IEEE TRANSACTIONS ON S50FTWARE ENGINEERING, VOL. SE-6, NO, 1, JANUARY 1980

Working Sets Past and Present

PETER J. DENNING, SENIOCR MEMBER, IEEE

Abstract—A program’s working set is the collection of segments (or
pages) recently referenced. This concept has led to efficient methods
for measuring a program’s intrinsic memory demand; it has assisted in
understanding and in modeling program behavior; and it has been used
as the basis of optimal multiprogrammed memory management, The
total cost of a working set dispatcher is no larger than the total cost
of other common dispatchers. This paper outlines the argument why
it is unlikely that anyone wilt find a cheaper nonlookahesd memory
policy that delivers significantly better performance.

Index Terms—Dispatchers, lifetime curves, memory management,
memaory space-time product, multiprogrammed load controllers, multi-
programming, optimal multiprogramming, phase/transition behavior,
program behavior, program locality, program measurement, stochastic
program models, virtual memory, working set dispatchers, working
sets,

THE BEGINNING

N THE summer of 1965 Project MAC at the Massachusetts

Institute of Technology tingled with the excitement of
Multics. The basic specifications were complete. Papers for
a special session at the Fall Joint Computer Conference had
been written. Having read all available literature on “one-level
stores,” on *“‘page-turning algorithms,” on “automatic folding,”
and on “overlays,” and having just completed a master’s thesis

Manuscript received May 21, 1979; revised July 12, 1979. This work
was supported in part by National Science Foundation under Grants
GJ-41289 and MCS78-01729 at Purdue University. A condensed, pre-
liminary draft of this paper was presented as an invited lecture at the
International Symposium on Operating Systems, IRIA Laboria, Roc-
quencourt, France, October 2-4,1978 {55].

The author is with the Department of Computer Science, Purdue
University, West Lafayette, IN 47907,

on the performance of drum memory systems, I was eager to
contribute to the design of the multiprogrammed memory
manager of Multics,

Saltzer characterized the ultimate obiective of a multipro-
grammed memory manager as an adaptive control that would
allocate memory and schedule the central processor (CPU) in
order to maximize performance. The resulting system could
have a knob by which the operator could occasionally tune it.
(See Fig. 1.)

Such a delightfully simple problem statement! Of course,
we had no idea how to do this., In 1965 experience with
paging algorithms was almost nil, No one knew which of the
contenders—first-in-first-out (FIFO), random, eldest unused
[as least recently used (LRU) was then called], or the Ferranti

-Atlas computer’s loop detector [79] —was the best. No one

knew how to manage paging in a multiprogrammed memory.
Few yet suspected that strong coupling between memory
and CPU scheduling is essential—the prevailing view was that
the successful multilevel feedback queue of the compatible
time sharing system (CTSS) would be used to feed jobs into
the multiprogramming mix, where they would neatly be
managed by an appropriate page-turning algorithm.

By mid-1967 I saw a solution of “Saltzer’s Problem”~-using
a balance-policy scheduler with working-set memory manage-
ment. (See [38], [39], [41].) But by that time the conven-
tional optimism had changed to circumspection;no one wanted
to risk my unconventional -proposal which, in the standards of
the day, was elaborate,

The circumspection had several sources.. Fme Jackson, and
Mclssac had shaken the early enthusiasm with a pessimistic
study of virtual memory when applied to existing programs

0098-5589/80/0100-006430(.)'.75 © 1980 IEEE

DENNING: WORKING SETS PAST AND PRESENT

\“ﬁ/

LT

"

Fig. 1. Abstract mathematical representation of Saltzer's Problem.

[64]. Belady’s famous study of programs on the M44/44X
computer showed no clear “winner” among the leading con-
tenders for page replacement policies [13]. Saltzer knew from
preliminary studies of Multics that performance could collapse
on attempted overcommitment of the main memory; he used
the term “thrashing” to describe this unexpected behavior.
Before they would risk Building it, the designers of Multics
thus wanted hard evidence that my proposal would be a

“winner” and would not thrash,

But there was scant hope that I could collect enough data
and develop enough theory in time to influence Multics, Re-
cording and analyzing program address traces was tedious and
expensive: the “stack algorithms” [88] for simplifying the

-data reductions had not yet been discovered. Moreover, it

was important to test programs developed specifically for the

virtual memory’s environment: Brawn, Gustavson, Mankin,

and Sayre had found that significant improvements in pro-
gram behavior would result if programmers attempted even
simple schemes to enhance *locality” [18], [19], [105].
Few such programs existed in 1967. Testing programs de-
signed when locality does not matter can lead to unduly
pessimistic conclusions, e .g., the Fine et al. study [64].

However convincing my arguments might have been, there
were many who believed that usage bits were all the hardware
support for memory management that could be afforded. My
proposal was, for the time, out of the question.

The working set is usually defined as a collection of recently
referenced segments (or pages) of a program’s virtual address
space. Because it is specified in the program’s virtual time, the
working set provides an intrinsic measurement of the pro-
gram’s memory demand--a measurement that is unperturbed
by any other program in the system or by the measurement
procedure itself. Data collected from independent measure-
ments of programs can be recombined within a system model
in order to estimate the overall performance of the system
subjected to a given program load. Queuing networks are
widely used for this purpose owing to their ability to esti-
mate throughputs and utilizations well [54]. It was not until
1976 that the collective results of many researchers contained

65

the data (on program behavior for various memory policies)
and the theory (on combining these data with queuing net-
work models of systems) to allow a convincing argument that
the working set principle it indeed a cost-effective basis for
managing multiprogrammed memory 'to within a few percent
of optimum throughput—a solution of Saltzer’s problem.
Following the next section, which defines the terminology
used throughout the paper, are four main sections. The first
describes the working set as an efficient tool for measuring
the memory demands of programs; the second describes a pro-
gression of program behavior models culminating in the
phase/transition model; the third describes the experimental
evidence demonstrating that a working set policy can operate
a system to within a few percent of optimum; and the fourth
describes an inexpensive implementation of a working set
dispatcher. A concluding section assesses the state of the art.

TERMINOLQGY
Segmentation and Paging

A segment is a named block of contiguous locations in a
(logical) address space. A segment can be small, as a single-
entry-single-exit instruction sequence (detected by a compiler),
medium, as a data file (declared by a programmer), or large, as
an entire address space. Normally, the biggest segments are
several orders of magnitude larger than the smallest; this com-
plicates memory managers that try to store segments contig-
uously. Paging simplifies segment management by allocating
space in blocks all of the same size; a segment can be divided
into equal size ‘‘pages,” any one of which can be stored in
any “page frame” of main memory. One or more small seg-
ments can be fitted into a single page. A large segment can
be partitioned into a sequence of pages of which the last is
only partly filled; the common scheme of paging a large linear-
address space is an exampie of this use of segmentation.

Segmentation is an important hardware tool for implement-

ing programminglanguage features; for example, access con-

trols, scope rules, controlled sharing, encapsulation of subsys-
tems, error confinement, or storage objects whose sizes change.
Paging is an important tool for implementing efficient storage
managers, Some systemns try to obtain both sets of advantages
by combining aspects of both; for example, Multics pages each
segment independently with 1024-word pages (see [93]). The
compilers on the Burroughs B6700 enforce a2 maximum seg-
ment size but treat word 0 of segment i + 1 as the local succes-
sor of the last word of segment 7; thus a large file can span
several large fixed-size segments and a smaller one (see {94]).

In the following discussion I shall use the term “segments”
to include the possibility of “pages,” except when discussing
matters pertaining specifically to paging.

Memory Policies

A reference string is a sequence of T references, r(1) -~ - r(1)

-+ #(T), in which r(¢) is the segment that contains the #th vir-
tual address generated by a given program. Time is measured
in memory references; thus t=1,2,3, -+ - measures the pro-
gram’s internal “virtual time” or “‘process time,”

A resident set is the subset of all the program’s segments
present in the main memory at a given time. If the reference

66 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-¢, NO, 1, JANUARY 1980

r(#) is not in the resident set established at time ¢- 1, a seg-
ment (or page) fault occurs at time ¢, This fault interrupts the
program until the missing segment can be loaded in the resi-
dent set. Segments made resident by the fault mechanism are
“loaded on demand” (others are “preloaded”™).

The memory policies of interest here determine the content
of the resident set by loading segments on demand and then
deciding when. to remove them. To save initial segment faults,
some memory policies also swap an initial resident set just
prior to starting a program. (Easton and Fagin refer to the
case of an empty initial resident set as a “cold start,” and an
initially nonempty resident set as a “warm start” [60].)

The memory policy’s control parameter, denoted 8, is used
to trade paging load against resident set size. For the working
set policy, but not necessarily for others, larger values of §
usually produce larger mean resident set sizes in return for
longer mean interfault times. (See [66].) In principle, 8 could
be generalized to a set of parameters, e g., a separate param-
eter for each segment; but no one has found a multiple param-
eter policy that improves significantly over all single param-
eter policies.

The performance of a memory policy can be expressed
through its swapping curve, which is a function f relating
the rate of segment faults to the size of the resident set. A
fixed-space memory policy, a concept usually restricted to
paging, interprets the control parameter 9 as the size of the
resident set; in this case the swapping curve f(8) specifies
the corresponding rate of page faults. A variable-space mem-
ory policy uses the control parameter @ to determine a bound
on the residence times of segments. Thus-a value of § implic-
itly determines a mean resident set size x, and also a rate of
segment faults y; the swapping curve, y = f{x), is determined
parametrically from the set of (x, ¥) points generated for the
various #. (See [53].)

One of the parameters needed in a queuing network model
of a multiprogramming system is the paging rate [47]-[49],
[52). This parameter is easily determined from the lifetime
curve, which is the function g(x)=1/f(x) giving the mean
number of references between segment faults when the mean
resident set size is x. Lifetime curves for individual programs
under given memory policies are easy to measure. A knee of
the lifetime curve is a point at which g(x)/x is locally maxi-
mum, and the primary knee is the global maximum of g(x)/x.
{See Fig.2.)

A memory policy’s resident set at virtual time ¢ for control
parameter § is denoted R (¢,).

A memory policy satisfies the inclusion property if R(t,6) C
R(t,8 +a) for 2> 0. This means that, for increasing 0, the
mean resident set size never decreases and the rate of segment
faults never increases, In Fig, 2, this means that the lifetime
curve increases uniformly as @ increases. (See [52], [53],
[66].)

Several empirical models of the lifetime curve have been
proposed. One is the Belady model! [15]

g =a-x*

where x is the mean resident set size, is a constant, and k& is
normally between 1.5 and 3 (g and k depend on the program).
This model is often a reasonable approximation of the portion

time /fault &\0/
4 : &
&
h"/ glx)
gla)
@ /i i
£ /mcreasmg e
= secondary knes
- :
g .
€ s
la

mean size of resident set

Fig. 2. A lifetime curve.

of the lifetime curve below the primary knee, but it is other-

wise poor ([49], [117]).' A second model is the Chamberiin
model [28]

T2
g(x.)"" 1 +(d/x)2

where T is the program execution time and d is the resident
set size at which lifetime is 7/2. Though this function has a
knee, it is a2 poor match for real programs. The recent empiri-

“cal studies by Burgevin, Lenfant, and Leroudier contain many

interesting observations about and refinements of these models
([81], [83]). Since it is quite easy to measure lifetime curves
[52], [53], [58], I have greater confidence in results when the
model parameters are derived from real data rather than esti-
mated from the models. Since optimal performance is associ-
ated with the knees of lifetime functions [51], [73], {741,
I am hesitant to use lifetime curve models that have no knees.

It is well to remember that a lifetime (or swapping) curve is
an average for an interval of program execution. If the pro-
gram’s behavior during a subinterval can differ significantly
from the average, conclusions based on its lifetime function
may be inaccurate. For example, a temporary overload of
the swapping device may be caused by a burst of segment
faults—an event that might not be predicted if the mean life-
time is long.

Space-Time Product

A program’s space-time product is the integral of its resi-
dent set size over the time it is running or waiting for a missing

1Easton and Fagin have found that the quality of the Belady model
improves on changing from an assumption of “cold start’ (resident set
initially empty) to “warm start’ [60]: however, the “warm start”
merely increases the height of the primary knee without significantly
changing the knee's resident set size. (See also {73], [78], {117].)
Parent and Potier observed that the overhead of swapping can cause
programs conforming to the Belady modet to exhibit lifetime curves,
measured while the system is in operation, with flattening beyond the
primary knee [95], [97]; however, real programs exhibit flattening
beyond the primary knee even if all the faults normally caused by
initial references are ignored. (See [73], [78], [115], [117].)

DENNING: WORKING SETS PAST AND PRESENT

segment to be swapped into main memory. Let 5(t} be the
size of the resident set at time ¢, % be the time of the ith seg-
ment fault (f=1, -+, K), and D be the mean swapping delay;
then the space-time product is

T K
ST=3 s@))+D- 3 s(zy).

=] HES

Note that the first sum is x - T, whete x is the mean resident
set size. If we approximate the second sum by x + K and note
thatx K=x-(K/T) - T=x “f(x) - T, where f(x) is the miss-
ing segment rate, the space-time product is approximated by

ST()=T x -(1+D - f(x)).

Though simple to calculate, this approximation is not very
reliable—it is not consistently high or low and can be in
error by as much as 20 percent [73].

Note that x - f(x) = x/g(x) is minimum at the primary knee
of the lifetime curve. If D is large, choosing x at this knee
will (approximately) minimize the space time. However, since
D is usually also a function of f (x), finding a formula for the
minimum in ST(x) is not easy [68].

