
1

Virtual Memory

Dr. Tsahi Birk and Dr. Freddy Gabbay
EE Department, Technion

2

Virtual Memory
• Virtual address: issued by the CPU and the program.
• Physical address: address understood by physical

memory chips.
• Allows each program to use addresses independently

of other programs, while guaranteeing that different
programs do not step on each other in memory.

• Allows multiple processes to share relatively small
physical memory.

• Allows programs to maintain
virtual mem. space > available physical memory

• No involvement of the programmer - programs are
allocated automatically in the physical memory

• Easy to protect information.
• May reduce the loading time of programs.

3

Virtual Memory

• Virtual address (232, 264) to Physical Address
mapping (228)

• Virtual memory terms for cache terms:
– Cache block → page
– Cache Miss → page fault

• How is virtual memory different from caches?
– What Controls Replacement
– Size (transfer unit, mapping mechanisms)
– Lower level use (I/O)

4

Virtual Memory

• 4Qs for VM?
– Q1: Where can a block be placed in the upper level?

Fully Associative

– Q2: How is a block found if it is in the upper level?

Tag/Block in page table

– Q3: Which block should be replaced on a miss?

Random, LRU

– Q4: What happens on a write?

Write Back or Write Through (with Write Buffer)

5

Virtual → Physical Addr. Mapping
• Page table:

– process id (PID) + virtual address → Physical address
– table row (entry): PTE

• Problems:
– with one PTE per potential page address,

table size is proportional to size of address space · number of processes

Example: 64 bit address, 4KB pages, 1Byte addr. resolution,
8 Bytes per PTE, one process

⇒ 264-12+3 Bytes = 225 Gigabytes for page table

– table does not fit in cache, possibly not even in main memory, so
– very long hit time in main memory

• Observations:
– use of address space is very sparse
– locality of reference

• Solution: smart representation of table + caching parts of its
content (pages of the page table and/or individual PTEs).

• Remark: VM applied to main mem is at the HW-SW boundary:
– translation in hits is handled by hardware
– page faults and table updates are handled by software (operating system)

6

Alpha VM Mapping Mechanism

Page offset

Virtual address

Page table
base register +

seg0/seg1
Selector

Physical address

Page offsetPhysical page-frame number

Main memory

L1 page table

L2 page table

+ L3 page table

+

Level1 Level2 Level3
000 … 0 or
111 … 1

Page table entry

Page table entry

Page table entry

FIGURE 5.43 The mapping of an Alpha virtual address.

• “64-bit” address divided
into 3 segments

– seg0 (bit 63=0) user code/heap
– seg1 (bit 63 = 1, 62 = 1) user stack
– kseg (bit 63 = 1, 62 = 0)

kernel segment for OS
• PTE bits; valid, kernel &

user read & write enable (No
reference, use, or dirty bit)

• Separation among
processes:

– There is a different region of the
table for each process

– Specified by a base register and a
bound on size for each process

– PID → base register value

7

Alpha VM Mapping Mechanism (cont.)

Page offset

Virtual address

Page table
base register +

seg0/seg1
Selector

Physical address

Page offsetPhysical page-frame number

Main memory

L1 page table

L2 page table

+ L3 page table

+

Level1 Level2 Level3
000 … 0 or
111 … 1

Page table entry

Page table entry

Page table entry

FIGURE 5.43 The mapping of an Alpha virtual address.

• Three-level page table and
3-stage translation:

– each stage entails access to one
page (indexed by 10 bits)

– for each level-i line, there is a
page (of mappings) at level i+1 iff
at least one address “covered” by
this line is used

– uses only 43 unique bits of VA:
3X10 + 13-bit page offset (8KB
pages)

– (future min page size up to 64KB
=> 55 bits of VA)

• Table size is now OK, but
what about translation
time? (hit time!)

8

“Alpha-Style” Page Table – Space Savings

– Not allocated

– Allocated+used

– Allocated but
not used

– Allocated and
possibly used

Page table size:
5 pages
instead of 21 (excluding
data pages)

9

Fast Translation: Translation Buffer
• Cache of translated addresses
• Alpha 21064 TLB: 32 entries, fully associative
• (TLB: translation look-aside buffer)
• “valid”, “read-permission”, “write-permission”

(kernel/user) bits

FIG ???

