity of
IDDI systems tends to be extremely good,

/ %
DIRECT INDIRECT

CENTRALIZED DECENTRALIZED

DEDICATED SHARED

REGULAR IRREGULAR

FmURL 10. IDDI (Irregular network).

with both processors and paths added as, and
where needed. Cost-modularity is similarly
good, with incremental PEs being archi-
tecturally required to have only one (or two
in loop-oriented approaches) connections to
the rest of the system. Connection flexibility
is another advantage, with connections
allowed to any PE in the system. The more
irregular the interconnection pattern, the
more the system's failure-effect and fail-
ure-reconfiguration characteristics can be
enhanced by providing a multiplicity of po-
tential paths between PEs. Likewise, ir-
regularity improves the extent to which re-
configuration can be performed without
departing from the IDDI category. The logi-
cal complexity of IDDI systems is usually
very high; at each switch, routing decisions
must be based on knowledge of the overall
system topology. Due to the good place-mod-
ularity, bottlenecks are not a likely problem.

The dominant current application of IDDI
interconnection is to geographically dis-
persed computer networks. In such systems
the paths are supplied by a common carrier
and the switching is done by processors
dedicated to that function. The (significant)
cost due to logical complexity, and repre-
sented by the switch-processors, is incurred
to minimize the number of high-cost inter-
connection paths required. Routing al-
gorithms are usually inelegant, especially
for the less regular systems, and ad hoc
solutions are apparent. It is the authors'
feeling that hardware switching facilities
are ruled out by the complexity of the de-
cisions to be made, and that the current
practice of using processors for this func-
tion must necessarily continue.

Most systems commonly called "computer
networks" are IDDI structures. These are
discussed in the surveys by Schneider
[ScHN73], Abramson [ABaA73a], and Rustin
[RusT72], and in the bibliography by
Blanc, et al. [BLAN73].

A more regular sort of IDDI system is
represented by the coupled loops of Pierce
[PIER72], [COKE72], [KROP72], intended
for telecommunications. A number of inde-
pendently controled DDL "local" loops
are coupled together, directly and/or by
"trunk" loops (which may themselves be

Computing Surveys, Vol 7, No. 4, December 1975

210 • George A. Anderson and E. Douglas Jensen

DDL). A variety of alternate, redundant,
and bypass-switched loops is proposed to
provide failure protection.

IDS--Bus Window

In IDS architectures, an example of which is
shown in Figure 11, access to the switching
resources is via a path shared by multiple
PEs. Switching is performed by more than
one resource, and messages may be retrans-
mitred onto the path from which they were
received, or onto another.

The modularity characteristics of the
IDS architecture are similar to those of the
IDDI structure. The failure-effect and
failure-reconfiguration characteristics are
poorer, however, because multiple PEs and
switches can be affected by the failure of a
single path. Also, systems of this type are
not easily dispersible due to the shared
busses.

Digital Equipment Corporation manufac-
tures a device called the DA11-F Unibus ®
Window to facilitate the implementation of
IDS architectures [FITz73], [DEC75]. Similar
mechanisms have been designed at Carnegie-
Mellon University for their Computer
Module System [FULL73], and at BBN for

DIRECT INDIRECT

CENTRALIZED ~ Z E D

DEDICATED SHARED

1
BUS

FmURT," 11 I D S (Bus w indow)

their PLVmBUS IMP [HEAR73] (which we
classify as a hybrid, as discussed in the Con-
clusion of this paper). All of these units
provide a bidirectional path between the
busses of two minicomputers. Blocks or
segraents in the source-address space are
translated to the destination-address space.
A number of these interfaces may be used
to construct hierarchies of processing ele-
ments. Simulation and programming ex-
perience by users of all three mechanisms
indicate that the logical complexity of this
approach grows rapidly as the number of
translation levels increases, and as the trans-
lation binding becomes more dynamic. This
type of interconnection is also subject to
deadlock [BELL73], [CHEN74], unless de-
signed and used with great care.

FUTURE DIRECTIONS

Current activity in distributed architectures
is undeniably more on paper than in hard-
ware, but there do seem to be trends emerg-
ing in designs for several application areas.

DDL organizations seem to predominate
in designs where their excellent modularity
and compatibility with common-carrier data
paths can be used to advantage, and where
their poor failure characteristics and long
message transit-times are not a problem.
Typically, the DDL designs are used to con-
nect. multiple minicomputer systems, dis-
persed over electrically long distances in
university, research laboratory, or industrial
automation environments. The individual
PEs are usable both as stand-alone systems
and with other PEs for resource (file, periph-
eral,) and load sharing.