THE WORKING SET—MEASURER OF MEMORY DEMAND

My first concept of the working set was a set of recently
referenced pages that estimated a program’s memory demand
in the immediate future. [regarded the working set as a model
of program behavior, that is, a set of hypotheses about how a
program demands memory space. However, once I saw that
working set statistics could be calculated for arbitrary assump-
tions about times between repeated references and correlations
among references, I realized that the working set is not a
model for programs, but for a class of procedures that measure
the memory demands of programs. In the following paragraphs
I will trace the development of the working set concept as a
measurement tool from its inception in 1965 through its pres-
ent form, the “generalized working set.”

The Early Working Set

In the fall of 1965 I undertook analytic studies to compare
three page replacement policies: FIFO, LRU, and Atlas loop
detection (ALD) [37]. FIFQ is best suited for programs that
reference segments in sequence, LRU for programs that refer-
ence subsets of segments repetitively, and ALD for programs
that reference segments in loops. Bécause all three kinds of
behavior ate encountered in practice, it was not clear how to
prove the superiority of any one of the three policies. More-
over, it is easy to find examples of programs for which any
given policy excels while the others falter,

It occurred to me that a scheme based on sampling usage bits
every 6 units of virtual time should work for all three kinds of
behavior—thereby avoiding. the problem of choosing among
FIFO, LRU, and ALD. I borrowed the Algol term working
set to refer to the set of segments used during the most recent
sample interval. (See [37].) It seemed as if could be chosen
to effect a good compromise among the three behaviors; seg-
ments of clusters and loops would appear in the working set,
and in no case would any segment stay resident for longer than
& units of time after it fell out of use.

67

It was also apparent that the operating system should swip
in the working sets as units prior to starting a program on the
CPU. This would reduce the overhead required to bring each
working-set segment in separately on demand. (See [37]-
[39], and also [97], | 107])

By the end of 1966 1 was using the concept of moving win-
dow as an abstraction of the sampling process: the working
set at time ¢ is defined as the distinct segments among r(¢ -
6+1) - r(#). The mean number of segments in the working
set (over the reference string) is denoted 5(8) and the rate of
segment faults as m(8). The working set policy (WS) is the
memory policy whose resident sets are always the program's
working sets, The working set policy satisfies the inclusion
preperty for each program.

Then I noticed that a reference to segment / could cause a
fault if and only if the time since the prior reference to seg-
ment / exceeds the window size . Thus m(8) depends on the
interreference distribution, hy(k), which gives the probability
that two successive references to segment { are k time units
apart. By assuming that the successive references to each
segment { are the recurrent events of a renewal process with
recurrence distribution A;(k), I was able to derive formulas
for s(8) and m(8) as follows. Let n; denote the number of
references to segment / in the reference string of length 7.
Then, as T gets large, the quantity 1T tends to the long-
term probability 4; of referencing segment 7, and T/n; tends
to the mean interreference interval M;; this implies that a; =
1/M;. The overall interreference distribution is

h(k)= Zaf By (k). (1)

I showed that

m@)= 3 h(k) [WS miss rate) :)
k>6
5(8) = 62-:1 m(k) [WS mean size]. 3)
k=0

(These results were reported in [39], and improved in [29]
and [44]. The formula for s(8) is the solution of the back-
ward recurrence problem for the joint renewal processes.
Opderbeck and Chu rediscovered these results a few years
later [92].)

These formulas show that calculating swapping or lifetime
curves is straightforward once the easily-measured® overall
interreference distribution 4 (k) has been determined.

Operational Analysis of Working Sets

The renewal theory analysis leaves ample room for skepti-
cism. Are the successive interreference intervals of a given
segment independent samples from a common distribution?
How accurate are the results when applied to finite reference
strings? (The formulas for m(8) and s(8) were obtained by
taking a limit as 7 becomes infinite.)

*The basis of an efficient procedure for measuring A(%) is an array TIME
that records the most recent reference time for each segment. At time r, let
= r(1), set k = 1 - TIME[J], add | 10 a counter o{k), and set TIME[{] = r. After
the last reference (at time T) set A(k) = c(k}/ T. (See[52), (53], and [58].)

68 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-6, NO. 1, JANUARY 1980

Slutz and Traiger started a significant shift in my thinking
in 1973, when they showed me how to derive formulas (2)
and (3) for finite reference strings in terms of the empirical
distribution of interreference times. (See [108].) They
viewed their analysis as the time analog of the “stack algo-
rithm” analysis to which they had contributed earlier (see
[29], [88]). They had derived the working set formulas
without recoursé to any stochastic assumptions whatsoever,

The Slutz-Traiger discovery caused me to,abandon stochas-
tic analyses of working sets. It convinced me that working
sets are tools for measuring memory demand, but not models
of program behavior. It set me to wondering if there might
not be a unified model of all memory policies satisfying the
inclusion property, of which the stack algorithms and the
moving-window working sets would be special cases.

In the spring of 1975, Prieve and Fabry told me of their
algorithm VMIN, which is the optimal variable-space memory
policy—it generates the least possible fault rate for each value
of mean resident set size (see {96]).> At each reference r(z) =
{, VMIN looks ahead: if the next reference to segment 7 occurs
in the interval (¢, ¢ + 8), VMIN keeps i in the resident set until
that reference; otherwise, VMIN removes i immediately. In
this case ¢ serves as a window for lookahead, analogous to its
use by WS as a window for lookbehind. I noticed that VMIN
generates segment faults exactly when WS does (for the same
8) and I modified the procedure for collecting working set
statistics to also collect VMIN statistics [48]. The formula
for the mean number of segments in VMIN’s resident set is

1
v@)=3 T k- hk) @
k>0
(see also [111]). The mean WS fesident set size is, approxi-
mately, '

s(@)=v(@)+ 8 -m(0). : (&3]

What intrigued me about this was that we could, in effect,
calculate VMIN statistics cheaply in real time—even more
cheaply than WS statistics!—even though VMIN itself can-
© not be implemented in real time. (For empirical VMIN life-
time curves see [73], [96], [111].)

The Generalized Working Set

In the summer of 1975 I discovered that Slutz had indepen-
dently worked out results similar to (4) and (5) for segment
reference strings {109]. To deal with segments, he had intro-
duced a space-time working set: the set of all segments, each
of which has accumulated since prior reference space-time not
exceeding ¢. This is analogous to the moving-window working
set, which comprises each segment whose time since prior
reference does not exceed 6.

Stutz and I then collaborated on the generalized working set
(GWS) [53]. The GWS comprises each segment whose “reten-
tion cost” accumulated since prior reference is not more than

¢; the retention cost is any function that does not decrease

38lutz knew the principle of this policy in 1971, and Smith also dis-
covered it for himself in 1974.

with time since prior reference and is reset to zero just after a
reference. The GWS is a model for all memory policies satisfy-
ing the inclusion property. Special cases include the stack
algorithms {88], VMIN [96], and the time and space-time
working sets. The swapping curves for GWS policies for se-
lected values of ¢ can be calculated efficiently from formulas
similar to (2)-(5). The calculations replace the interreference
distribution 4 (k) with the “retention. cost” distribution, which
can be measured efficiently on a single pass of the reference
string., (See [52], [53], and also [58].)

Summary

The moving-window working set, and its descendant, the
generalized working set, are best viewed as models of memory
policies satisfying the inclusion property. Highly efficient
procedures for calculating memory demand statistics for
programs operating under these policies have been developed.
The derivations of these statistics are purely operational, re-
quiring no stochastic assumptions or any other assumptions
about program behavior. Because they are easy to compute,
working set statistics are often used as approximations to the
statistics of the various relatives to the WS policy, such as
global LRU or global FIFO with usage bits [58], [59]. How-
ever, these approximations are not always good [73].

The working set also serves as a dynamic estimator of the
segments currently needed by a program. The working set is
defined in a program’s virtual time, independently of other
programs; thus, there is no danger that the load on the system
can influence the measurement, as can happen with any mem-
ory policy applied “globally” to the entire contents of the
main memory [45]. This is why we refer to the working set
as a measurer of a program’s intrinsic memory demand.

ProGRAM BEHAVIOR

The previous section describes theoretical studies of the
working set in its role as a measurement tool. This section
describes how this tool has contributed to the separate ques-
tion of program behavior.

Most studies of program behavior begin with the hypothesis
that a program’s reference string is the realization of a (trac-
table) stochastic process; the subsequent analysis seeks to cal-
culate the swapping curve for particular memory policies and
to specify the optimal memory policy. Stochastic models of
program behavior usvally have a Markov renewal structure,
that is, some events or states are assumed to recur, and the
results are expressed in terms of interstate transition probabil-
ities and recurrence distributions.

My interest in program models has been to substantiate
my long-term intuition that the working set memory policy
generates near-optimum space-time product for programs of
good locality. I believe that this goal has been realized.

Since the middle 1960’ a series of increasingly complex
stochastic models of programs has been studied. Each model
led to predictions about the behaviors of memory policies.
When experiments on real programs failed to support the
predictions, the models were revised or discarded. The evolu-

tion of program models is a superb example of successful inter-

play between model development on the one hand, and experi-

DENNING: WORKING SETS PAST AND PRESENT

mental testing of hypotheses on the other. I will emphasize
this iterative process in the paragraphs following.

The Phase Behavior of Programs

From the middle 19507, computer engineers have been in-
terested in automatic solutions to the “overlay problem,” i.e.,
the problem of running large programs in small memories.
The early skeptics of virtual memory believed that program-
mers and compilers, not hardware usage’ bits and interval
times, were the most reliable sources of information about
memory demand.

Proponents of manual overlays drew phase diagrams to help
plan a good overlay sequence. A phase diagram depicts pro-
gram time as a sequence of phases, and address space as a
sequence of segments. The segments needed in a given phase
can be indicated by crosses in the diagram. (See Fig. 3.)
Early descriptions of this concept can be found in {3] and
[56].

The concept that a program favors a subset of its segments
during extended intervals (phases) is called locality. The set
of segments needed in a given phase is called the locality set
of that phase.

Experiments have confirmed the existence of locality in real
programs even when programmers do not consciously plan for
it. A common method of taking the measurement is moti-
vated by the phase diagram. It displays segment use with a
reference map, which is a matrix whose rows correspond to
successive A—intervals of virtual time ; @ mark is put in posi-
tion {f,7) whenever segment [is referenced in the jth time
interval. The reference map is displaying the working set
W(ja,8) forj=1,2,3, -+, (See [25], [27], [76], and [78)
for examples of page reference maps.)

Despite early recognition of the locality of programs, the

phase diagram long remained merely a descriptive tool, a
pictorial method explaining why virtual memory should work.
In 1972 I suggested that this description should be the basis
of a stochastic program model [45], [114]). But none of us
explored this suggestion very seriously until 1974, when we
began experimental studies of phase behavior in real programs.
(I wilt discuss these studies shortly.)
- It is difficult to explain why the phase concept took so long
to become explicitly a part of program models. Part of the
explanation may be that many of us spent the years 1969-
1974 studying simple models, moving to the more complex
only when convinced that the simple ones omitted essential
features of real programs. The more important part of the
explanation may be that many of us had great faith in the
slow-drift concept of locality, which holds that phases are
long and that changes in the locality set from one phase to
another are mild. By calling attention to the phases—rather
than to the changes—this view ignored the possibility that
transitions might be disruptive.

I began using the slow-drift concept of locality in 1968
[38], [39] and persisted with it through 1973 [29], [44],
[45], [114]. Although I realized that disruptive changes in
the locality set could occur at the transitions between phases,
I worked with the hypothesis that the phase behavior was so
strong that disruptions could safely be ignored. This hypothe-

a9

virtuet
oddresses
'y

5 x H
0
! % x
=
W

3 x X X X
=
©
w 2 x X X X
«

| X X

_ virtual

| 2 3 4 5 lime
P M ASES
Fig. 3. Example of a program’s phase diagram.

$is was consistent with such experimental studies as [13], [31],
and [64]. Moreover, the work of Brawn, Gustavson, Mankin,
and Sayre showed very clearly that high degrees of locality
could be instilled into programs at only a minor cost of a pro-
grammer’s effort, and that such programs would typically pro-
duce less total swapping with paging than programs that used
manual overlays instead of paging [18], [19], [105]. These
data led me to believe that the disruptive effects of transitions
could be “tuned out” by good programming.

The trouble with the slow-drift concept of locality is that
it is wrong.

A proper program model should account for the disruptions
of the transitions—which we know today are every bit as sig-
nificant as the tranquility of phases. After digressing to dis-
cuss techniques for automatically improving observed locality
in paged programs, I will discuss how the experimental studies
of stochastic models led us away from the slow-drift concept
to the phase/transition concept.

Program Reorganization to Improve Observed Locality

The Brawn et al. studies showed not only that programmers
could help themselves by striving for slow-drift locality as an
ideal, but also that programmers could take advantage of
knowledge of how the compiler assigned program segments
to pages. A study by Comeau in 1967 showed that the order
in which the card decks of subroutines were presented to a
loader has a most significant effect on the amount of paging
generated [32]. It is easy to construct examples in which
the paging overhead by the working set policy on a program
with good locality (long phases, mild transitions) is less than
the paging produced by the optimal policy on another version
of the same program with poor locality (short phases, dis-
ruptive transitions).

These facts have inspired much interest in program reorgani-
zation, which studies how the compiler (or loader) can assign
segments of a program to the pages of the address space in
order to preserve, in the page reference patterns, as much of
the original locality as possible. It is important to note that
“segments” in this context are small logical blocks of a pro-

70 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-6, NO. {, JANUARY 1980

gram detectable by a compiler; they might be array rows or
single-entry-single-exit instruction sequences. Some machines,
such as the Burrough B6700 series, implement such segments
directly in the virtual memory [94]; no program reorganiza-
tion is needed. But other machines, such as IBM virtual stor-
age systems or Multics, were designed on the concept of
paging whole address spaces or segments; program reorganiza-
tion is potentially useful in these contexts. (See also [43],
[56].)

