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Virtual Memory
• Virtual address: issued by the CPU and the program.
• Physical address: address understood by physical 

memory chips.
• Allows each program to use addresses independently 

of other programs, while guaranteeing that different 
programs do not step on each other in memory.

• Allows multiple processes to share relatively small 
physical memory.

• Allows programs to maintain
virtual mem. space > available physical memory 

• No involvement of the programmer - programs are 
allocated automatically in the physical memory

• Easy to protect information.
• May reduce the loading time of programs.
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Virtual Memory

• Virtual address (232, 264) to Physical Address 
mapping (228)

• Virtual memory terms for cache terms:
– Cache block → page
– Cache Miss  → page fault

• How is virtual memory different from caches?
– What Controls Replacement
– Size (transfer unit, mapping mechanisms)
– Lower level use (I/O)
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Virtual Memory

• 4Qs for VM?
– Q1: Where can a block be placed in the upper level? 

Fully Associative 

– Q2: How is a block found if it is in the upper level?

Tag/Block in page table

– Q3: Which block should be replaced on a miss?

Random, LRU

– Q4: What happens on a write?

Write Back or Write Through (with Write Buffer)
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Virtual → Physical Addr. Mapping
• Page table: 

– process id (PID) + virtual address → Physical address
– table row (entry):  PTE

• Problems:
– with one PTE per potential page address, 

table size is proportional to size of address space · number of processes

Example: 64 bit address, 4KB pages, 1Byte addr. resolution, 
8 Bytes per PTE, one process 

⇒ 264-12+3 Bytes = 225 Gigabytes for page table

– table does not fit in cache, possibly not even in main memory, so
– very long hit time in main memory

• Observations:
– use of address space is very sparse
– locality of reference

• Solution: smart representation of table + caching parts of its 
content (pages of the page table and/or individual PTEs). 

• Remark: VM applied to main mem is at the HW-SW boundary:
– translation in hits is handled by hardware
– page faults and table updates are handled by software (operating system)
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Alpha VM Mapping Mechanism
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FIGURE 5.43  The mapping of an Alpha virtual address.

• “64-bit” address divided 
into 3 segments

– seg0 (bit 63=0) user code/heap
– seg1 (bit 63 = 1, 62 = 1) user stack
– kseg (bit 63 = 1, 62 = 0) 

kernel segment for OS 
• PTE bits; valid, kernel & 

user read & write enable (No 
reference, use, or dirty bit)

• Separation among 
processes:

– There is a different region of the 
table for each process

– Specified by a base register and a 
bound on size for each process

– PID → base register value
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Alpha VM Mapping Mechanism (cont.)

Page offset

Virtual address
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base register +
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Physical address
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+

Level1 Level2 Level3
000 … 0 or
111 … 1

Page table entry

Page table entry

Page table entry

FIGURE 5.43  The mapping of an Alpha virtual address.

• Three-level page table and 
3-stage translation:

– each stage entails access to one 
page (indexed by 10 bits)

– for each level-i line, there is a 
page (of mappings) at level i+1 iff
at least one address “covered” by 
this line is used

– uses only 43 unique bits of VA:
3X10 + 13-bit page offset (8KB 
pages)

– (future min page size up to 64KB 
=> 55 bits of VA)

• Table size is now OK, but 
what about translation 
time? (hit time!) 
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“Alpha-Style” Page Table – Space Savings

– Not allocated

– Allocated+used

– Allocated but 
not used

– Allocated and 
possibly used

Page table size: 
5 pages 
instead of 21 (excluding 
data pages)
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Fast Translation: Translation Buffer
• Cache of translated addresses
• Alpha 21064 TLB: 32 entries, fully associative
• (TLB:  translation look-aside buffer)
• “valid”, “read-permission”, “write-permission”

(kernel/user) bits

FIG ???
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<1><2><2> <21>

R W Tag
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34-bit
physical
address

43
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(Low-order 13 bits
          of address)

(High-order 21 bits of address)

32:1 Mux

FIGURE 5.41  Operation of the Alpha AXP 21064 TLB during address translation.
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Selecting a Page Size

• Reasons for larger page size
– Page table size is inversely proportional to the page size; 

therefore memory  saved
– Transferring larger pages to or from secondary storage, possibly over a 

network,  is more efficient
– Number of TLB entries is restricted by clock cycle time, so a larger page 

size maps more memory, thereby reducing TLB misses
– Fast cache hit time easy when cache < page size; 

bigger page makes it feasible as cache size grows – we will discuss this in 
the next slides.

• Reasons for a smaller page size
– Fragmentation: don’t waste storage; data must be contiguous within page
– Quicker process start for small processes(??)

• Hybrid solution: multiple page sizes
– Alpha: 8KB, 16KB, 32 KB, 64 KB pages (43, 47, 51, 55 virt addr bits)
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Virtual Memory Impact on Cache 
Addressing and Hit time

• Virtually addressed cache:
– Cache access is based on virtual address issued by the CPU.
– TAG and INDEX are extracted from virtual address.
– Also termed “virtually indexed / virtually tagged”.
– No impact on hit time - TLB is not in the path to cache hit.

