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Abstract

With the increasing processing speeds, it has become
important to design powerful and efficient 1/0 systems.
In this paper, we look at several design options in de-
signing an 1/0 system and study their impact on the

performance. Specifically, we use trace driven simula-

tions to study a disk system with a nonvolatile cache.

Some of the considered design parameters include the

cache block size, the fetch size, the cache size and the

disk access policy. We show that decoupling the fetch

size and the cache block size results in significant per-

formance improvements. A new write-back policy is

presented that, is shown to offer significant performance

benefits. We show that, optimal block size in a two-level

memory hierarchy is dependent only on the latency,

data rate product of the second level as previously con-

jectured. We also present results showing the effect of

a split access operation of a disk read/write head.

1 Introduction

Processor speeds have been improving at a rapid pace

over the last few years. It has been realized that if

corresponding improvements in the 1/0 performance

are not achieved, the system’s performance may not

improve at the same rate as of the processor speed im-

provements. Amdahl’s rule of thumb for a balanced

computer requires that a system should have 1 Mbyte

of main memory capacity and 1 Mbit/see of 1/0 band-

width per 1 MIPS of CPU performance [1]. Recent

measurements [2] show that the 1/0 requirements are
nearly an orcler of magnitude higher, 1 Mbytelsec of

1/0 bandwidth per 1 MIPS, for the current machines.
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Several proposals have been made recently for em-

ploying multiple disk organizations [3, 4, 5, 6, 7]. Most

of these studies have been aimed at improving the data

throughput of the system. They also study the disk sys-

tem independent of the other components of the system

such as a disk cache or an 1/0 cache.

Disk cache or 1/0 cache is normally used to improve

the performance of the disk system [8, 9]. We will use

the term 1/0 cache or cache in this paper to denote

a cache used within the 1/0 system, which may be

physically located within the main memory (file cache)

or within the disk subsystem (disk cache).

Studies so far have looked at the disk system or the

1/0 cache independently. In this paper, we study the

interaction between the 1/0 cache and the disk system

with the aim of understanding how the various policy

decisions and system parameters affect the performance

of the whole 1/0 system. There are several parameters

and policies that influence the performance of the sys-

tem. We study the impact of various parameters such

as the cache si~e, block size and fetch size. The policies

adopted at the disk system may impact the decisions at

the cache. We consider the interaction of various disk

policies and the cache design parameters to understand

the total effect seen by the system.

The rest of the paper is organized as follows. Sec-

tion 2 looks at the system model, defines various pa-

rameters used in the study and the various disk/cache

management policies considered in the study. Section

3 describes our evaluation methodology. Section 4 de-

scribes the results of various experiments conducted.

Section 5 concludes the paper by outlining the major
results presented in the paper.

2 System Model

An 1/0 system in our model consists of a number of

disks together with a cache as shown in Fig. 1. When-

ever data is written to the 1/0 system, it is written

to the cache. The data is eventually written to the

disk at a later time. A write is considered completed
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when the data is written to the cache. When a read

request arrives at the 1/0 system, it is first checked to

see if the requested block is in the cache. If it is, the

requested block is returned to the system. If the re-

quested block is not in the cache, the data is read from

the disk. Whenever data is read from the disk, it is

copied into the cache and returned to the system. A

read request is considered complete when the requested

block is returned to the system.

L
Cache

r’ w’

v v

Disk System

1/0 System

Fig. 1. 1/0 System Model.

There are four parameters in our model: cache size,

cache block size, fetch size, and destage size. Cache size

is the amount of cache space in the 1/0 system. Cache

block size is the unit of space allocation in the cache.

Fetch size is the amount of data fetched from the disk

to the cache on a read miss in the cache. In our model,

whenever data is written to disk, all blocks belonging

to a destage unit are written together. We varied the

destage size from fetch size to a track size of 32 kbytes.

It was found that destage size of a track always resulted

in better performance (lower writes at disk, better read

response time and better disk utilization). Hence, we

only consider destage sizes of a track in this paper, un-

less specifically mentioned otherwise. Request size is

the number of sectors requested from the 1/0 system,

sector being the smallest unit of data uniquely address-

able on the disks. Request sizes are determined from

the traces. We considered cache sizes of lMbytes to

16 Mbytes for our simulations. Cache block sizes from

512 bytes to 32 Kbytes were considered. Fetch size was

varied from 512 bytes to 32 Kbytes. The relation be-

tween the block size and the fetch size is as follows.