The recent experimental studies by Batson and Madison
confirm that there is a good deal of locality present in the
symbolic segment reference patterns of programs; hence
there can be a big payoff in program reorganization. (See
[10], [11], [86]) |

The essence of program reorganization is straightforward.
Through measurement or analysis one obtains a matrix [a;)
in which a;; measures the maximal swapping cost that would
be caused by putting segments / and j on different pages.
(Thus Za;;/2 would be the swapping cost of running the
program in a one-page memory if each segment occupied
its own page.) One then uses a “clustering algorithm” to
group segments onto pages to minimize the quantity

f;f (E, / eEJ alj)

where [and J are distinct pages. In the scheme of Hatfield
and Gerald, 4y counts the number of times segment f is refer-
enced next after § [76]. In the critical working set scheme of
Ferrari, a;; measures the number of times segment j was refer-
enced and found missing from a logical working set of seg-
ments, of which segment i was a member; putting 7 and 7 on
the same page would then remove a potential working-set
page fault [61]-[63]. Ferrari reports that his method could re-
duce paging by as much as % relative to Hatfield’s method,
which could in turn improve by as much as § relative to
unreorganized compiler output. Other authors have reported
similar findings [5], [87]. '

Despite its dramatic effects,’ program reorganization is ex-
pensive. It is cost-effective only for often run production pro-
grams. It is well to remember that this technique has been
motivated by the need to compensate for virtual memory
hardware designed with page sizes that are large compared to
logical program blocks, e.g., 1024-word pages versus a median
segment size of less than 50 words [9]. Large page size is
motivated by the need to mitigate the high latency time of
mechanical secondary storage devices [42], [67], [69]. If
the page size could be, say, 64 words, or if small segments
could be assigned in the virtual memory, there would be
little danger that the compiler’s unrecrganized output would
mask off a program’s intrinsic locality. The new low-latency
circulating-store secondary memories—e.g., charge-coupled de-

4 A statistical study by Tsao, Comeau, and Margolin [119] seemed to
show main memory size and job type have more significant influences
on system performance than program organization. The dramatic im-
provements observed by Ferrari, Hatfield, and others result from the
reductions in working set sizes and paging rates, which allow higher
levels of multiprogramming and resource utilization. Tsao et al. did not
study the possibility that program reorganization could reduce main
memory requirements and change the job types.

vices and bubble memories—can be used as a new intermediate
level of the memory hierarchy (as envisaged in {40D). It could
efficiently handle transfers of small segments across the inter-
face with the high-speed main store; it could swap the contents
of its circulating storage rings, in the manner of pages, across
the interface with the slow-speed bulk store. Ferrari’s studies
can be used to infer that such a system would be inherently
more efficient than paging systems.

Simple Stochastic Models for Program Locality

The models studied most actively from 1965-1975 were the
simple renewal model, the independent reference model, and
the LRU stack model.

The simple renewal model (SRM) treats the successive refer-
ences to each segment as the recurrent events of a renewal
process that is asymptotically uncorrelated with the renewal
processes of the other segments. This model has been used
for calculating working set statistics [29], [39], [44], [92).
It has not yielded any useful insights into optimal memory
management. In 1974 Shlutz and Traiger showed that opera-
tional assumptions could replace stochastic assumptions in
the derivations of formulas for working set statistics [108];
this showed that renewal theory is not essential to study
working sets as a measurement tool.

In 1971 Schwartz and I showed that, if programs conform
to the assumption that reference substrings at large separations
tend to be uncorrelated, the working set size will tend to be
nomally distributed (see [44]). At about the same time,
Rodriguez-Rosell presented experimental results showing
several programs with multimodal working set size distribu-
tions, a direct contradiction of the “asymptotic uncorrelation”
assumption for these programs {99]. Subsequent experimen-
tal studies by Bryant, Burgevin, Ghanem, Kobayashi, Lenfant,
Leroudier, and others have all confirmed that some programs
have normal working-set size distributions, others do not [20],
(72], [80], [81], [83]. Bryant’s autocorrelation functions for
working set sizes directly demonstrated long-term correlations
in several programs [20]. These data tend to cast doubt on
the simple renewal model as a general description of behavior.
(However, Spirn believes that the normal distribution is vatid
within program phases; see [117].)

The independent reference model (IRM) regards the refer-
ence string as a sequence of independent random variables
with a common stationary reference distribution:

Prlr(f)=i] =q

{This model was used informally in [37] and introduced
formally in [2].) This model predicts a geometric interrefer.
ence distribution,

R =(-a) e fork=1,2,3, .

The optimal memory policy for the IRM (denoted Agy) re-
places the segment with smallest value of 4; among the seg-
ments present in the resident set [2]. Formulas for the swap-
ping curves of various major memory policies applied to IRM
reference strings were derived by King [125] and by Gelenbe
[68]; these formulas have been collected in {29] and [111].
The IRM is the simplest way of accounting for nonlinearities

forall ¢,

DENNING: WORKING SETS PAST AND PRESENT

observed in swapping curves of real programs—an assumption
of completely random references would imply linear swapping
curves [15], [39], [64]. In 1972 Spirn and I reported that the
IRM overestimates real working set sizes by factors of 2 or 3
when the a; are the observed reference densities of the pro-
gram’s pages [114]; this has been corroborated by Lenfant
and Burgevin [81] and by Arvind, Kain, and Sadeh [4]. The
conclusion is that, at best, different sets of a; hold at different
times, i.e., programs have multiple phases, The IRM is not a
good model of overall program behavior. . V

The LRU stack model (LRUSM) is motivated by the LRU
memory policy [106], [116], [117). The “LRU stack™ just
after reference #(7) is a vector ordering the segments by de-
creasing recency of reference; #(r) is at the first position. The
stack distance d(¢) associated with reference r(?) is the posi-
tion of r(r) in the stack defined just after r(t-1). The LRU
stack has the property that the LRU policy’s resident set of
capacity @ segments always containg the first & elements of
the stack, and the missing-segment rate is the frequency of
occurrences of the event d(z)>> 9. The LRUSM assumes that
the distances are independent random variables with a com-
mon stationary distribution; -

Pr{d(®)=il =b, foralls.

Ifo 22 2h2--- » the LRU policy is optimal both
in variable space and in fixed space [29], [111], [117]. In
1975 Chu and Opderbeck [26] and Sadeh [103] indepen-
dently developed a technique for constructing a semi-Markov
model for the resident set size and page-fault rate of a memory
policy when applied to an LRUSM reference string; however,
the semi-Markov model is equivalent to the LRUSM itself.
Sprin developed an algorithm for computing WS swapping
curves in the LRUSM [115], [117]. Coffman and Ryan
established that the probability distribution of WS size in the
LRUSM is approximately normal [30] and Lenfant developed
an exact formula for this distribution [80].

The LRUSM has fared only slightly better under testing than
the IRM. In 1971 Lewis and Yue reported that most programs
exhibit strong correlations among stack distances [85]. In
1972 Spirn and I reported that the LRUSM estimates the
working set size quite well (within 10 percent) when the b;
are the observed stack-distance frequencies of the program
[114]. However, the LRUSM estimates the swapping curve
poorly, with maximum errors around 40 percent. These re-
sults have been corroborated by [4], [80], and [81]. More-
over, as sketched in Fig. 4, the LRUSM predicts that WS will
perform worse than LRU—even though WS almost always per-
forms considerably better than LRU, especially in the region
near the primary knee of the WS lifetime curve [73], [117].5
Finally, the LRUSM predicts that the long-term page refer-
ence densities are equal, contradicting observations of real
programs [29], [115], [117].

In 1976 Baskett and Rafii [8] reported the curous result

S Arnold reported data from six address traces of f our programs [123]. "

"For two of the programs, a compiler and an assembiler, the LRU life-
time dominated the WS lifetime near the LRU primary knee, These
two programs had strong cycles of use of their locality sets. No ex-
planation is given for the difference between these and other experi-
mental data (25], [27], [73], [78], {81]. [83], [110], [115], [117].

71
time/ faul1
WS (actuol}
— = LRY
77 ieett WS {model)
l‘.-'
s
y
/ A
/o
/i
G
o
A
-

mean size of resident set
Fig. 4. Comparison of lifetime curves,

that, if the IRM’s g; are chosen so that the swapping curve of
the optimal IRM policy (4,) matches that of the MIN policy
[13] on the real program, the IRM formulas for other policies
(LRU, FIFO, WS, etc.) will estimate the actual swapping
curves surprisingly well. (The errors are of the same order
as the LRUSM’s errors.) Unfortunately, there is no physical
interpretation of the a; thus determined.

Another defect of both the IRM and the LRUSM is that
neither includes a concept of changing locality set size. In
LRUSM, for example, the locality set comprising the top &
stack positions is always referenced with the fixed probability
by +-+-+by; 8 does not have to vary to keep the locality-
set reference probability constant. In 1972 Chu and Opder-
beck observed that WS generates lower space-time than the -
least space-time generable on the LRU policy; this could be
explained only by supposing that the locality set size changes
(see [25] and also [73]). In 1975 Graham and I presented
examples of page reference strings over locality sets of differ-
ent sizes; even though we chose these strings so that LRU
would be the optimal policy for fixed memory space, WS
produced less paging for some mean resident set sizes [47].

Despite ‘these setbacks, IRM and LRUSM have not been
written off; they may still be of some use for modeling pro-
gram behavior within phases. (See [45], [47], [50], [52],
{73}, [114])

Based on all these studies, I had, by the middle of 1974,
reached ‘this conclusion about program models: a realistic
model must account for multiple program phases over locality
sets of significantly different sizes and must not rule out
strong correlations between distant phases. Not only had
the SRM, IRM, and LRUSM failed to tell much about whether
working set' memory management is optimal for real programs,
but they failed to capture the essence of program behavior,
the changing need for memory from one phase to another.

Phase-Transition Models

In the fall of 1974, Kahn and I undertook an -experimental
study to test the importance of transitions between locality
sets of different sizes. We used a program model to generate
reference strings for which we measured LRU and WS lifetime
curves. The program model comprised a macromodel and a
micromodel. The macromodel was a semi-Markov chain whose

72 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL, SE-6, NO. 1, JANUARY 1980

“states” were mutually disjoint locality sets and “holding
times™ were phases. The macromodel was used to generate
a sequence of locality-set/holding-time pairs (S, T'). The micro-

model was used to generate a reference substring of length 7.

over the pages of the locality set S. Choices for the micromodel
included the IRM, the LRUSM, and cyclic referencing.

Although we made no attempt to choose states, holding

times, and other mode! parameters from real programs, we
found that this model was better able to reproduce features
of real programs than the IRM or the LRUSM. This model
could be made to exhibit working set size distributions similar
to those observed in practice. It was abie to reproduce the
behavior always observed for real programs, the dominance of
WS lifetime over LRU in the vicinity of the knees (Fig. 4),
changing the micromodel for a given macromodel did not
significantly affect this pattern. If the locality set sizes had
a sufficiently small coefficient of variation, the WS dominance
disappeared. (See [49].)
- At about the same time, Courtois and Vantilborgh applied
the concepts of decomposition to a program model that
treated pages as the states of a Markov chain [34], [36]. By
assuming that pages could be aggregated into weakly-interact-
ing, mutually disjoint sets, they showed how to compute
mean locality set size, paging rate, and an estimate of the
distribution of working set size. Their calculations also
revealed that this model was capable of reproducing the
multimodal distributions of working set size already observed
in practice.

Also at about the same time Batson and Madison under-
took experimental studies of phases and transitions in the
symbolic reference strings of real programs. (See [10], [11],
[86].) They defined a phase as a maximal interval during
which a given set of segments each referenced at least once,
stayed on top of the LRU stack.® Their data revealed that:

1) Programs have marked phase behavior, that smaller
phases over locality subsets are nested inside larger ones, and
that there are significant disruptive transition-periods between
major phases. '

2) 90 percent of virtual time was covered by phases lasting
10° references or more; over 90 percent of the phases were
 fleeting and embedded within transition-periods between the
long phases. '

3) There is little correlation between the locality set size
before and after a transition.

These three studies came independently to the same con-
clusions: phases and transitions are of equal fmportance in
program behavior—long phases dominate virtual time, as
anticipated by the earliest virtual memory engineers, and
transitions, being unpredictable, account for a substantial part
of the missing segment faults. Moreover, decomposition is
the appropriate analytic tool for program models. _

As part of his doctoral research, Kahn [78] devised a filter
that would classify the page faults generated by WS for real
programs as “transition faults” or “phase faults”; a series of
faults in close succession was treated as a sequence of transi-
tion faults, He found:

$Batson 'and Madison used the term “bounded locality interval” to
refer to the combination of a phase and its locality set, and the term

“activity set” where I would use “locality set.” Locality sets are not
the same as working sets [82].

1) Phascs covered at least 98 percent of virtual time.
2) 40 percent to 50 percent of the WS page faults occurred
in transition periods; thus about half the paging occurred in

-about.2 percent of the virtual time.

3) The same phases were observed by the WS policy over
wide ranges of its control parameter (4).

4) Fault rates in_ transitions were 100 to 1000 times higher
than fault rates in phases.

5) Successive interfault intervals in phases had strong serial
correlations. In contrast, the number of faults in a transition
was (approximately) geometrically distributed, and the lengths
of interfault intervals within transitions were (approximately)
exponentially distributed (with mean about 25 references).

These findings are corroborated by those of Jamp and Spirn,
who used abrupt changes in VMIN resident set sizes as a cri-
terion for detecting transitions [77]. The last finding cor-
roborates Batson’s {10], that transitions tend to be random
in behavior. A similar effect has been observed in data base
reference strings during the interval’s between “reference
clusters” [59], [60].