The DSB organization with serial bussing
is becoming the dominant architecture in
real.time control environments. These ap-
plications typically have a number of itera-
rive, sampled-data control loop functions
loosely connected by a requirement for in-
formation exchange and centralized monitor-
ing. The environment occurs in both the
conventional process-control type applica-
tion and in aerospace applications such as
integrated avionics processing. In such sys-
tems, the good place-modulal:ty for proces-
sors in DSB organizations is particularly

Computing Surveys, Vol 7, No 4 December 1975

Computer Interconnection Structures • 211

valuable. DSB is chosen over DDL because
simple redundancy of the global bus allows
fast and almost automatic reconfiguration
after failures, and because of the reduced
message transit-time.

In environments where sophisticated inter-
process communication is a requirement, the
ICx organizations are a common choice.
Compared to IDx, the lower logical com-
plexity of centralized switching is believed
to outweigh its failure-effect and failure-re-
configuration disadvantages. There is a
great variety of system designs, particu-
larly in the ICDS category, with varying
levels of performance in the central switch
area. It is the feeling of the authors that as
understanding of interprocess communica-
tion matures, movement toward IDx
structures may occur.

The fourth "dominant" system is IDDI,
which is uniquely suited to applications re-
quiring interconnection of relatively large
computers over geographically long dis-
tances. In such systems, the high inter-
connection cost necessitates that only large
computers be involved. Furthermore, sig-
nificant processing power should be dedi-
cated to the switching function in order to
minimize those interconnection costs. At
this time, such applications have used al-
most exclusively ad hoe solutions to con-
troling the complex IDDI structures, with
the majority of the efforts going toward
more fundamental problems of intercom-
munications protocols and experiments in
load sharing. I t is hoped that future work in
such areas as routing algorithms and re-
covery techniques for IDDI structures will
complement interprocess communication
research currently being conducted with
ICDx structures, to the ultimate benefit of
both.

In our opinion, the remaining five system
types each have one or more significant
weaknesses not sufficiently compensated for
by strengths that are useful in real-world
applications. DDC systems have poor modu-
larity and high interconnection costs, to the
extent that large systems are impractical.
DSM architectures, from an intercommunica-
tions viewpoint, have little to offer over DDL
or DSB structures except an ability to corn-

municate large messages quickly by use of
pointers. (They will undoubtedly continue to
exist for their other advantages, which are
not related to communications.) IDDR and
IDS organizations both incur significant
logical complexity with few compensating
advantages. Further, IDDR has the poorest
modularity and failure characteristics of
any of the organizations.

CONCLUSIONS

The notion of a taxonomy requires both that
all species be clearly identified, and that the
methods used to make distinctions be clear
and unambiguous. Our discussion here has
failed to achieve either of these goals com-
pletely, but has, we hope, been a worthwhile
beginning. All species (systems) are not
clearly identified; there are many hybrids
using combinations of our leaf-node archi-
tectures. The PRIME system at the Uni-
versity of California, Berkeley [QuAT72] is
physically a combination of DSM (multi-
processor) and ICDS (star), although logi-
cally it is purely ICDS since all interprocessor
communication goes over the External
Access Network, rather than through the
shared memory. Honeywell's DP/M system
for the US Air Force [ANDE73], with its
global and local busses, uses two levels of
DSB. The BBN PLURIBUS IMP for the
ARPANET [HEAR73] is structurally an amal-
gam of DSM (although by convention there
is no interprocessor communication using
the local memories), IDS (for accessing
shared memory), and ICS (the Pseudo-In-
terrupt Device).

Neither are all distinctions crystal clear;
we have classified systems on the basis of
"dominant" features, and to some degree
even on our understanding of the intent, as
well as on prima facie evidence. Our goals
in attempting to construct a taxonomy will
be satisfied, however, if two effects occur.
First, we hope to stimulate a refinement of
this approach or the development of a
better one. Secondly, we hope to have con-
tributed to a common ground for discussion
in the meantime.

Computing Surveys. Vol. 7. No. 4. December 1975

212 * George A. Anderson and E. Douglas Jensen

ACKNOWLEDGMENTS

The authors gratefully acknowledge the
valuable comments and criticisms of the
Editors and the referees of COMPUTING
SURVEYS. We are also indebted to many
colleagues who informally refereed this paper.
Special thanks go to Kenneth J. Thurber for
his suggestions regarding the figures, which
substantially improved the readability of
the paper.