The data is always transferred in units determined by

the cache block size. For example, if a request asks

for 7 sectors starting at sector numbered 3, when block

size is 4 and the fetch size is 16, block numbers 1 (sec-

tors 1,2,3,4), 2, 3, and 4, i.e., sectors 1,2,.,.16, will be

brought into the cache. For the same request, if the

block size is 2 and the fetch size is 16, block numbers

2 (sectors 3,4), 3, 4,5,6,7,8 and 9, i.e., sectors 3,4,...18,

will be brought into the cache resulting in transfers of

different sectors.

The following procedure is employed in determining

how many sectors of data are to be brought into the

cache on a request. If the request size is larger than

the fetch size, the number of sectors brought in from

the disk equals the request size, otherwise, it equals the

fetch size. In other words, fetch size is the minimum

number of sectors brought from the disk to the cache

on a read miss.

On a miss, cache blocks may have to be written back

to the disk. The LRU chain is scanned to see which

blocks are at the head of the LRU chain. Since every

miss results in fetching max(request size, fetch size)

number of blocks, as many blocks have to be evicted

from the cache on every miss. If these blocks at the

head of the LRU chain were not dirty (i.e., don’t have

to be written back to the disk), servicing the miss would

only involve reading the blocks from the disk to the

cache. To facilitate this, the blocks at the head of the

LRU chain can be continually written to the disk in

the background. If this cleaning activity is carried out

when the disk is idle, the cost of cleaning can be hidden

from the response time. This is modeled in the follow-

ing way in our simulations: the number of dirty blocks

at the head of LRU chain to be cleaned for servicing

the read miss is counted. The read request is issued to

the disk system. After the read request is satisfied by

a transfer of the requested blocks from the disk to the

cache, we simulate the write back of the dirty blocks by

issuing a write request to the disk system for an appro-

priate number of blocks. Even though, tlhis modeling

is not exact, it suffices for our evaluation purposes by

simulating the write-back activity.

When the block size doesn’t equal the fetch size,

which blocks should be written back to the disk on

a read miss? Should we strictly write the blocks at

the head of the LRU chain? Should we write back the

blocks that were brought together into the cache (based

on the fetch size)? If we follow the first method, a write-

back operation may actually involve writing a number

of blocks that belong to different tracks and thus incur-

ring a large cost. If we follow the second method, we

have not decoupled the cache block size and the fetch

size and we might as well have organized the cache on

bigger blocks of fetch size. To alleviate these two prob-

lems, we adopt a method based on the above two ideas.

Blocks at the head of LRU chain are scanned to iden-
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Table 1. Disk parameters.

L
Avg. latency

Avg. seek

sectors/track

sector size

tracks/cylinder

cylinders/disk

seek cost function

latency cost function

8.3 ms

14.2 rns
64

512 bytes
19

746 i

nonlinear

uniform

tify the blocks that need to be written back. Once these

blocks are identified, all the blocks that belong to the

same track (destage unit) on the disk that are currently

present in the cache are also written back to the disk.

‘I%e blocks at the head of the LRU chain are consid-

ered evicted from the cache and the other blocks that

may be written to the disk as a result of such an op-

eration are left in the cache in a clean (i.e., not dirty)

state. By adopting such a strategy, it is hoped that

dirty blocks belonging to the same track are written to

the disk in one single operation while still following an

LRI.J replacement policy. It is possible, using such a

write-back policy, a block at the tail of the LRU chain

may repeatedly get written back to the disk as a re-

sult of evicting other dirty blocks at the head of the

LRU chain that belong to the same track. The effec-

tiveness of such a policy needs to be verified through

simulations.

Disk service involves several components. A seek is

performed to seek to the track on which the requested

block of data resides. Rotational latency is paid to

reach the first block of the request on the track. Read

tzme or transfer tame is the time spent in actually read-

ing the data from the disk surface. The disk parameters

used for simulations can be found in Table 1.