Kahn also suggested that decomposition of program data
into phases and transitions can be used to simplify queuing
network models of computer systems. Rather than treat a
set of ;V active programs as'V job classes with different lifetime
curves, the analyst can use just two job classes: the jobs in
phases, and the jobs in transitions. Jobs can change between
these two classes. Kahn derived the parameters of the model
from phaseftransition data taken from real programs and used
it to confirm that the optimal multiprogramming level tends
to be the highest load at which two or more jobs are rarely
observed in the transition class at the sarne time.

Tsur [120] and Simon [107], who also used multiclass
queuing network models, came to the same conclusion: the
performance of the model depends significantly on the as-
sumptions one makes about the phases and transitions of pro-
grams. It appears necessary to obtain the parameters by de-
composing the reference string into phases and transitions,
using methods such as devised by Madison and Batson [86]
or by Kahn [78]. Graham reports an unsatisfactory attempt
to generate artificial reference strings by using an LRUSM
micromodel with a WS macromodel [73]; Spirn likewise re-
ports an unsatisfactory attempt to disrupt an LRUSM by oc-
casionally switching to a different set of distance frequencies

114}.

[I note in passing that several authors have used the Belady
model or the Chamberlin model of the lifetime curve to
derive parameters for queuing network models of multipro-
gramming {(e.g., [16], [17], [67], [70], [71], [95], [97],
[120]). Inasmuch as optimal operation seems to be correlated
with operating a program at the primary knee of the lifetime
function [74], and inasmuch as neither of these lifetime models
accurately represents actual knees, some skepticism is in order
until someone shows that these models lead to exactly the
same conclusion as when parameters are derived from the real
data.

Despite the omission of transition behavior from early
models of program behavior, many conjectures about the
relative merits of the several memory policies have proved to
be substantially correct. The reason is that transition periods,

DENNING: WORKING SETS PAST AND PRESENT

which cannot be anticipated by nonlookahesd memory policies,
affect all these policies in the same way. Differences among
the memory policies therefore result from their behavior
during phases to which the slow-drift concept of locality does

apply. '

OpTIMAL MEMORY MANAGEMENT

“A goal of constant interest to me since 1968 has been sub-
stantiating my conjecture that working set memory manage-
ment can be “tuned” for near-optimum performance. This
goal was achieved only recently. Because it requires both
queuing network models of systems and phase-transition
models of programs, it could not have been achieved sooner.

For 2 long time I was enamored of convexity arguments and
probabilistic inequalities as. an approach to showing the
superiority of working set memory management. Inspired
. by Belady [14] I worked out a marginally convincing argu-
ment that variable-space policies are more efficient than
fixed-space policies [39]; this argument was based on the
convexity of the working set size function s(4). Spirn and
I extended this line of argument [46], [117], and Spirn
later pushed it to its limit [118], but even so the conditions
under which the analysis applies are difficult to verify in
practice.

In 1968 I also showed that to achieve the same overflow
probability a memory containing N programs under fixed
partitioning need be at least N/? times larger than a variably
partitioned memory holding the same programs [39], [41].
In 1972 Coffman and Ryan used the assumption of normally
distributed working set size to prove much tighter bounds on
overflow probability and to compute the mean amount by
which demand exceeds available memory space (see {29] and
also [30]).

These arguments focus only fuzzily on the system’s per-
formance, leading to qualitative conclusions like working set
mernory management gives “higher” CPU utilization [46] or
“better” space utilization [30] than fixed partition policies.
Wanting more precision, I abandoned this line of investigation
in 1973. 1 turned to queuing network meodels, which can
focus sharply on the relation between program behavior and
a system’s performance., In the following discussion I will
emphasize the important role queuing network models have
played in the theory of memory management. (An opera-
tional overview of these models is in [54].)

Buzen was among the first to show how to use queuing net-
work models to study optimal degrees of multiprogramming;
this was a departure from the traditional use of these models
because some of the parameters, such as the paging rates,
could depend on the size of the load [21]. Courtois com-
bined the principle of decomposition with queuing networks
to develop the first rigorous analysis of instability and of
thrashing (see [33]-[35]). The first explicit attempts to study
optimal controls on the multiprogramming level were made
by Brandwajn [16] and by Badel, Gelenbe, Lenfant, and
Potier {6].

Queuing Network Models of Multiprogramming

A queuing network model of a computer system specifies
the configuration of a set of devices, each representing the

13

queuing for a particular type of resource such as CPU, 1/O,
file storage, or page swapping. The parameters of simplest
models are '

N-The multiprogramming level (MPL), ot load on the system;
Dy—~The demand per job for the ith device, i.e., the mean
total time required by each job for the device.

The demand per job (D) for a device is the product of the
mean number of requests per job for that device and the
mean time to service one request. For devices such as CPU,
I/O, and file storage the demand per job does not depend on
N. But for the paging device, the demand per job grows with
N because higher MPL’s imply smaller resident sets and higher
rates of paging.

The demand for the CPU is the mean execution time £ of a
job. The mean numbers of page faults per job is £/L(V),
where L (V) denotes the lifetime, or mean-time-between-faults,
for MPL N. The demand for the paging device is D; = ES/L (W),
where § is the mean time to service one page swap (exclusive
of queuing delays).

If the curve L (V) is not available from a direct measurement
of the system it can be estimated from the lifetime curve of a
typical program. The most common method when P pages of
main memory are available is to set L (V) =g(P/N), where
g(x) is the mean time between faults measured for a typical
program when the given memory policy produces mean
resident set size of x pages. If the memory policy maintains
a pool of unallocated page frames, the available memory is,
approximately, this fraction of the actual memory

v
N+(C?+1))2

where C is the coefficient of variation of the resident set size
of a program over time.” (For working sets, C is less than 0.3
[101].) Simon validated this formula by comparing queuing
network and simulation models for various workloads [107].
Queuing network models estimate the system’s throughput
Xo, the number of jobs per second being completed. The
throughput is proportional to the utilization of the CPU, U,
(In fact, U= X, E; see {16], [35], [47], [51], or [52].) Fig.
5(a) illustrates a typical CPU utilization curve as a function of
the MPL, &, for a fixed size of main memory. The curve rises
toward CPU saturation but is eventually depressed by the
ratio L(V)/S, the utilization of the saturated paging device.
The curve of Fig. 5(a) is valid under general conditions that
apply to almost all real multiprogramming systems [6], [33],
[47], [50], [54]. '
~ The existence of an optimum MPL was known long befoic
queuing network models were used to characterize it pre-
cisely, I argued in 1968 that an optimum MPL would exist
[39]., [40]. Simulations of the RCA Spectra/70 confirmed
this [121]. An extensive study of a CP-67 system demon-
strated that a working set dispatcher could control the MPI.

7C i the ratio of standard deviation to the mean. Fora program
whose resident set size at time # is x(f), the mean m is the average of
x(f) over all t and C? is the average of (x{t) -~ m)%/m? over all £. The
smali time-weighted variations of working-set size typically observed
within one program [101] should not be confused with the large varia-
tions among the working set sizes observed among different programs.

74 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-6, NO. 1, JANUARY 1980

utilization

_ CPU . saturation

~
v LI{N) paging
s sofuration

(a)

(b)

Fig. 5. Optimum muitiprogramming levels, (2) Small main memory. (b) Large main memory,

for maximum CPU utilization [100], a finding reconfirmed
on the Edinburgh multi-access system (EMAS) [1].

Fig. 5(a) suggests that V;, the MPL at which L = §, is slightly
larger than the optimum N,. Using this as a starting point,
Kahn and I, carried out an experimental study which revealed
that, indeed, this “L =S criterion” could be used as an adap-
tive load control [50].

The intuition underlying the “L =§ criterion” also illumi-
nates an interesting tradeoff resulting from the size of the
main memory. A very large main memory buffers against
instabilities in memory policies and overheads created when
the resident sets attempt to overflow the space available.
By staving off the effect of swapping overhead, the very
large main memory transforms the CPU utilization bounds
to the form shown in Fig. 5(b). Once the main memory is
large enough to allow the CPU utilization to be near 100 per-
cent for some N, further increases of memory cannot in-
crease the system throughput or decrease response time. In
effect, the very large main memory serves as a job queue—
holding waiting jobs in secondary memory may be cheaper.

Working independently, Leroudier and Potier discovered
that CPU utilization tends to be maximum when the utiliza-
tion of the paging device is approximately 50 percent—which
will occur when the mean queue there is approximately 1.0,
the onset of thrashing [84].% Sur observed that the “L =S§
criterion” and this “50 percent criterion™ are closely related.
We pooled our findings in a joint paper and concluded that
adaptive load controls can be both simple and effective [51].
Simon has since found that the target value of utilization for
the paging device should actually be (50 + A4) percent, where
A is the utilization due to preloading working sets as jobs are
(re)activated; A in the order of 25 percent may be typical [107].
(The previous studies had not considered preloading, which
does not affect the “L=S criterion.”) Gelenbe, Kurinckx,
and Mitrani have studied controllers that add load at a rate

8This intuition has been confirmed by measurements in real systems,
notably Muitics and EMAS (see [1], [51], [84], and [97]). It has also
been confirmed by Kahn’s two class queuing network model (one class
for programs in phases, the other for programs in transitions) [78];
Kahn observed that at the optimum load the probability of finding
two or more jobs together in the transition class is small and the mean
queue at the swapping device was near 1.

lifetime
1
gix)

space-time
f 1

ST(x)

mean size of resident set

Fig. 6. Lifetime knee and space-time ntinimum,

proportional to the CPU utilization; this will reduce the load
as the CPU utilization drops at the onset of thrashing [70],
f71].

Optimal Load Control

The intuition of Fig. 5—that the optimum MPL is charac-
terized by the relation L =a8 for some constant a—is crude.
It fails when the system is I/O bound or when the maximum
lifetime L does not exceed the segment swapping time § [51].
The optimum MPL is actually associated with running each
job at its minimum space-time product, which is more dif-
ficult to achieve than L = aS§. : -

If the system’s throughput is X, jobs per second over an
observation period of T seconds, then XoT jobs are com-

DENNING: WORKING SETS PAST AND PRESENT

75
recycled jobs
CENTRAL COMPUTING SYSTEM
170
QUEUE CPU :
new A 170 jobs
" jobs max (O, N'-M) per
inactive jobs second
Main Memory
P pages
M T
1 N active jobs
g O=N=M
i
|
Scheduler corrent
conditions

Fig. 7. Limiting the load on the central computing system by enqueuing
excess submitted jobs,

pleted. If the main memory" has capacity P words, there
are PT word-seconds of main memory space-time available.
Therefore, the memory space-time per job ST, is

ST =PT/X,T=P/X, word-seconds.

It follows that the optimum MPL N,, maximizes throughput
and minimizes memory space-time per job. (See also [22].)

As noted earlier, if the total delay per segment fault {queu-
ing time plus swap time S) is large, the space-time will be
minimized approximately at the primary knee of the lifetime
curve. Graham confirmed this intuition: direct measurements
of 8 real programs showed the resident set size of the primary
knee of the WS policy to be within 2 percent of the resident
set size that minimizes space-time; see Fig. 6 {73], [74]. (This
led to the “knee criterion,” a basis for load control which is
more robust than either the “L =8 criterion” or the “50 per-
cent criterion” [51], [74].)

To limit the drop of CPU utilization under excessive MPL
(thrashing), most operating systems partition the submitted
jobs into the active and inactive jobs. 'Only the active jobs
may hold space in main memory and use the CPU or I/O de-
vices. (See Fig. 7.) There is a maximum limit M on the size
of the MPL. If the number of submitted jobs at a given time
does not exceed M, all are active; otherwise, the excess jobs
are held, inactive, in a memory queue. The limiting effect of
the memory queue is sketched in Fig. 8. (See [34].) Evi-
dently, if M were set to Ny, thrashing could not occur at all
and the system would operate at optimum throughput when-
ever a sufficient number of jobs were submitted. In practice,
the optimum MPL varies with the workload; hence an adaptive
control is needed to adjust M, Fixing M at the smallest pos-
sible value of Ny is usually unsuitable, for this will cause the
system to be underloaded most of the time, |

To summarize : the load controller seeks to set the maximum
MPL M near the current optimum. . The optimum MPL is
achieved by minimizing the space-time product per program,

CPU
Utifization

_ N’ submii-
™ ted jobs

N, M

°
Fig. 8. Effect of the load control on CPU utilization,

which in most cases is equivalent to operating each program
at the primary knee of the program’s lifetime curve for the
given memory policy.

Dispatchers for Multiprogrammed Computer Systems

The purpose of the dispatcher is to control the scheduling
of jobs and allocation of main memory so that the through-
put for each workload (MVS “performance group” [23]) is
maximum. The dispatcher contains three components: the
scheduler, the memory policy, and the load controller,

The scheduler determines the composition of the active
set of jobs. It does this by activating jobs (moving them
from the memory queue into the active set—see Fig. 7) and
setting a limit on the time a job may stay active. Normally
the next job to be activated is the one with highest priority
among those waiting. When there are multiple workloads,
part of the memory is reserved for each and there is a separate
scheduler for each workload.

The memory policy determines a resident set for each active
job. Two broad classes of memory policies are in use. The
global policies partition the memory among the active pro-
grams according to procedures that depend on the aggregate

76 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-6, NO, 1, JANUARY 1980

behavior of all active programs; the local policies determine
a separate resident set for each program by observing that
program in its own virtual time independently of the other
programs. Examples of global and local policies will be
given in the next section.

All memory policies manage a pool of unused space in
main memory. The pool contains the pages of resident sets
of recently deactivated jobs; under a local policy, the pool
also contains pages which have recently left the resident sets
of active jobs. In most VM/370 systems which use a global
policy (described below), the pool is empty less than 20 per-
cent of the time. In systems with a working-set dispatcher
which is a local policy, the pool is likely to be empty less
than 5 percent of the time.