Page-frame
address

<30>

Page
offset
<13>

V Physical address
<1><2><2> <21>

R W Tag
<30>

<21>

<9>
34-bit
physical
address

43

21

(Low-order 13 bits
 of address)

(High-order 21 bits of address)

32:1 Mux

FIGURE 5.41 Operation of the Alpha AXP 21064 TLB during address translation.

10

Selecting a Page Size

• Reasons for larger page size
– Page table size is inversely proportional to the page size;

therefore memory saved
– Transferring larger pages to or from secondary storage, possibly over a

network, is more efficient
– Number of TLB entries is restricted by clock cycle time, so a larger page

size maps more memory, thereby reducing TLB misses
– Fast cache hit time easy when cache < page size;

bigger page makes it feasible as cache size grows – we will discuss this in
the next slides.

• Reasons for a smaller page size
– Fragmentation: don’t waste storage; data must be contiguous within page
– Quicker process start for small processes(??)

• Hybrid solution: multiple page sizes
– Alpha: 8KB, 16KB, 32 KB, 64 KB pages (43, 47, 51, 55 virt addr bits)

11

Virtual Memory Impact on Cache
Addressing and Hit time

• Virtually addressed cache:
– Cache access is based on virtual address issued by the CPU.
– TAG and INDEX are extracted from virtual address.
– Also termed “virtually indexed / virtually tagged”.
– No impact on hit time - TLB is not in the path to cache hit.

• Physically addressed cache:
– Cache access is based on physical address.
– TAG and INDEX are extracted from physical address.
– Also termed “physically indexed / physically tagged”.
– Virtual address has to be translated first
⇒ increasing hit time.

12

Virtually Addressed Cache implications
• Every time the OS makes a process-switch the cache

content must be flushed, otherwise we get false hits.
• Overhead of flushing the cache:

– Accumulated locality is lost.
– Time to flush the data (write back dirty blocks).
– Reload misses (compulsory misses) for the new process.

• Solution for flush penalty:
– Add a new “process id” (PID) field to each block in the cache.
– PID can be regarded as a logical extension of the tags.
– Cache hit Tag matching and PID matching.
– Problems with this solution:

» Increases associative memory size.
» Limits the number of processes that can run concurrently.

13

PID Impact on Miss Rate

20%

18%

16%

14%

12%

10%
Miss
rate

8%

6%

4%

2%

0%
2K

0.6%
0.4%

18.8%

1.1%

0.5%

13.0%

1.8%

0.6%

8.7%

2.7%

0.6%

3.9%

3.4%

0.4%

2.7%

3.9%

0.4%
0.9%

4.1%

0.3%
0.4%

4.3%

0.3%
0.3%

4.3%

0.3%
0.3%

4.3%

0.3%
0.3%

4K 8K

Uniprocess PIDs Purge

16K 32K

Cache size

64K 128K 256K 512K 1024K

FIGURE 5.26 Miss rate versus virtually addressed cache size of a program measured
three ways: without process switches (uniprocess), with process switches using a
process-identifier tag (PIDs), and with process switches but without PIDs (purge).

• Black is uniprocess
• Light Gray is multiprocess

when flush cache
• Dark Gray is multiprocess

when use Process ID tag
• Y axis: Miss Rates up

to 20%
• X axis: Cache size from

2 KB to 1024 KB

14

Aliasing (Synonym) Problem in
Virtually Addressed Caches

• Aliasing (synonym) – two (or more) virtual addresses
residing in the cache that are mapped to the same
physical address in memory (intentionally shared
among processes).

• Consider the following scenario:
– Process A and B have shared data in memory for inter-process

communication (IPC).
– Each process views this same memory area as part of its own virtual

memory space.
– Assume we have a big cache to hold the data of the 2 processes.
– Each block has PID – no need to flush cache in process-switch.
– The address of the shared data is:

» 100 in process A virtual address space.
» 200 in process B virtual address space.

15

Aliasing (Synonym) Problem in
Virtually Addressed Caches (cont.)