Disks are assumed to employ a SCAN algorithm for

satisfying the disk requests. In this service policy, the

disk arm moves outward from the center of the disk ser-

vicing requests in its path till it reaches the outermost

track. Once it reaches the outermost track, it jumps to

the innermost track with an outstanding request and

starts the outward journey again. Reads and writes

are treated in the same fashion once queued at the disk

i.e., reads are not given higher priority over writes at

the disk. However, writes to the disk are queued only

during the periods when the disk is idle. If a read re-

quest is issued after a write request is queued, the read

request may have to wait for the write request to cou-

plete. The employed SCAN policy also did rotational

optimization: if two requests belonging to the same

track are waiting to be serviced, they are served in the

order that they may be read off from the disk surface,

rather than in their arrival order. To further reduce ro-

tational latency, we considered spht access operations.

If a request asks for n number of blocks, in normal op-

eration, on an average half a rotation penalty is paid

to get to the first block in the request and then the

requested blocks are read from the disk. This opera-

tion may result in paying more than one revolution for

reading/writing a single track. In split access opera-

tion, the disk starts servicing the request as soon as

any of the requested blocks comes under the read-write

head. For example, if a request asks for reading blocks

numbered 1,2,3,4 from a track of eight blocks 1,2,...8,

and the read-write head happens to get to block num-

ber 3 first, then blocks 3 and 4 are read, blocks 5,6,7,8

are skipped over and then blocks 1 and 2 are read. In

such operation, a disk read/write of a single track will

not take more than one single revolution.

In normal operation of serving the request from the

first block, latency plus read time , on an average, equal

tma./2+n*R (1)

for reading n blocks from a single track, where l~az is

the time for one revolution and R is the data rate in

sees/block. The seek time is not affected in employing

the split access operation and hence we only look at the

difference in the read time plus latency. In split access

operation, the latency plus read time is given by the

following:

f*imaz+(l- f)*((l-f)* +n. R), (2)

where f is the fraction of blocks on a track that are

being read = n/N, N is the total number of blocks on

a single track. The first term in the above expression

counts the probability of finding the read/write head in

the middle of the requested sequence (and hence paying

a full revolution to serve the request) and the second

term counts the probability of finding the read/write

head positioned in the rest of the track. The above

simplifies to

/mar/2 + lma, * f(l - j/2). (3)

This function grows less rapidly than the earlier func-

tion. For example, when f = 0.25, the above cost =

~.~~~~7az, when f = 0.5, it is 0.8751nzax, and when f =
. Hence, the split access operation of serving

d;sk req~e;ts flattens the latency +read time cost func-

tion. This indicates that, split access operation may

favor larger fetch sizes than normal mode operation.

The effective average latency of a disk operation in split

access operation = lmaZ/2 + lmam * ~(1 – f/2) – n * R

*(1 – f2),which again indicates that the trans-

~rs are more efficient as ~ approaches 1. The benefits

of larger accesses in split access operation have to be

weighed against the problem of cache pollution. This

balance needs to be studied through simulations.
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Table 2. Characteristics of the traces.

Trace Reads Writes Trace length System Capacity Read =

# of req. kb ytes # of req. kb ytes seconds Mbytes (# of disks)

1 37037 114462 30079 67752.5 3751.45 1672 (4) 0.55

2 46215 120931.5 23532 21474 6053.96 2926 (7) 0.66

3 49545 140215.5 54735 38211 2003.89 6688 (16) 0.48

4 54171 94569,5 48558 82833 5422.18 3344 (8) 0.53

3 Evaluation Methodology

Physical 1/0 traces were obtained from IBM AS/400

systems running real applications. Four traces were

employed in this study. The characteristics of these

traces can be found in Table 2. All the traces used in

this study are from commercial environment with pre-

dominantly transaction oriented workloads. The first

trace, Trace 1, has both interactive and batch requests.

Trace 2 contains mostly batch requests. Trace 3 con-

tains only interactive requests. Trace 4 is obtained from

a server application, where the machine is used as a

server for a number of terminals. Each trace entry con-

tained the following information: the time the request

was initiated, the disk address, the starting sector ad-

dress on the disk, the number of sectors requested and

whether the request is a read or a write operation. The

AS/400 architecture is segment-based and distributes

blocks of a file across the disks in the system. The file

is initially allocated on a single disk, but further allo-

cations of blocks to the same file can get distributed

across all the disks. In this study, we do not consider

the effects of file/block allocation on disks since the

trace information we have is only from physical 1/0s.