The load controller adjusts the limit M on the multipro-
gramming level. The ideal value of M is the current optimum
No. This limit is a function of “current conditions” in the
active computing subsystem (see Fig, 7). If a global policy
is in use, the “current conditions” will be an aggregate mea-
sure of the total workload’s demand for swapping; for ex-
ample, this measure can be the current aggregate value of
lifetime (for the “L=S criterion™) or the utilization of the
swapping device (for the “50 percent criterion”). If a local
policy is in use, the “current conditions” will be. the size of
the pool. '

Sometimes a static load control is proposed. To avoid
thrashing, the fixed limit M must be set near the smallest
value ¥, is likely to take. As a result, the chronically under-
loaded system will deliver unduly low throughput. The
VM/370 system, for example, uses a dynamic limit M deter-
mined from estimates of active jobs’ working sets; this system
is more efficient than its predecessor, Release 2 of CP-67,
which used a fixed limit M. '

By comparing the measured memory demand of a job with
the pool’s size, the scheduler avoids activating a job if the
activation would overload the system. Therefore, a dispatcher
based on a local policy actually employs a2 “feedforward con-
trol,” rather than the “feedback control” suggested in Fig. 7.
Feedforward controls are inherently more stable than feed-
back controls. This is so because a dispatcher based on a local
memory policy can prevent overload, whereas a dispatcher
based on a global policy can only react, after the fact, to an
overload.

Memory Policies

This section describes four common memory policies—two
of the global type and two of the local type. They will be
described for paging systems, the context in which they have
been analyzed, measured, and compared.

One global policy is LRU (least recently used), All the
resident pages of all active jobs are listed in an LRU stack in
order of decreasing recency of use. On a page fault, the resi-
dent page farthest down the stack is chosen for replacement.
The CDC STAR-100 computer uses this scheme. Multics also
uses it to control page migration between the drum and the
disk [104]. Systems using such policies are difficult to ana-
lyze [112], [113]. o .

A widely-used global policy is called the CLOCK algorithm,

On a page fault, a pointer resumes a cyclic scan through the
page frames of main memory, skipping used frames and re-
setting their usage bits, selecting for replacement the page in
the first unused frame. (The term “CLOCK” comes from the
image of the pointer as the hand of a clock on whose circum-
ference are the page frames.) This algorithm attempts to ap-
proximate LRU within the simple implementation of FIFO
(first in first out). An early version was studied by Belady
[13]. It was being considered for Multics in 1967, under the
working name “first in not used first out” (FINUFOQ)-[39],
and it has been operational in Multics since 1969 [93]. It
was used in an experimental version of CP-67 [7] and is now
in all released versions of VM/370. It is difficult to analyze
[71, [57]. ;

Both global CLOCK and global LRU tend to favor the pages
of the job using the CPU most recently and the job having the
smallest locality set [38], [39]. Therefore, a job’s resident set
depends on many factors besides its own locality ~these poli-
cies thrash easily and analyze poorly.

There is, unfortunately, little published performance data on
the CLOCK and global LRU obtained from real systems in
operation. Bard reported some data on CLOCK in a CP-67
[7] but did not compare with other policies. An early study
in Multics suggested that global CLOCK might be somewhat
better than global LRU [124]. Belady’s data, however, sug-
gest that CLOCK and LRU give similar results when applied
to single programs [13]. Graham’s data shows that LRU is
normally significantly worse than WS when applied to single
programs [73]. Experience with Release 2 of CP-67 [100]
and the EMAS [1], [97], suggests further that replacing a
global policy with a WS policy can improve performance
significantly. . _ , ‘ '

The evidence available thus suggests that CLOCK and LRU
do not perform as well as WS. This is because these global
policies cannot ensure that the block of memory allocated to
a program minimizes that program’s space-time [47]. -The
main attraction of CLOCK is its apparently simple mechanism:
but, as described below, its poorer performance and the addi-
tional mechanism for feedback control cancel this advantage.

The working set (WS) policy, which assigns each program a
resident set identical to its working set, is an example of a
local-policy. : : ‘

In 1972, Chu and Opderbeck proposed the page fault fre-
quency (PFF) policy, which was to be an easily-implemented

: alternative to WS [25]. PFF is designed to rely only on hard-

ware. usage bits and an interval timer, and it is invoked only at
page fault times; thus it is easily incorporated into most exist-
ing operating systems built on conventional hardware. Let ¢’
and £(t>1") denote two successive (virtual) times at which a
page fault occurs in a given program;let R(¢, 8) denote the
PFF resident set just after time ¢, given that the control param-
eter of PFF has the value 8. Then :

W, t-t", ift-t'>0

R@,0)+r(2),

where 7(z) is the page referenced at time ¢ (and found missing
from the resident set). The idea is to use the interfault interval

R@®={

otherwise: '

DENNING: WORKING SETS PAST AND PRESENT

as a working-set window. The parameter @ acts a threshold
to guard against underestimating the working set in case of a
short interfault interval: if the interval is too short, the resi-
dent set is augmented by adding the faulting page r(t).” The
usage bits, which are reset at each page fault, are used to deter-
mine the resident set if the timer reveals that the interfault
interval exceeds the threshold. Note that 1/ can be inter-
preted as the maximum tolerable frequency of page faults,

Various experimental studies have re\{eéled that WS and
PFF, when properly “tuned” by good choices of their con-
trol parameters, perform nearly the same and considerably
better than LRU; WS has a slight tendency to produce lower
space-time minima than PFF, but the differences are within
10 percent [25], [27], {73], [74]. However, PFF may dis-
play anomalies for certain programs, i.e., the lifetime or mean
resident set size (or both) may decrease for increasing 8 [73],
[66]. This is because PFF does not satisfy the inclusion
property. Moreover, the performance of PFF is much more
sensitive to the choice of control parameter than is the per-
formance of WS [73], [75].

Controllability of Memory Policies

Since global memory policies make no distinctions among
programs, their load controls (e.g., according to the “L=§
criterion” or the “50 percent criterion™) have no dynamically
adjustable parameters; but these controls cannot ensure that
each active program is ailocated a space-time minimizing resi-
dent set. Local memory policies, such as WS and PEF, offer
a much finer level of control and are capable of much better
performance than global policies. However, these policies
also present the problem of selecting a proper value of the
control parameter 8, for each active program. The question
of sensitivity to the control parameter setting is of central
importance. : : :

Since both WS and PFF space-time functions typically have
flat minimal regions as functions of 6 [25], [73] there is
little point in considering policies that dynamically vary @
The main problem is to associate a proper value of & with a
program as soon as it is activated.

At one extreme, we can design the policy so that each pro-
gram is assigned a value of 8 that minimizes its resident set’s
space-time product. We call this the (fully) tuned policy
[107]. A tuned policy may have a high overhead in the
mechanism that monitors each program and assigns the proper
8. At the other extreme, we can design the policy to use one
global @ for all programs. We call this the (fully) detuned
policy. A detuned policy has no overhead in ¢-detection—
but this may be at the cost of operating some programs far
from their space-time minima and, hence at the risk of thrash-
ing. As a compromise we can design a p percent detuned

?In programs with strong phase behavior, PFF can have considerably
higher space-time than WS. This is because bursts of short interfault
intervals occurring at transitions will be followed by a long interfault
interval spanning all (or part of) a phase; in the worst case, the PFF
resident set will contain both the current and prior locality sets. For
the same program, WS will remove all the old locality set’s pages within
0 time units after the transition completes. That PFF is less able than
WS to track changing locality has been corroborated by Graham's ex-
periments [73].

71
programs P % plategux
[! !
] t ' [P ——
. \ ;
) :
7 h V. S—Y
H '
] ' -
5t y J
1 1
! ' 1
5) |t v—
! i
)
4 |-——-_...E.| !
: '
3 e 1
1 L}
H .
2 (- : '
Ll 1
i |-—:—-—-..._._(!
Ll 1
L) 1
H -
eI 62

memery policy paremetfar

Fig. 9. Minimal covering set for a given value of p.

policy that assigns each program a 8 for operation with p per-
cent of its minimum space-time.

Graham experimented with 8 programs in order to deter-
mine the sensitivity of WS and PFF to detuning the control
parameter [74]. Two questions were asked:

1) For the given programs and a given value of p, what is
a minimal set of §-values for p percent detuned operation?
{The size of this minimal set represents the least number of
choices that a #-detector must make for a given program to
achieve system throughput no worse than p percent from
optimum.)

2) If one best global §-value is used for all programs in the
sample, what is the largest difference from minimum space-
time that must be tolerated? Specifically, what is the smallest
P such that the p percent detuned policy is fully detuned?

To answer these questions, Graham constructed diagrams
like Fig. 9, in which the horizontal bars represent ranges of
8-values in which space-time is within p percent of minimum.
He visually located minimal sets of @-values by finding sets
of. vertical bars that cut all the horizontal bars. He found
these sizes of the minimal sets of 8-values:

J/
10 percent 5 percent
WS 1 2 (8 programs in
PFF 3 4 the sample.)

He also found these as the maximum tolerances that must be
tolerated when one 9-value is used: '

minimum p
WS 10 percent
PFF 50 percent

For the particular sample of programs, the WS parameter value
giving the minimum p value of 10 percent was & = 73 000 ref-
erences, Simon’s similar experiments with a sample of 7longer

78 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-6, NO, 1, JANUARY 1980

address traces showed that, for 10 percent detuning, six of the
programs used 0 =780 000 and the seventh used 8 = 30 000
[107]. Simon also found that detuning all programs by 30
percent forced throughput down by only 10 percent from the
WS optimum.

The numbers shown above depend on the programs, the
lengths of the address traces, and the mean swapping delay
used- to compute the space-time product. The actual results
may vary from system to system. The important conclusion
is that 10 percent detuning is typically achievable with a single
#-value,

The conclusion from these studies is that the WS policy can
be run with a single global @-value and deliver throughput
typically no worse than 10 percent from optimum. For com-
parable performance, PFF would need a dynamic §-detector
capable of distinguishing among several candidate values of §.
The performance of PFF is therefore much more sensitive to
0 than is the performance of WS. (A similar conclusion has
been reduced by Gupta and Franklin [75].)

Assuming that these characteristics are typical, the &-de-
tector that endows PFF with performance similar to a single-8
WS makes a multiprogrammed PFF at least as expensive as
a multiprogrammed WS. Where it has been substituted for
CLOCK or LRU, a detuned WS has performed significantly
better than the original global policy. '

Are There Better Policles? .

Do there exist memory policies that perform significantly
better than properly tuned WS without costing significantly
more? No one has found such a policy. The operation of the
VMIN optimal policy on programs with marked phase be-
havior suggests that it is unlikely that anyone will ever find
such a policy.

Recall that the VMIN policy uses its parameter 8 to select
one of two.choices for each reference #(t): if the forward in-
terval to the next reference or segment r(¢) exceeds 8, r()
is removed immediately after time ¢, to be reclaimed later
when needed by a fault; otherwise r(¢) is kept resident until
its next reference [53], [96]. For each mean resident set
size, VMIN produces the smallest possible fault rate.

As suggested in Fig. 10, VMIN anticipates a transition into
a new phase by removing each old segment from residence
after its last reference prior to the transition; in contrast,
WS retains each segment for as long as @ time units after the
transition. This behavior has been confirmed experimentally
by Jamp and Spirn [77]. Since VMIN and WS generate ex-
actly the same sequence of segment faults [52], [53], the
suboptimality of WS results from resident set *“overshoot” at
interphase transitions.

The only way to make WS more like VMIN is to “clip off”
the overshoot. Smith’s method [110] typically reduces space-
time by less than 5 percent [73]. No method is likely to do
better because it is impossible without lookahead to tell that a
transition is in progress until it has generated a few stoccato
faults; by the time a “clipping action™ is begun, a good deal of
overshoot will already have occurred. Smith’s suggested appli-
cation of clipping is not space-time reduction, but controlling
the overhead caused by temporary memory overflow.

resident
sel size
(pages}

]

ws

a*b

frramevable
overshogl

vlrtual tima

Fig. 10. Behavior of policies near a transition between phases.

Simon compared the optimum throughput from the tuned
WS policy to the optimum from the VMIN policy [107]. He
found that VMIN improved the optimum throughput from
5 percent to 30 percent depending on the workload, the
average improvement being about 10 percent, He estimated
that improvements from the best possible clipped WS policy
would average less than 5 percent. This is the most compelling
evidence available that no one is likely to find a policy that
improves. significantly over the performance of the tuned
WS policy.

Batson has suggested that analysis of cycles'® in programs
may reveal the program’s locality sets and phases [12]. If this
is so, it may be possible for a compiler to implant instructions
that advise the memory policy when a given segment has been
referenced for the last time in a phase, thereby allowing the
memory policy to behave more like VMIN as in Fig. 10.

A somewhat more subtle argument for the optimality of WS

s a property of ideal phase-transition programs called “space-

time dominance” [52]; this property states that a memory
policy capable of tracking the locality set exactly will generate
the least space-time product among all nonlookahead policies.
If the mean holding time in a phase is long compared to the
working set parameter @, and if the mean time between two
references to a locality-set segment is short compared to 6,
WS will also be dominant in space-time. However, it is not
known how many real programs satisfy these properties.

This evidence has convinced me that it is unlikely that any-
one will discover a nonlookahead policy that consistently
produces significantly lower space-time than the WS policy
on real programs. A working set policy will generate near-
maximum throughput among all possible nonlookahead
policies.

IMPLEMENTING A WORKING SET DISPATCHER

Among the more interesting practical implementations of
WS memory management are the special hardware designed
by Morris for the MANIAC II [89], the dispatcher for the

1018 this context a “cycle™ over a set of segments is a minimal refer-
ence substring mentioning each member of the set at least once, Easton
has used a similar definition (*clusier’) to analyze use-bit scanning
policies [57] and locality [59].