[ENsL74]

lFARB72]

[FA 1~'.M69]

lFIT~73]

[FR.~ s75]

[F~:LL73]

[GooD73]

[HEAR73]

[IBM]

[JENs75]

[KNOB75]

[KRoP72]

[MA aT72]

[McKA70]

[AmtA73]

[ABRA73a]

[AEC73]

[ANDE73]

[ARoNT1]

[BEcH72]

[BLAN73]

[CHEN74]

[COKE72]

[CosT72]

[DEC75]

REFERENCES

ABRAMSON, NORMAN, "The ALOHA
System," Computer-commumcatto~
networks, Prentme-Hall, Englewood
Cliffs, N J , 1973. (ICS)
ABRAMSON, NORMAN; AND KUO,
FRANKLIN F (Eds), Computer-com-
mumcat~on networks, Prentice-Hall,
Englewood Chffs, N. J , 1973 (Survey)
AEC/NIM AND ESONE, CAMAC
Semal System Orgamzat~on, Natmnal
Tech. lnformatmn Serwce, TID-
26488, December 1973, Addendum and
Errata, May 1975. (DDL)
ANDERSON, GEORGE i . , "Intercon-
necting a distributed processor sys-
tem for awonics," Proc. Symposium
on Computer Architecture, December
1973, IEEE, N Y., 1973 (Hybrid)
ARONSON, RICHARD L , "Line-shar-
ing systems for plant monitoring and
control," Control E~g~neer~ng, Janu-
ary 1971. (Survey)
BECHER, WILLIAM O . ; AND AUPPERLE,
ERIC M. "The communications com-
puter hardware of the MERIT Com-
puter Network," 1EKE Trans. Com-
mumcations, June 1972. (DDC)
BLANC, ROBERT P.; COTTON, IRA U ;
PYKE, THOMAS N JR.; AND WATKINS,
SHIRLEY U Annotated b~bl~ography
of the l, terature on resource sharing
computer networks, National Techni-
cal Information Service, COM-73-
,50750, September 1973. (Bibliography)
CHEN, ROBERT C , Bus commumca-
twn systems, University Microfilms
Dissertation 74-20493, 1974. (Control
and Communication)
COKER, C. H , "An experimental
interconnection of computers through
a loop transmission system," Bell Sys-
tem Tech J., July/August 1972.
(IDDI)
COSTRELL, LOUIS, CAMAC--a modu-
lar znstrumentatzon system for data
handling; revised descmphon a~d
specificatzon, Natmnal Technical In-
formation Service, TID-25875, July
1972. (DSB)
DIGITAL EQUIPMENT CORPORATION,
PDP-11 peripherals handbook, 1975
(IDS)

ENSLOW, PHILLIP H (ED.), Multi-
processors and parallel processors,
John Wiley and Sons, New York,
1974. (Survey)
FARBER, DAVID J.; AND LARSON,
KENNETH C. "The system architec-
ture of the distributed computer
system--the communications sys-
tenI," Proc. Symposium on Computer-
Commumcahons Networks and Telc-
tra~c, April 1972, Polytechmc Press,
Brooklyn, New York, 1972 (DDL)
FARMER, W O ; AND NEWHALL, U. E
"An experimental distributed switch-
ing system to handle bursty computer
traffic," Proc. ACM Sympos,um on
Problems ~n the Optzm~zat~on of Data
Commumcations, October 1969, ACM,
New York, 1969 (DDL)
FITZGERALD, BRIAN, "Standard rater-
faces promote new minicomputer
networks," Electromcs, September 13,
1973. (IDS)
FRASER, A. G., "SPIDER--All ex-
perimental data communications sys-
tem," Proc. Internal Conf on Com-
mumcat~ons, June 1974, IEEE, N. Y.,
1974 (ICDL)
FULLER, SAMUEL H. ; SIEWIOREK,
DANIEL P.; AND SWAN, RICHARD J.
"Computer modules' an architecture
for large digital modules," Proc.
Symposium on Computer Architecture,
December 1973, IEEE, N. Y., 1973.
(IDa)
GOODWlN, RICHARD J., A design for
d~stmbuted-control mulhple-processor
computer system, Natmnal Technical
Information Service, AD-772 883,
December 1973. (IDDR)
HEART, F. E ; ORNST]~IN, S. M.;
CROWTHER, W R ; AND BARKER, W
B. "A new minicomputer/multiproc-
essor for the ARPA Network," Proc
AFIPS 1975 National Computer Conf.,
AFIPS Press, Montvale, N. J , 1973.
(Hybrid)
IBM, IBM System~360 a~d System/
~70 Attached Support Processor Ver-
sion 3 Asymmetmeal Mulhprocessor
System: general informat~on manual,
GH20-1173. (DDC)
JENSEN, E. DOUGLAS, "A distributed
function computer for real-time con-
trol," Proc Symposium on Computer
Arch, teclure, January 1975, IEEE,
N. Y., 1975. (DSB)
KNOBLOCK, DARYL n ; LOUGHRY,
DONALD C.; AND VISSERS, CHRIS A
"Insight into interfacing," 1EKE
Spectrum, May 1975. (DSB)
KROPFL, W. J., "An experimental
data block switching system," Bell
System Tech J., July/August 1972.
(IDDI)
MARTIN, JAMES, Systems analysis
for data transmzss~on, Prentice-Hall,
Englewood Cliffs, N. J., 1972. (Digital
Data Communication)
McKAY, DOUGLAS B.; AND KARP,
DONALD P. "IBM Computer Net-
work/440," Computer Networks--Proc.