When a nonvolatile cache is used, the writes can

be declared completed once the data is written to the

cache. If sufficient clean (or empty) space is left in the

cache for writes to take place without waiting for some

dirty pages to be evicted to the cache, the write per-

formance seen by the user is limited by how fast the

data can be written to the cache. The dirty blocks in

the cache can be written to the disk by a background

process. This process may keep a certain number of

clean blocks in the cache to ensure that the writes can

be completed by writing to the cache. However, when

a read request is issued to the 1/0 system, the read

request is completed only when the requested block is

returned to the user. Hence, the perceived performance

of the 1/0 system is determined by how fast the read

requests can he serviced (assuming that the load on the

system is not so high as to be unable to keep writing the

dirty blocks of data from the cache to the disk). Hence,

in this paper, read response time is used as a measure

of performance of the system. This is in contrast to

the approach taken in [10, 11] where write bandwidth

of the system is the primary concern.

Since disk accesses take considerably longer time

compared to accesses from the cache, we consider the

performance to be mainly dictated by the misses in the

cache. Since write misses can be satisfied by writing the

data blocks to the cache, read misses are considered to

be the main determinants of performance. In the model

we employ here, the read/write hits and write misses

to cache are assumed to be satisfied in zero time. The

response time for servicing a read miss is considered as

the time for satisfying that request.

At each cache size, different block sizes and fetch

sizes were considered for the 1/0 system organization.

For each organization, the effective access time was

computed. Effective access time of each organization is

the sum of response times of all read misses divided by

the total number of requests in the trace. In our model,

read response time is the measure of performance. If we

used only the read miss ratio as the measure, we would

not account for the different costs associated with fetch-

ing different number of blocks from the disk. For each

trace, the effective access time of each organization is

computed. The access times of all the organizations are

scaled with respect to the acess time of an organization

with a block size of 4 kbytes and a fetch size of 4 kbytes

to obtain their reiative access times. Hence, by defini-

tion, for all traces, the relative access time of a system

with a block size of 4 kbytes and a fetch size of 4 kbyt,es

is 1.0. The relative access times of each organization

are computed for all the four traces. Then, a geomet-

ric mean of these relative access times is computed for

each organization. We call this the normalued access

ttme. Normalized access time is used as the final mea-

sure of performance in our study. System organizations

are compared on the basis of normalized access time.

Lower the normalized access time, better the perfor-

mance. This approach of evaluation is similar to the

approach adopted by the SPEC benchmark group [12].

4 Results

In this section, we present the results

the simulations.

obtained from
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4.1 Fetch size and Block size

Fig. 2. shows the performance of different organiza-

tions for a cache size of 1 Mbytes. The different organi-

zations are compared on the basis of normalized access

time, as explained earlier. It is observed that an orga-

nization with a fetch size of 4 kbytes and a block size

of 512 bytes achieves the best performance. However,

there are several other organizations with almost equal

performance. It is also noted that at the optimal fetch

size of 4 kbytes, the differences in performance due to

varying the block size are about 10Yo. Among these

organizations, a choice could be made based on some

other criterion. For example, in this study, we did not

include the cost of managing larger LRU chains with

smaller block sizes. If these costs are a concern, among

the organizations with almost equal performance in

Fig.2., an organization with a slightly larger block size

may be preferred. The relatively fiat region around

the optimal block size indicates that choosing a slightly

different fetch size would not hurt performance drasti-

cally. It is noted that decoupling block size from fetch

size produced considerable performance improvements

(roughly 25’% improvement from a block size = fetch

size = 16k to 16k fetch size and 2 kbyte block size).

Even when the cost of handling larger LRU chains is

included, this benefit is likely to be significant since the

cost of a disk access is much more expensive.
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Fig. 2. Performance of various organizations

at cache size = lM.

4.2 Cache size

Fig. 3. shows the effect of cache size on the perfor-

mance of various organizations when block size equals

fetch size. To show the impact of cache size on the av-

erage access times, actual values are plotted in Fig. 3.

rather than the normalized access times.