DENNING: WORKING SETS PAST AND PRESENT

Edinburgh multi-access system (EMAS) [1], and the dispatch-r
designed by Rodriguez and Dupuy for a CP-67 system [100],
[101}. Variants of the WS policy are used in Univac’s VMOS
[65] and IBM's MVS [23), [24]). The CP-67 dispatcher
(100}, [101] showed that a WS policy can be implemented
easily and cheaply in the context of a traditional operating
system, even though the only “memory management hard-
ware” is usage bits. .

Recent technological advances make working-set detecting
hardware, such as Morris proposed [89], even more attractive.
Such hardware would simplify the operating system and re-
duce the overheads of job scheduling and memory manage-
ment; it would do this by replacing a considerable amount of
mechanism that would otherwise be in the operating system
software. Following is a description of a working set dis-
patcher for paging; it combines ideas from the CP-67 and the
MANIAC IT implementations.

Overview of the Dispatcher

- The working set dispatcher, which comprises the scheduler
and the working set detector, controls the transitions of
processes among five ‘states. (See' Fig. 11.) A process is
entitled to use CPU, I/O devices, and main memory only when
in the ACTIVE state. A process is entitled to execute its next
instruction only when in the ENABLED state; when DISABLED,
a process is waiting for another process to signal it via a sem-
. aphore. An ACTIVE-ENABLED process enters the ACTIVE-
DISABLED state only when it executes a wait operation on
a semaphore. o .
~ This state description actually encompasses a threedevel
hierarchy. At the highest level are the “superstates” ACTIVE
and INACTIVE. At the intermediate level are the components
. of these “‘superstates”—ENABLED, DISABLED, and PAGEWAIT.
At the lowest level (not shown in Figure 11) are components
of DISABLED, substates indicating precisely which semaphore
is delaying a process. '

Many systems allow for multiple job classes to which guaran-
teed resources are available. In this case there would be one
ACTIVE “superstate” for each job class, and a separate working
set dispatcher for each job class. (The “domain” structure of
MVS illustrates this; see [23] and [24].) L

The working set detector maintains the pool, which is a list
of available page frames, and a count X of the pool’s (non-
negative) size. The scheduler may active the highest priority
INACTIVE-ENABLED process only if that process’s working

 set size w satisfies
W QK = KQ .

where K, is a constant specifying the desired minimum on the
pool. The purpose of Kj is to prevent needless overhead of
dealing with memory overflow shortly after a new process is
made ACTIVE. Chuand Opderbeck, who assumed that memory
overflow triggers the deactivation of a job, found that K, near
10 pages was sufficient [91]; Simon, who assumed that
memory overflow triggered the preemption of a page from the
largest resident set, found that K, =4 was sufficient [107].
Note that X' <X, may occur because working sets may expand
after loading.

79

PAGEWAIT
ENABLED . T . l
activate -

T deactivate .

I - ENABLED
DISABLED activate - T l
DISABLED
INACTIVE ACTIVE

Fig. 11. Process states in working set dispatcher,

The page fault handler program puts a faulting process in
the ACTIVE-PAGEWAIT state until the missing page is loaded in
main memory. Before requesting that the auxiliary memory
device load the missing page, the page fault handler obtains a
free page from the pool and subtracts 1 from the count K. If
K is already O the page fault handler will first cause the work-
ing set detector to preempt a page from the lowest priority
ACTIVE working set; this implies that the lowest priority
ACTIVE process may not have its working set fuily resident.
(See [115], [122], and [107].)

A deactivate decision may be issued by the time-quantum
exception handler program (if a process uses up its time in the
ACTIVE state}, by the wait-semaphore operation (if a process
stops to wait on a semaphore on which the delay is indefinite),
or by the page fault handler (if the Jowest priority ACTIVE
process has its resident set reduced to naught). In the first
two cases, the process’s working set pages are released and
returned to the pool. (Releasing pages entails swapping out
those modified during their residences in main memory.)

The working set detector hardware can be patterned after
Morris’s [89] . With each page frame of memory is associated
an identifier register and a counter. The identifier register
contains the index number of the protection domain in which
the page was most recently referenced, or a zero if the page
frame is free, (Note that shared pages may, from the viewpoint
of the working set detector, appear to change domains, This
does not affect access control, which is enforced separately
in the virtual addressing mechanism.) At regular intervals, a
broadcast clock pulse increments the counter of each page
frame whose identifier register matches the domain of the
process presently running on the CPU. (This causes the
counters to operate in virtual time.) When a counter over-
flows, the corresponding page frame is no longer a member
of a working set. When the running process refers to a page,
the counter of that page’s frame is automatically reset, and the
identifier register of that page’s frame is set to match the
“current domain™ register in the CPU,

If clock pulses are generated every H seconds and the counters
contain ¥ bits, this scheme implements the working set with
8 =H-2%. The value of H, which can be stored in a register,
can be “tuned” so that the WS policy exhibits best performance.
The previous sections argue that one giobal value of H is suf-
ficient for this purpose.

80 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-6, NO, 1, JANUARY 1980

Cost of Implementation

Motris reported that the circuitry of the working set detector
could be built for about $20 per page frame in the technology
of 1972 [89) . The same circuits would be considerably cheaper
today, especially if incorporated in the injtial design of the
memory hardware. Microcomputers could be used to initiate
swapouts of pages releaged from working sets and to maintain
the pool. The cost of these microcomputers should be less
than the cost of the part of the operating system’s software
that they replace. _

Because the parameter ¢ does not need readjustment for
each new program, the clock pulse time H does not need to
be updated each time the CPU is switched between processes,
There is no need for a mechanism to measure a suitable clock
pulse time for each process,

This dispatcher is cost-effective because it is known to
optimize performance. Its simple, cheap hardware replaces a
considerable amount of mechanism for scheduling and load
control which otherwise would be present in the operating
system’s software,

Comparison With Other Dispatchers

Three parts of a dispatcher depend on the underlying memory
policy: 1) a mechanism for determining a value of the policy’s
control parameter () for each process, 2) a mechanism for
determining a process’s resident set for the given 4, and 3
a load controller. The scheduler and the manager of the pool
of free space have the same complexity in all dispatchers,

There is no formal “proof” that local memory policies are
inherently more efficient than global ones. However, two
real systems give compelling empirical demonstrations—the
Edinburgh multi-access system (EMAS) [1] and the CP-67
at Grenoble [100]. Both these systems replaced a dispatcher
based on a global memory policy (simifar to “CLOCK”) with
aworking set dispatcher and observed significant Irmprovements
in performance. This is direct evidence that the total system
with a working set dispatcher, despite its apparent overheads,
is nonetheless more efficient than the total system with the
apparently simpler global memory policy. '
~ Although the resident-set detecting hardware is simpler for
PFF than for WS, the great parameter sensitivity of PFF neces-
sitates 2 mechanism not needed in the WS dispatcher—one for
determining a §-value for each program. The cost of the 8-
detector cancels the apparent advantage of the PFF dispatcher.
The total cost of the PFF dispatcher is higher than the total
cost of a WS dispatcher capable of the same performance,

It is sometimes argued that the CLOCK dispatcher is more
efficient than WS for “data-stream programs”—database pro-
grams that scan linearly through large amounts of data, This
argument arises from the mental picture of a WS policy with
a large window (6) that acts as a long pipeline filled with use-
less pages from the data stream. In fact, the minimum WS
space-time for data-stream programs occurs at a small window

[39]. A properly tuned WS policy does not retain useless pages
any longer than a CLOCK policy,

It is sometimes argued that, when software maintenance
is taken into account, the simple CLOCK dispatcher is actually

cheaper than a WS dispatcher. This was not considered a
problem in either EMAS or CP-67 [1], [100]}. In fact, the
strong hardware support of the WS dispatcher reduces the
complexity of the operating system, thereby simplifying
maintenance.

CoNCLUSION

The working set dispatcher solves Saltzer’s Problem.

This conclusion is not speculation. Experiments with real
programs have revealed that the working set policy is the most
likely, among (nonlookahead) policies, to generate minimum
space-time for any given program; and that one properly chosen
cotitrol parameter value is normally sufficient to cause any
Program’s working-set space-time to be within 10 percent of
the minimum possible for that program. Working set dis-
patchers automatically control the level of multiprogramming
while maintaining near-minimum space-time for each program.
Working set detecting hardware can be built cheaply.

Working set dispatchers have been built in real operating sys-
tems where they have been cost effective. even without much
hardware support. Rogriguez-Rosell reported a successful
implementation for a CP-67 system [100]. Potier reports
that in EMAS 2 working set dispatcher increased the time the
machine spent in user state by 10 percent, decreased super-
visor overhead, and increased the utilization of the swapping
channel [97]. .

Non-working-set dispatchers required additional mechanisms,
either for selecting a memory policy parameter suitable for
each program, or for a load control with a global policy. It
is a false economy to limit the hardware support for memory
management to usage bits and interval timers, for the savings
in hardware are canceled by performance losses (relative to
the working set dispatcher) or by additional mechanism else-
where in the operating system.

What o_f the Future?

New memory and computer-network technologies are chang-
ing the computing milieu. Has the solution for the memory
management problem “arrived” just as the problem has
receded? [think not,

This paper has presented a detailed view of the “life cycle”
of an important problem area, optimal multiprogrammed
memory management. ' Well over two hundred individuals
from many countries have participated in this research since
1965. 1t is quite rare to see so many involved in the solution
of a difficult problem. The most important results of this
research are:

1) Basic instabilities exist in computer systems. These
instabilities are closely related to the behavior of the programs
being run, :

2) Queuing network models, which are robust and amenable
to hierarchical analysis, can be used to characterize these insta-
bilities precisely.

3) Optimal or near-optimal policies of memory management
can be designed with the help of queueing network models.

4) Adaptive procedures which are practical approximations
to the controls suggested by the models can be built.

This larger perspective on the accomplishments of memory

DENNING: WORKING SETS PAST AND PRESENT

management research shows that the primary results transcend
the specific solution of Salizer’s Problem. Many of the tech-
niques can be extended to deal with instabilities in networks
of computers, automatic telephone and communication sys-
tems, or distributed data management systems.

What problems face us in the near term? Certainly some
form of working set dispatcher will be needed in any system
that multiprograms a main memory. Conventional multi-
programming systems will be with us for some time to come.
This will be true whether virtual memories are based on seg-
mentation or on paging. It will also be true despite larger
amounts of cheaper main memory.

The new technology enables new solutions to old problems
even as it provides solutions to new problems. For example, a
form of multiprogramming is likely to appear in dynamically
reconfigurable memories, wherein -each process has assigned
to it a working set of memory modules. A stored object
can be transmittéd from one processor to another by discon-
necting the module containing the object from the sender’s

working set and attaching it to the receiver’s working set..

Memory policies will free modules by moving their contents to
secondary storage.

Another example: the technology will soon permit each user
to have a private computer system (either personally owned or
rented from a central house); These will be connected via net-
works to central data bases and long-term. storage systems.
Programs and data will be transferred to the local computer for
processing, and results returned to the central storage system
for safekeeping. What little memory management there is in
the local computers is mostly concerned with swapping and
buffering of entire programs or files. Such networks are
essentially elaborate transaction-processing systems: we have
known for a long time that sophisticated memory policies
are of marginal value in such systems. In this case, the technol-
ogy is not giving us a new problem, but rather an old problem
in new guise. Sophisticated memory systems will still exist in
the central facilities accessed by the local computers.

Data management systems are forcing us to reevaluate the
fundamental concept of a working set. A basic question is
whether the system’s working set should be measured from the
merged reference patterns of the processes actively reading and
updating the data base, or whether it should be the union of
the working sets measured from the individual reference pat-
terns of the active processes, The record reference string
representing the joint activity of many processes is likely to
‘have much less apparent locality [102] than the individual
record reference strings of active processes [59]. A moment’s
reflection shows that these questions are fundamentally the
same as were asked about page reference strings some years
ago. This appears not to be a new problem, but rather an old
problem in a new guise. The answer may turn out to be, as
before, that it is better to measure the working set of each
active process and store the union of these working sets in
the high-speed memory.

When combined with paged virtual address spaces, data
management systems have given rise to new problems that are
sometimes regarded as worthy research problems. An example
is the so-called “*double paging problem,” which can arise when

81

the data base manager uses a buffer area in the virtual address
space. The data base manager may use the buffer area with
such poor locality that the virtual memory manager is con-
stantly removing the most needed pages of the buffer: a
reference to a missing record causes both a data manager fault
and a page fault. This problem originated in the IBM informa-
tion management system (IMS), where a linear search was used
to locate a record in the virtual buffer. Ft has been fixed in
IMS by using an index table for the records in the virtual
buffer.

The stopgap solution for the double paging problem is
usually to purchase enough real memory to hold the entire
buffer. The real solution is, of course, to use a segmented
virtual memory: each record would already be a part of the
address space and the data base manager would not be forced
to solve an unneeded instance of the overlay problem in
the address space, (Seeaiso {43].) The double paging problem
is the consequence of a flaw in the architecture of the com.
puter; it is not an interesting subject of memory management
research.

What is not an old problem in new guise is elosing the
semantic gap—making the hardware capable of directly sup-
porting the concepts used in programming languages. Curiously,
we have over the years expended Herculean efforts on the mas-
sive mechanisms of operating systems; by comparison, pixie
effort has been devoted to understanding the nature of the
programs that drive the mechanisms. The result has been one
computer after another that presents an inhospitable environ-
ment to its users. The art of tailoring the machine’s design to
allow highly efficient execution of the programs likely to be
run on it—long practiced by the Burroughs Corporation [94] —
is beginning (grudgingly) to find favor among the general com-
puter architecture community. For example, Tannenbaum
has recently shown that properly designed machines can run
“structured programs” several times faster than conventional
machines and with memory several times smaller [126]. Myers
has shown that a tagged architecture to support self-identify-
ing data objects significantly shortens programs and increases
software reliability [90].