Computing Surveys, Vol. 7, No 4, December 1975

[MILLT0]

[PIER72]

[PIPP75]

[QuAT72]

[REAM75]

[RowA74]

trusT72]

Computer Interconnection Structures * 213

Courant Institute Symposium, Novem-
ber 1970, Prentice-Hall, Englewood
Cliffs, N J , 1972. (ICD)
MILLER, JAMES S. ; LICKLY, DANIEL J.;
KOSMALA, ALEX L.; AND SAPONARO,
JOSEPH A. Multzprocessor computer
system study, National Technical In-
formation Service, N70-41238, March
1970. (Survey)
PIERCE, JOHN 1{.., "Network for
block switching of data," Bell System
Teeh J , July/August 1972. (IDDI)
PIPPENGER, NICHOLAS, "On crossbar
switching networks," 1EEE Trans
Commu~2cahm~s, June 1975. (Explicit
Switch)
QUATSE, JESSE T.; GAULENE, PIERRE;
AND DODGE, DONALD, "The external
access network of a modular computer
system," Proc AF1PS 1972 Spring Jr.
Computer Co~f., AFIPS Press, Mont-
vale, N. J., 1972. (Hybmd)
]~EAMES, CECIL C., AND LIu, MING T.
"A loop network for simultaneous
transmmsion of variable-length mes-
sages," Proc. Symposium ol~ Computer
Arch~teclure, January 1975, IEEE,
N. Y., 1975. (DDL)
ROWAN, J H ; SMITH, D. A ; AND
SWENSEN, M.D. "Toward the design
of a network manager for a distributed
computer network," Proc. Sagamore
Confere~ce o~ Parallel Processors,
August 1974, American Elsevier Publ.
Co., New York, 1975. (ICS)
RUSTIN, RANDALL (ED.), Computer
Networks--Proc Courant l~st~tute
Symposzum, November 1970, Pren-
tice-Hall, Englewood Chffs, N. J ,
1972. (Survey)

[ScHN73]

[SIE~74]

[SYMs72]

[THuR72]

[THuR74]

[USAF73]

[WEST72]

[WULF72]

SCHNEIDER, MICHAEL, A survey re-
port on computer networks, National
Technical Information Service, PB-
231876, March 1973. (Survey)
SIEWIOREK, DANIEL P., "Modular-
i ty and nmlti-microprocessor struc-
tures," Proc. Seventh Annual Work-
shop on M~croprogramm~ng, October
1974, ACM, N. Y., 1974. (Taxonomy)
SYMS, G. H., All applications digital
computer: course notes, National Tech-
nical Information Service, AD-767 327
March 1972. (Hybrid)
THURBER, KENNETH J.; JENSEN, E .
DOUGLAS; JACK, LARRY A.; KINNEY,
LARRY L.; PATTON, PETER C.; AND
ANDERSON, LYNN C. "A systematic
approach to the design of digital
bussing structures," Proc. AFIPS
1972 Fall Jt. Computer Conf., AFIPS
Press, Montvale, N. J., 1972 (Control
and Communication)
THURSER, KENNETH J , "Intercon-
nection networks--a survey and
assessment," Proc. AFIPS 1974
Natzol~al Computer Conf., AFIPS
Press, Montvale, N. J., 1974. (Ex-
plicit Switches)
US AIR FORCE, MIL-STD-1553: mili-
tary standard a~rcraft ~nlernal t~me
dw~swn multiplex data bus, August
1973. (DSB)
WEST, LYNN P., "Loop-transmission
control structures," IEEE Trans.
Communicatzons, June 1972. (DDL)
WULF, WILLIAM A.; AND BELL, C.
GORDON, "C.mmp--a multi-mini-
processor," Proc. AF1PS 1972 Fall
Jt Computer Conf., AFIPS Press,
Montvale, N. J., 1972. (DSM)

Computing Surveys, Vol. 7, No. 4, December 1975