8 fetch size = 0 .5kbytes
@ block size + 1kbytes

#
❑ 2kbytes

.*
$ 7. _ X 4kbytes

* o 8kbytes

z
x 16kbytes
A 32kbytes

6 –

4- –

3. –

2~
1.0 2.0 4.0 8.0 16.0

cache srze (Mbytes)

Fig. 3. Performance of various organizations

~ at different cache sizes.

It is observed that the difference in performance

between different organizations is more significant at

smaller cache sizes than at larger cache sizes. It is also

noted that organizations with fetch sizes larger than 8

kbytes have nearly equal performance at higher cache

sizes even though they differ considerably at smaller

cache sizes. Larger fetch size tries to exploit spatial lo-

cality. However, as a result of fetching more blocks into

the cache, the cache may get polluted. At smaller cache

sizes, this pollution is a bigger problem. But at larger

cache sizes, this is less of a problem and hence the ob-

served trend. This tends to indicate that if sufficiently

large caches are employed, the implications of choice of

other parameters are less significant. This fact is also

observable in Fig, 4, which shows the performance of

different organizations at a cache size of 16 Mbytes. It

is observed that the normalized access times now range

from 0.9 to 1.2 compared to a range of variation of 0.9

to 1.6 at a cache size of 1 Mbytes. It is also noted that

the optimal fetch size has increased with an increase in

cache size.
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Fig. 4. Performance of various organizations

at different cache sizes.

4.3 Normal-mode Disk Operation

Fig. 5. shows the performance of various organizations

at a cache size of 16 Mbytes, employing a normal-mode

disk operation. The best fetch size for normal-mode

operation is observed to be 8 Kbytes. In normal-mode

operation, the latency cost, of each disk access is higher

than that in a split access operation. To offset this

higher cost of latency, we fetch more data in each disk

access in normal-mode operation. We observe that the

performance in normal mode degrades quickly at larger

fetch sizes compared to a more gradual degradation of

performance in split access operation. This is as ex-

pected from the analysis earlier owing to a relatively

flat read time plus latency cost of split access opera-

tions. At the optimal fetch size, the split access op-

eration resulted in 5-10% (depending on cache size)

performance improvement over normal mode operation

of disks. In a more highly loaded environment, these

performance gains are likely to be higher. To assess

these possible improvements, we conducted two other

experiments where the time between two requests was

reduced by a factor of 2 and 4. Split access operation in

these two cases resulted in 20’% and 4570 improvement

in performance at the best fetch sizes.

1.1

1.0

0.9

block SiZe’ o ,!jkby~

+ 1kbyles
❑ 2kbyles
x 4kbytes
D 8kbytes
x 16kbytes
A 32kbyles

0.80-&--&-
16.0 .

fetch size (Kbytes)

Fig. 5. Normal-mode performance

at cache size = 16M.

4.4 Disk Reads and Writes

Fig.6. shows the fraction of total disk operations that
are read operations as a function of block size and fetch
size for Trace 1 at a cache size of 16 Mbytes. For this ex-
periment, the destage size was made equal to the fetch
size. As the fetch size is increased, reads constitute
larger fraction of the total disk operations. At larger
fetch sizes, smaller block sizes result in larger read ra-
tios. With larger block sizes, there is a higher proba-
bility of a block being dirty and hence a miss results
more often in an eviction of a dirty block and hence
the resulting higher write ratios. The reason that the
write ratio decreases with increasing fetch size is that
the writes have more spatial locality than reads, at least
for the traces under study. This can also be observed by
the miss ratio curves shown in Fig. 7, where it is seen
that writes have smaller miss ratios than reads. The
read/write ratios in the 1/0 workload have significant
impact on the performance in systems where the reads
and writes have different costs such as disk arrays with
parity protection. The larger the readratio, the bet-
ter the performance of disk arrays since the writes are
more expensive [?].
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Fig. 7. Miss ratio as a function of block size.

From Fig. 6, it is seen that by choosing the block

size and fetch size independent of each other, we can

obtain desired workload characteristics. Besides the ob-

served performance benefits in non-arrayed systems as

reported in this paper, the ability to change the work-

load characteristics seen by the disk system is an im-

portant benefit of decoupling block size and fetch size.