The same principle applies to memory management. The
system as a whole will be simpler and more reliabie if there is
no gap between the concepts of program behavior and the
concepts supported by the memory management hardware,
(Rau’s data shows that virtually all manifestations of locality
are masked off at the level of address interpretation in con-
ventional memory architectures [98]. This would not be so
in Myers’ machine [90].} The Batson and Madison studies,
and the Ferrari studies, show that working set memory manage-
ment on machines capable of supporting small segments in
their virtual memories would be much more efficient than is
possible on any conventional machine. (See [10], [11], [61]-
[63], [86].) Batson has recently suggested that cyclic struc-
tures in the program text can be exploited to reduce resident
sets near the transitions between program phases [12]; this
would require coordination between the design of a compiler
and the design of the working set detector. Cyclic structures
have also been found useful in analyzing data base reference
patterns [59].

82

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-§, NO. 1, JANUARY 1980

Because of the great potential for improving computer
architecture, and because of the strong influence program be-
havior has on the stable operation of computer networks,
characterizing workloads and tailoring the machine’s design
thereto is perhaps the most important, intriguing, and fruit-
ful direction of memory management research in the next
period.

ACKNOWLEDGMENT

Special gratitude goes to E. Gelenbe, who invited me to write
this paper and then patiently pored through the lengthy draft.
A. Smith, G. Scott Graham, A. Batson, Y. Bard, J. B. Morris,
J. Bouhana, and J. Spirn were most helpful in their comments.
Y. Bard graciously provided some performance data on CP-67
and VM/370, :

{11

(21

[3]

(4]

[5]

(6]

(7]

(8i

9]

[10]

(1]
(12}

[13]

[14]
[15]

[16]

(171

REFERENCES

M. C. Adams and G. E. Millard, “Performance measurements
on the Edinburgh multi access system (EMAS),” in Proc. ICS
75, Antibes, June 1975.

A. V. Aho, P. J. Denning, and JI. D, Ullman, “Principles of
optimal page replacement,” J. Ass. Comput. Mach., vol, 18,
pp. 8093, Jan. 1971.

ACM, “Proceedings of a symposium on stozage allocation,”
Comm., ACM 4, Commun, Ass, Comput. Mach., vol. 4, no. 10,
Oct. 1961.

Arvind, R, Y, Kain, and E. Sadeh, “On reference string genera-
tion processes,” in Proc. 4th ACM Symp. Operating Systems
Principles, Oct. 1973, pp. 80~87.

1. Y. Babonneau, M. 8. Achard, G. Morisset, and M. B. Mounajjed,
“Automatic and general solution to the adaptation of programs
in a paging environment,” in Proc. 6th ACM Symp. Operating
Systems Principles, Nov. 1977, pp. 109-116.

M. Badel, E. Gelenbe, J, Lenfant, and D. Potier, “Adaptive
optimization of a time sharing system’s performance,” Proc.
IEEE, vol. 63, pp. 958-965, June 1975.

Y. Bard, “Application of the page survival index (PSI) to virtual
memory system performance,” JBM J. Res. Develop., vol. 19,
pp. 212-220, May 1975.

F. Bagkett and A. Rafii, “The AQ inversion model of program
paging behavior,” Stanford Univ., Dep. Comput. Sci, Rep.
STAN-CS-76-579, Nov. 1976.

A. P. Batson, 8. Ju, and D. Wood, “Measurements of segment
size,” Commun. Ass. Comput. Mach., vol. 13, pp. 155-159,
Mar. 1970.

A. P. Batson and W. Madison, “Measurements of major locality
phases in symbolic reference strings,” in Proc. Int. Symp.
Comput, Performance Modeling, Measurement, and Evaluation,
ACM SIGMETRICS and IFIP WG?.3, Mar. 1976, pp. 75-84,

A. P. Batson, *“Program behavior at the symbolic level,” Com-
puter, vol. 9, no. 11, pp. 21-28, Nov. 1976.

A. P, Batson, W, E. Blatt, and J. P. Kearns, “Structure within
locality intervals,” in Proc. Symp. Modeling and Performance
Evaluation of Computer Systems, H. Beilner and E. Gelenbe,
Eds. Amsterdam, The Netherlands: North-Holland, Oct. 1977,
pp. 221-232.

L. A. Belady, “A study of replacement algorithms for virtual
storage computers,” JTBM Syst. J., vol. 5, no. 2, pp. 78-101,
1966.

—, “Biased replacement algorithms for multiprogramming,”
IBM T. J. Watson Res. Center, Res. Note NC697, Mar. 1967.

L. A, Belady and C. J. Kuehner, “Dynamic space sharing in
computer systems,” Commun, Ass, Comput. Mach., vol. 12,
pp- 282-288, May 1969.

A, Brandwajn, “A model of a time sharing virtual memory sys-
tem solved using equivaletice and decomposition methods,”
Acta Informatica, vol. 4, pp. 11-47, 1974,

—, “A queueing model of multiprogrammed computer systems
under full load conditions,” J. Ass. Comput. Mach., vol. 24,
Pp. 222-240, Apr. 1977,

[18] B. Brawn and F. G. Gustavson, *‘Program behavior in a paging

[19]

(20
(21]

[22]
23]
[24]

[25]
[26]
[27)
[28]

[29]
{30]

(31]

(32).

(33]

(34]

{35}
{36]

(371

[38]
(39]

(40

[41]
[42]
431
[44]

(451

[46]

environment,” in I968 AFIPS Conf. Proc., Fall Joint Comput.
fgg}z“., vol. 33, Washington, DC; Thompson, 1968, pp. 1019~
B. Brawn, F. G, Gustavson, and E. Mankin, “Borting in a paged
environment,” Commun. Ass. Comput. Mach., vol. 13, pp. 483-
494, Aug. 1970,

P. Bryant, “Predicting working set sizes,” [BM J. Res. Develop.,
vol. 19, pp. 221-229, May 1975.

J. P. Buzen, “‘Optimizing the degree of multiprogramming in
demanf paging systems,” in Proc, IEKE COMPCON, Sept. 1971,
139-140,

—, “Fundamental operational laws of computer system perfor-
mance,” Acta Informatica, vol. 7, no. 2, pp. 167-182, 1976.
—, “A queuelng network model of MVS,” Computing Surveys,
vol. 10, pp. 319-332, Sept. 1978.

W. W. Chiu and W-M Chow, “A hybrid hierarchical model of a
multiple virtual storage (MVS) operating gystem,” IBM T. J.
Watson Res. Center, Rep. RC6947, Jan. 1978.

W. W. Chu and H. Opderbeck, “The page fault frequency re-
placement algorithm,” in 1972 AFIPS Conf. Proc., Fall Joint
Comput. Conf., vol. 41. Montvale, NI: AFIPS Press, 1972,
pp. §97-609.

~—, “Analysis of the PFF algorithm using a semi-Markov model,”
Commun. Ass. Comput. Mach. vol. 19, Pp. 298-304, May 1976.

.=, *“‘Program behavior and the page fault frequency replace-

ment algorithm,” Computer, vol. 9, no. 11, pp. 29-38, Nov.
1976,

D. D. Chamberlin, 8. H. Fuller, and L. Liu, “An analysis of page
allocation strategies for virtual memory systems,” IBM J, Res.
Develop., vol. 17, pp. 404-412, 1973.

E. G, Coffman, Jr. and P. J. Denning, Operating Systems Theory.
Englewood Cliffs, NJ: Prentice-Hall, 1973,

E. G. Coffman, Jr. and T. A. Ryan, Jr., “A study of storage
partitioning using a mathematical model of locality,” Commun.
Ass. Comput. Mach., vol, 15, pp, 183-190, Mar. 1972, '
E. G. Coffman, Jr. and L, C. Varian, “Further experimental data
on the behavior of programs in a paging environment,” Com-
mun. Ass. Comput, Mach., vol. 11, pp. 471-474, July 1968.

L. W, Comeau, “A study of the effect of user program optimiza-
tionina paging system,” in Proc. ACM Symp. Operating Systems
FPrineiples, Oct, 1967.

P. J. Courtois, “On the near complete decomposability of net-
works of queues and of stochastic models of multiprogramming,”
Dep. Comput. Sci., Carnegie-Mellon Univ., Res. Rep. CMU-CS-
72-11, 1972, .

— “Decomposability, instabilities, and saturation in multl-
programming systems,” Commun. Ass, Comput, Mach., vol. 18,
pp. 371-377, July 1975.

—, Decomposability. New York: Academic, 1977,

P. Y. Courtois and, H. Vantilborgh, “A decomposable model of
program paging behavior,” Acta Informatica, vol. 6, no. 3, pp.
251-276, 1976.

P. J. Denning, “Memory allocation in multiprogrammed com-
puter systems,” MIT Project MAC, Computation Structures
Group Memo 24, Mar. 1966.

—, ""The working set model for program behavior,” Commun.
Ass. Comput. Mach., vol. 11, pp. 323~333, May 1968.

—, “Resource allocation in multiprocess computer systems,”
Ph.D. dissertation, Rep. MAC-TR-50, MIT Project MAC, May
1968.

—-, “Thrashing: Hs causes and prevention,” in 7968 AFIPS
Conf. Proc., Fall Joint Compur. Conf., vol. 33. Washington,
DC: Thompson, 1968, pp. 915-922,

—, “Equipment configuration in balanced computer systems,”
TEEE Trans. Comput., vol. C-18, pp. 1008-1012, Nov. 1969.
—, ““Virtual memory,” Computing Surveys, vol. 2, pp. 153-
189, Sept. 1970.

—, “Third generation computer systems,” Computing Surveys,
val. 3, pp. 175216, Dec. 1971.

P. J. Denning and 8. C. Schwartz, “Properties of the working set
model,” Commun. Ass. Comput. Mach., vol. 15, pp. 191-198,
Mar. 1972; corrigendum, Commun. Ass. Comput. Mach. ,vol. 16,
p. 122, Feb, 1973,

P. J. Denning, “On modeling program behavior,” in 1972 AFIPS
Conf. Proc., Spring Joint Comput. Conf.,vol. 40. Montvale, NI:
AFIPS Press, 1972, pp. 937-944.

P.], Denning and J. R. Spirn, “Dynamic storage partitioning,”

DENNING: WORKING SETS PAST AND PRESENT

(47
(48]

(49

(50]

[51]

(52]

(53]
[54]

[55]

[56]
[57)
£s8]
[59]

[60]
[61]
(62}
[63]
{64}

[65]
[66]

t67]
(68]

[69]
{70]

[71]

(72

in Proc. 4th ACM Symp, Operating Systems Frinciples, Oct,
1973. pp. 74-79. N
P. J. Denning and G. 8. Graham, “Multiprogrammed memory
management,” JEEE Proc., vol. 63, PP. 924-939, June 1975,

P. 1. Denning, “The computation and use of optimal paging
curves,” Dep, Comput. Sci, Purdue Univ., W. Lafayette, IN,
Rep. CSD-TR-154, June 1975,

P. J. Denning and K. C. Kahn, “A study of program locality and
lifetime functions,” in Proc, Sth ACM Symp. Operating Systems
Principles, Nov. 1975, pp. 207-216.

-—, “An L=8§ criterion for optimal multiprogramming,™ in Proc.
Int. Symp. Comput. Performance Modeling, Measurement,
and Evaluation, ACM SIGMETRICS and IFIP WG7.3, Ma.
1976, pp. 219~229,

P, J. Denning, K. C. Kahn, J - Leroudier, D. Potier, and R. Suri,
“Optimal multiprogramming,” Aetq Informatica, vol. 7, no. 2,
pp. 197-216, 1976.

P. 1. Denning, “Optimal multiprogrammed memory manage-
ment,” in Current Trends in Programming Methodology I,
K. M. Chandy and R. Yeh, Eds, Englewood Cliffs, NJ: Prentice-
Hall, 1978, pp. 298-322,

P. J. Denning and D. R. Slutz, “Generalized working sets for
segment reference strings,” Commun. Ass. Comput. Mach., vol,
21, pp. 750~759, Sept. 1978, .

P. J. Denning and J. P, Buzen, “The operational analysis of
queueing network models,” Computing Surveys, vol, 10, pp.
225-262, Sept. 1978, '

P.J. Denning, “Working sets then and now,” in Proc. Int. Symp.
Operating Systems, D. Lanciaux, Ed., IRIA Laboria, Rocquen-
court, France, Oct. 1978. Amsterdam, The Netherlands:
North-Holland, 1979,

J. B. Dennis, “Segmentation and the design of multiprogrammed
computer systems,” J. Ass. Comput. Mach., vol. 12, pp. 589~
602, Oct. 1965.

M. C. Easton and P, A. Franaczek, **Use bit scanning in replace-
ment decisions,” IEEE Trans, Comput,, vol, C-28, pp. 133~
141, Feb. 1979.

M. C. Easton and B. T. Bennett, “Transient free working set
statistics,” Commun. Ass. Comput. Mach., vol. 20, pp. 93-99,
Feb. 1977.

M. C. Easton, “Model for database reference strings based on
behavior of reference clusters,” JBM J. Res. Develop., vol, 22,
pp- 197-202, Mar. 1978. _

M. C. Easton and R. Fagin, “Cold-start v. warm-stast miss ratios,”
Commun. Ass. Comput. Mach.,vol. 21, pp. 866-872, Oct. 1978.
D. Ferrari, “Improving locality by critical working sets,” Com-
mun, Ass, Comput. Mach., vol. 17, pp. 614-620, Nov, 1974,
—, “Tailoring programs to models of program behavior,” IBM
J. Res. Develop., vol. 19, pp. 244-251, May 1975,

—, “The improvement of program behavior,” Computer, vol.
9, pp. 39-47, Nov. 1976.