• Consider the following sequence:
– Process A runs first and brings the shared data (addr. 100) into

the cache.
– Process A is suspended and process B is scheduled instead.
– Process B also reads the shared data (addr. 200) into the cache.
– At this point we have two different virtual addresses in the cache

that are mapped to the same physical address.
– Now process B is suspended and process A is resumed.
– Process A modifies its shared data (addr. 100) – the data is

updated in addr. 100 in the cache (and also in main memory if
cache is WT), but it is not updated in addr. 200.

– A is now suspended and B is resumed.
– B wants to read the new data in addr. 200 but gets the old value

instead of the most recent one (updated by process A).

16

Solutions to Aliasing

• Extra HW that guarantees that every cache block
has a unique main-memory physical address

• Page coloring:
– Use a direct mapped cache +
– SW/OS always allocates memory for shared data such that they

are mapped to the same set in the cache (lower n bits covering
the index field must be the same).

– Since the cache is direct mapped and all shared addresses
have the same index field, uniqueness is guaranteed.

– In the example, the two blocks would bump each other out of
the cache:

» correct
» sub-optimal

17

Physically Addressed Cache implications

• No need to flush cache content on process-
switch.

• Need to flush page data from the cache in
page faults.

• No aliasing problems.
• No need for PID field.
• Effective Hit time = TLB hit time + (TLB miss

rate)*(Page table translation time) + Cache hit
time

18

Virtually Indexed / Physically
Tagged Cache

• Virtual address issued by the CPU consists of two
parts:

– Page offset – not translated.
– Virtual Page Address – needs translation.

• If the cache index is taken from the address part that is
not translated (page offset), then we can start reading
Tag and data in parallel with the TLB translation.

• By the time the translation in TLB is over, we have the
tags ready for comparison.

• Time: max(TLB translation time, and cache access
time) instead of their sum.

Page Address Page Offset
Address Tag Index Block Offset

31 12 11 0

19

Virtually Indexed / Physically
Tagged Cache

TLB Cache

Hit / Miss
+ select block

Phys. Page

number

Tags (n-way SA)
…

Page Address Page Offset
Address Tag Index Block Offset

31 12 11 0

Data

Compare

20

Virtually Indexed / Physically Tagged
Cache: Page-Size Requirement

• Page offset ≥ Index + block offset
• 2Page offset ≥ 2Index x 2block offset

• Page size ≥ number of sets x block size
• Number of sets = Cache size / (block

size*Associativity)
• Page size ≥ Cache size / Associativity
• Requirement:

Page size * Cache Associativity ≥ Cache size

21

Cache Addressing Summary

CPU

VA

CPU

VA
VA

Tags

CPU

TLB

Cache

MEM

PA

PA

Cache

TLB

MEM

VA

PA

Virtually Addressed
Cache

VA

Cache TLB

MEM

TAG
matching

VA Index
PA Tag

PA

Virtually indexed /
Physically tagged

cache
Physically Addressed

Cache

22

Overall Mem Hierarchy (H&P3e 5.37)

23

Alpha 21064
• Separate Instr & Data

TLB & Caches
• TLBs fully associative
• TLB updates in SW

(“Priv Arch Libr”)
• Caches 8KB direct

mapped
• Critical 8 bytes first
• Prefetch instr. stream

buffer
• 2 MB L2 cache, direct

mapped (off-chip)
• 256 bit path to main

memory, 4 x 64-bit
modules

	Virtual Memory
	Virtual Memory
	Virtual Memory
	Virtual Memory
	Virtual ? Physical Addr. Mapping
	Alpha VM Mapping Mechanism
	Alpha VM Mapping Mechanism (cont.)
	“Alpha-Style” Page Table – Space Savings
	Fast Translation: Translation Buffer
	Selecting a Page Size
	Virtual Memory Impact on Cache Addressing and Hit time
	Virtually Addressed Cache implications
	PID Impact on Miss Rate
	Aliasing (Synonym) Problem in Virtually Addressed Caches
	Aliasing (Synonym) Problem in Virtually Addressed Caches (cont.)
	Solutions to Aliasing
	Physically Addressed Cache implications
	Virtually Indexed / Physically Tagged Cache
	Virtually Indexed / Physically Tagged Cache
	Virtually Indexed / Physically Tagged Cache: Page-Size Requirement
	Cache Addressing Summary
	Overall Mem Hierarchy (H&P3e 5.37)
	Alpha 21064