• Physically addressed cache:
– Cache access is based on physical address.
– TAG and INDEX are extracted from physical address.
– Also termed “physically indexed / physically tagged”.
– Virtual address has to be translated first 
⇒ increasing hit time.
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Virtually Addressed Cache implications
• Every time the OS makes a process-switch the cache 

content must be flushed, otherwise we get false hits.
• Overhead of flushing the cache:

– Accumulated locality is lost.
– Time to flush the data (write back dirty blocks).
– Reload misses (compulsory misses) for the new process.

• Solution for flush penalty:
– Add a new “process id” (PID)  field to each block in the cache.
– PID can be regarded as a logical extension of the tags.
– Cache hit Tag matching and PID matching.
– Problems with this solution:

» Increases associative memory size.
» Limits the number of processes that can run concurrently.
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PID Impact on Miss Rate
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FIGURE 5.26  Miss rate versus virtually addressed cache size of a program measured 
three ways: without process switches (uniprocess), with process switches using a 
process-identifier tag (PIDs), and with process switches but without PIDs (purge).

• Black is uniprocess
• Light Gray is multiprocess

when flush cache
• Dark Gray is multiprocess 

when use Process ID tag
• Y axis: Miss Rates up 

to 20%
• X axis: Cache size from 

2 KB to 1024 KB
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Aliasing (Synonym) Problem in 
Virtually Addressed Caches

• Aliasing (synonym) – two (or more) virtual addresses 
residing in the cache that are mapped to the same 
physical address in memory (intentionally shared 
among processes).

• Consider the following scenario:
– Process A and B have shared data in memory for inter-process 

communication (IPC).
– Each process views this same memory area as part of its own virtual 

memory space. 
– Assume we have a big cache to hold the data of the 2 processes.
– Each block has PID – no need to flush cache in process-switch.
– The address of the shared data is:

» 100 in process A virtual address space.
» 200 in process B virtual address space.
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Aliasing (Synonym) Problem in 
Virtually Addressed Caches (cont.)

• Consider the following sequence:
– Process A runs first and brings the shared data (addr. 100) into 

the cache.
– Process A is suspended and process B is scheduled instead.
– Process B also reads the shared data (addr. 200) into the cache.
– At this point we have two different virtual addresses in the cache 

that are mapped to the same physical address.
– Now process B is suspended and process A is resumed.
– Process A modifies its shared data (addr. 100) – the data is 

updated in addr. 100  in the cache (and also in main memory if 
cache is WT), but it is not updated in addr. 200.

– A is now suspended and B is resumed.
– B wants to read the new data in addr. 200 but gets the old value 

instead of the most recent one (updated by process A).
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Solutions to Aliasing

• Extra HW that guarantees that every cache block 
has a unique main-memory physical address

• Page coloring:
– Use a direct mapped cache + 
– SW/OS always allocates memory for shared data such that they 

are mapped to the same set in the cache (lower n bits covering 
the index field must be the same).

– Since the cache is direct mapped and all shared addresses 
have the same index field, uniqueness is guaranteed. 

– In the example, the two blocks would bump each other out of 
the cache:

» correct
» sub-optimal



17

Physically Addressed Cache implications

• No need to flush cache content on process-
switch.

• Need to flush page data from the cache in 
page faults.

• No aliasing problems.
• No need for PID field.
• Effective Hit time = TLB hit time + (TLB miss 

rate)*(Page table translation time) + Cache hit 
time
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Virtually Indexed / Physically 
Tagged Cache

• Virtual address issued by the CPU consists of two 
parts:

– Page offset – not translated.
– Virtual Page Address – needs translation.

• If the cache index is taken from the address part that is 
not translated (page offset), then we can start reading 
Tag and data in parallel with the  TLB translation.

• By the time the translation in TLB is over, we have the 
tags ready for comparison.

• Time: max(TLB translation time, and cache access 
time) instead of their sum.

Page Address Page Offset
Address Tag Index Block Offset

31 12  11 0
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Virtually Indexed / Physically 
Tagged Cache

TLB Cache

Hit / Miss
+ select block

Phys. Page

number

Tags (n-way SA)
…

Page Address Page Offset
Address Tag Index Block Offset

31 12  11 0

Data

Compare
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Virtually Indexed / Physically Tagged 
Cache: Page-Size Requirement

• Page offset ≥ Index + block offset
• 2Page offset ≥ 2Index x 2block offset

• Page size ≥ number of sets x block size
• Number of sets = Cache size / (block 

size*Associativity)
• Page size ≥ Cache size / Associativity
• Requirement:

Page size * Cache Associativity ≥ Cache size
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Cache Addressing Summary
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Overall Mem Hierarchy (H&P3e 5.37)
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Alpha 21064
• Separate Instr & Data 

TLB & Caches
• TLBs fully associative
• TLB updates in SW

(“Priv Arch Libr”)
• Caches 8KB direct 

mapped
• Critical 8 bytes first
• Prefetch instr. stream 

buffer
• 2 MB L2 cache, direct 

mapped (off-chip)
• 256 bit path to main 

memory,  4 x 64-bit 
modules
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