G. H. Fine, C. W, Jackson, and P. V., Mclssac, “Dynamic program.
behavior under paging,” in Proc. ACM Annu. Conf., 1966, pp.
223-228, .

M. H. Fogel, *“The VMQS paging algorithm,” ACM SIGOPS
Operating Systems Review, vol, 8, pp. 8-17, Jan. 1974,

M. A, Franklin, G. S. Graham, and R. K. Gupta, “Anomalies
with variable partition paging algorithms,” Commun. Ass. Com-
put. Mach,, vol. 21, pp. 232-236, Mar. 1978.

E. Gelenbe, P. Tiberio, and J. Boekhorst, “Page size in demand
paging systems,” Acta Informatica, vol. 3, pp. 1-24, 1973,

E. Gelenbe, “A unified approach to the evaluation of a class of
replacement algorithms,” IEEE Trans. Comput., vol. C-22,
pp. 611-618, June 1973,

E. Gelenbe, J. Lenfant, and D. Potier, “Anaylse d’un algorithme
de gestion de mémoire centrale et d'un disque de pagination,”
Acta Informatica, vol. 3, pp. 321-345, 1974,

E. Gelenbe and A. Kurinckx, “Random injection control of
multiprogramming in virtual memory,” IEEE Trans. Software
Eng.,vol, SE-4, pp. 2-17, Jan. 1978. :

E. Gelenbe, A. Kurinckx, and L Mitrani, “The rate control
policy for virtual memory management,” in Proc. 2nd Int.
Symp. Operating Systems, IRIA Laboria, Rocquencourt, France,
Oct. 1978, .
M. Z. Ghanem and H. Kobayashi, “A parametric representation
of program behavior in a virtual memory system,” in Proc. 8th
Princeton Conf. Information Sclences and Systems, Dep. Elec.

73]

[74]

t7s]

[76)
177]

(78]

[79]

[80)

(81]

[82]

[83)

f84]

[85]

[86]

{87
{88]

(89]

[90]
[91]

{92]
[93]
(94]
(93]

[96]

47

{98}

[99]

83

Eng. and Comput. Sci.,
330.

G. 8. Graham, “A study of program and memory policy be-
havior,” Ph.D. dissertation, Dep. Comput, Sci., Purdue Univ.,
W. Lafayette, IN, Dec. 1976, ‘ o

G. S. Graham and P. J. Denning, “On the relative controllability
of memory policies,” Computer Performance, K., M. Chandy
and M., Reiser, Eds. Amsterdam, The Netherlands: North-
Holland, Aug. 1977, pp. 411-428,

R. K. Gupta and M. A. Franklin, “Working set and page fault
frequency replacement algorithms: A performance comparison,”
{EEE Trans. Comput., vol. C-27, pp. 706-712, Aug. 1978,

D. Hatfield and J. Gerald, “Program restructuring for virtual
memory,” IBM Syst. J,, vol. 10, pp. 168-192, 1971.

R.Jamp and J. R. Spirn, “VMIN based determination of program
macro-behavior,™ Dep, Comput, Sci., Penn State Univ., Unj-
versity Park, Rep. CS8-79-34, May 1979,

K. C. Kahn, “Program behavior and load dependent system per-
formance,” Ph.D. dissertation, Dep. Comput. Sci., Purdue Univ.,
W. Lafayette, IN, Aug. 1976,

T. Kilburn, D. B, G. Edwards, M. 1. Lanigan, and F. H. Sumner,
“One level storage system,” JRE Trans. Elect. Commun., pp.
223-235, Apr. 1962,

J. Lenfant, “Comportment des programmes dans leur espace
d'addressage," M.S. thesis, Univ. Rennes, Nov, 1974,

J. Lenfant and P. Burgevin, “Empirical data on program be-
havior,” in Proc. ACM Int. Symp., E. Gelenbe and D. Potier,
Eds. Amsterdam, The Netherlands: North-Holland, 1975, pp.
163~170.)

J. Lenfant, “Ensembles de travail et ‘intervalles bornés de
localité,” RAIRO-Informatique {AFCET), vol, 12, pp. 15-35,
1978,

J. Leroundier and P. Burgevin, “Characteristics and models of
program behavior,” in Proc. ACM Annu, Conf., 1976, pp. 344
350.

1. Leroudier and D. Potier, “Principles of optimality for multi-
programming,” in Proc. Int. Symp. Computer Performance
Modeling, Measurement, and Evaluation, ACM SIGMETRICS
and IFIP WG7.3, Mar. 1976, pp. 211-218.

P. A. W, Lewis and P. C. Yue, “Statistical analysis of prograim
reference patterns in a paging environment,” in Dig. IEEE
Conf., 1971,

A. W. Madison and A. P. Batson, “Characteristics of program
localities,” Commun. Ass. Computi. Mach., vol. 19, pp. 285-
294, May 1976. .

T. Masuda, H. Shiota, K. Noguchi, and T. Ohki, “Optimization
by cluster analysis,” in Proc. [FIP Congr., 1974, pp. 261-265.

R. L, Mattson, J, Gecsei, D, R. Slutz, and L L. Traiger, “Evalua-
tion techniques for storage hierarchies,” IBM Syst, /., vol. 9,
pp. 78-117, 1970, :
1. B. Morris, “Demand paging through the wse of working sets
on the MANIAC II,” Commun. Ags. Comput. Mach., vol. 15,
pp. 867-872, Oct. 1972,

G. 1. Myers, Advances in Computer Architecture. New York:
Wiley, 1978. crtr e

H. Opderbeck and W. W. Chy, “‘[fogylce_of the page fault
frequency algorithm in a multiprogramming environment,”
in Proc. IFIP Congr., 1974, pp. 235-241.

— "“The renewal mode! for program behavior,” SIAM J, Com-
puting,vol. 4, pp. 356-374, Sept. 1975.

E. 1. Organick, The MULTICS System: An Examination of Its
Structure. Cambridge, MA: MIT press, 1972.

E. 1. Organick, Computer System Organization: The BS700/
B6700 Series. New York: Academic, 1973,

M. Parent and D. Potier, “‘A note on the influence of program
loading on the page fault rate,” Acta Informatica, vol. 8, pp.
359-370, 1977,

B. G, Prieve and R, 8. Fabry, “VMIN ~An optimal variable space
page teplacement algorithm,” Commun. Ass. Comput. Mach,,
vol. 19, pp. 295-297, May 1976.

D. Potier, “Analysis of demand paging policies with swapped
working sets,” in Proc. 6th ACM Symp. Operating Systems
Principles, Nov. 1977, pp. 125~131.

B. R. Rau, “Program behavior and the performance of inter-
leaved memories,” JEEE Trans. Comput., vol, C-28, pp. 191-
199, Mar. 1979,

J. Rodriguez-Rosell, “Experimental data an how program be-

Princeton Univ., Mar. 1974, pp. 327

[100}

[101]
{102)
[103]

[104]
[105]

[106)
[107]

[108]
[209]

[110]
[111]
1112]

(113}
[114]
[115)

[116]
[117)
[118]

[119]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-6, NO. 1, JANUARY 19380

havier affects the choice of scheduler parameters,” In Proc.
3rd ACM Symp. on Operating Systems Principles, Oct. 1971,
pp. 156-163.

. Rodrignez-Rosell and J. P. Dupuy, “The design, implementa-
tion, and evaluation of a working set dispatcher,” Commus.
Ass. Comput, Mach, , vol. 16, pp. 247-253, Apr. 1973,

J. Rodriguez-Rosell, “Empirical working set behavior,” Com-
mun. Ass. Compur, Mach,, vol. 16, pp. 356~560, Sept. 1973,
~—, “Empirical data reference behavior in data base systems,”
Computer, vol. 9, pp. 9-13, Nov. 1976.

E. Sadeh, “An analysis of the performance of the page fault
frequency (PFF) replacement algorithm,” in Proc. 5th ACM
Symp. Operating Systems Principles, Nov, 1975, pp. 6-13.

J. H. Saltzer, “A simple lnear model of demand paging per-
formance,” Commun. Ass. Comput. Mach., vol, 17, pp. 181-
186, Apr. 1974,

D. Sayre, “Is automatic folding of programs efficient enough to
displace manual?"” Commun. Ass. Comput. Mach., vol, 13, pp.
6356~660, Dec. 1969,

G. S. Shedler and C. Tung, “‘Locality in page reference strings,”
SIAM J. Comput., vol. 1, pp. 218-241, Sept. 1972,

R. Simon, “The modeling of virtual memory systems,” Ph.D
dissertation, Dep. Comput. Sci.,, Purdue Univ, W. Lafayette,
IN, May 1979,

D. R. Slutz and I, L. Traiger, “A note on the caleulation of
average working set size,” Commun. Ass. Comput. Mach.,
vol. 17, pp. 563-565, Oct. 1974,

D. R. Slutz, “A relation between working set and optimal
algorithms for segment reference strings,” IBM Res. Rep.
TI1623, July 1975,

A. J. Smith, “A modified working set paging algorithm,” /EEE
Trans. Comput., vol. C-25, pp. 907-914, Sept. 1976,

— “Analysis of the optimal, lookahead, demand paging algo-
rithms,” SIAM J. Computing, vol. 3, Dec. 1976.

— “Multiprogramming and internal scheduling,” Dep. Elec.
Eng. and Comput. Sci., CS Division, Univ, California, Berkeley,
Tech. Rep., Nov. 1976.

=, “Multiprogramming and memory contention,” Dep. Elec.
Eng. and Comput Sci., CS Division, Uniy. California, Berkeley,
Tech. Rep., Nov. 1976.

J. R. 8pirn and P. J. Denning, “Experiments with program local-
ity,” in AFIPS Conf. Proc., Fall Joint Comput. Conf., vol. 41.
Montvale, NJ: AFIPS Press, 1972, pp- 611-621.

I R. Spirn, “Program locality and dynamic memory manage-
ment,” Ph.D. dissertation, Dep. Elec. Eng., Princeton Univ.,
Princeton, NJ, Mar. 1973.) .

—, “Distance string models for program behavior,” Computer,
vol. 9, pp. 14-20, Nov. 1976.

—, Program Behavior: Models and Measurement, New York:
Elseviet/North-Holland, 1977.

-, “Biased memory partitioning with swapping delays,”
Comput. Sci. Dep., Penn State Univ., Univ. Park, Tech Rep.
CS-79-28, Jan. 1979,

R. F. Tsao, L. W. Comeau, and B. H. Margolin, “A muitifactor
paging experiment I: The experiment and the conclusions,” in
Statistical Computer Performance Evaluation, W. Freiberger,
Ed. New York: Academic, 1972, pp. 103-134,

{120] S. Tsur, “Analysis of queueing networks in which processes
exhibit locality-transition behavior,” Information Processing
Lert., vol. 7, pp. 20-23, Jan. 1978,

N. Weizer and G. Oppenheimer, “Virtual Memory management
in a paging environment,” in 1969 AFIPS Conf. Proc., Spring
Joint Comput, Conf, vol. 34. Montvale, NJ: AFIPS Press,
1969, p. 2341t

M. V., Wilkes, “The dynamics of paging,” Comput, J., vol. 16,
rp. 4-9, Feb, 1973,

C. R. Arnold, “Optimization of computer operating systems,”
Ph.D. dissertation, Div. Appl. Sci., Harvard Univ., Cambridge,
MA, Mar, 1979; available as Tech, Rep. 6045, Naval Under-
water Systems Center, Newport, RI, 02840, Apr. 1979,

F. J. Corbato, *A Paging experiment with the MULTICS Sys-
tem,” in In Honor of P, M. Morse, K. U. Ingard, Ed, Cambridge,
MA: MIT Press, pp. 217-228, 1969.

W. F. King, III, “Analysis of paging algorithms,” in Proc. IFIP
Congr., Ljubljana, Yugoslavia, Aug, 1971,

A, §. Tannenbaum, “Implications of structured
for machine architecture,” Commun. Ags.
vol. 21, pp. 237-246, Mar. 1978,

{121]

[122]
[123]

[124]

[125]}

[126]

Programming
Comput. Mach.,

Peter J. Denning (M’69-SM*75) received the
Ph.D. and S.M. degrees from M.LT.’s Depart-
ment of Electrical Engineering in 1968 and
19635, respectively.

He served four years as Assistant Professor of
electrical engineering at Princeton University,
Princeton, NJ from 1968-1972. He joined
Purdue University, Department of Computer
Sciences, as an Associate Professor in 197 2, was
promoted to Professor in 1975, and became
Head of Department in July 1979. He has
written over 75 papers and articles in operating and programming sys-
tems since 1967 ; his book with E. G. Coffman, Ji., Operating Sysrems
Theory, was published in 1973; his book with J. Dennis and J. Qualitz,
Machines, Languages, and Computation, was published by Prentice-
Hall in 1978; books about computet performance evaluation, with
J. Buzen, and system programming, with J. Bouhana, are in preparation.
His research interests range widely: theory of computation, operating
systems theory and analysis, performance evaluation, protection and
security, and softwate engineering. He is perhaps best known for his
work in virtual memory, especially the working-set concept for memory
management.

Dr. Denning has participated actively int the Association for Computing
Machinery since 1968, including four years as Chatrman of the SIG
Board and ten years as Council member; he is presently Vice President.
He has held many editorial positions including the Editor in Chief of
ACM’s Computing Surveys, Editor of the Elsevier/North-Holland Series
on operating and programming systems, and Associate Editor of tech-
nical journals, He is a Senior Member of the New York Academy of
Sciences, Sigma Xi, and the IFIP Working Group (7.3) on Computer
Performance Modeling. He holds a teaching award, an ACM service
award, and two best paper awards.