It is also observed from Fig. 6 and Table 2 that for

some fetch sizes, the workload seen by the disk sys-

tem after the cache has fewer fraction of write requests

than that of the workload before the cache. All this

discussion points to the fact that the write penalty of

the array systems can be managed by using nonvolatile

caches and appropriate cache management techniques.

4.5 Optimal Block Size

Previously, it was conjectured that the optimal block

size for minimizing the access time in a two-level cache

depended only on the product of the latency and the

data rate of the second level cache and not on the in-

dividual parameters separately [14]. Similarly, optimal

striping unit in a disk array system is shown to be di-

rectly related to the product of data rate and the posi-

tioning time of a disk 1151. We show that this is indeed

the ca;e in any two-l&e~ memory system under some

assumptions. In fact, from the dimensions of the pa-

rameters alone, it could be argued that this has to be

the case. Here, we present another simple argument to

show why this is true. For the analysis here, we assume

that the block size and the fetch size are equal. The

cost of serving a miss is given by cb = co + b * q, where

co is the latency of the data access from the second level

memory and c1 is the time to access a unit of data. The

optimal block size is one that minimizes the total cost

of serving the misses, given by,

Tb = mb*Cb, (4)

where mb is the total number of misses at block size b

or alternately the miss ratio at that block size if we con-

sider Tb to be normalized cost of serving misses. When

the block size is increased, the miss ratio decreases till

a point beyond which the miss ratio starts to increase

again. There is no reason to choose the cache block size

larger than this minimum point since both the miss ra-

tio and the cost of serving a miss increase beyond this

point. Assume that the cache block size at which this

minimum in miss rate occurs to be bmzn. The miss ratio

in the range of (1, bmi,, ) can be approximated by:

~n(mb) = ~n(rnm,n) + k * ln(bmin/b). (5)

The above states that log of miss ratio is a linear func-

tion of log of the block size. This behavior is observed

in several studies, for example [14, 16]. If we substitute

the values of mb and Q from above and differentiate

with respect to b to obtain the optimal block size, we

find that the optimal block size is given by

kc.

b“p’= (1 - k)c, “
(6)
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This shows that the previous conjecture about optimal

block size is indeed true. Typically, the miss ratio drops

20%-30% for every doubling of cache size in the range

of (1, b~,~~) [14]. If this is the case, we can choose k

to be approximately 0.33 in the above calculations to

obtain bOPt = co /2c1. IJsing the above equations, it

can also be shown that the differences in performance

around the optimal block size would be small.

In 1/0 systems, cache and the disks function as a

two-level memory hierarchy. If the assumptions in the

above analysis are valid in such a hierarchy, we could

apply the analytical results to such a system as well.

Even though disk access can fit the above cost model

of accessing a block of size b, the latency parameter (or

positioning time = rotational latency + seek time for

disks) is not a constant, but is a random variable. We

could approximate this by choosing average positioning

time for this parameter. Another factor that is ignored

in the above analysis is the queuing delays that may

be incurred in the disk systems. If queuing delays are

large, this model can not be applied to the disk systems.

The constant factor relating the optimal block size to

the latency and data rate parameters may depend on

the workload characteristics. How the workload char-

acteristics may impact these constants remains to be

established.

Fig. 8. compares the performance of various orga-

nizations at a cache size of 16 Mbytes, using normal

mode disk operation, at different data rates. For this

set of experiments, the block size = fetch size = destage

size. It is observed that the optimal block size doubled

when the data rate of the disks is improved by a factor

of two. This conforms to the above analysis. It is also

noted that the variations in performance around the

optimal configuration point are not very significant.

4.6 Write-back policy

Fig. 9. shows the effect of the write-back policy on
the number of write operations for Trace 1 at the fetch
size of 32 kbytes. The figure shows the number of write

operations of the proposed write-back policy as a frac-

tion of the number of write operations in a strict LRU

policy. In a strict LRU policy, only the blocks at the

head of the LRU chain are written to the disk. If n

number of blocks are to be written to disk from the

head of the LRU chain, these n number of blocks are

grouped into as few write operations as possible based

on their track location. It is seen that, the proposed

write-back policy considerably reduces the number of

write operations seen at the disk. The write opera-

tions are reduced by more than half at a block size of

512 bytes. The reduction of the number of write op-

erations is significant because of the earlier discussed

write penalty in disk arrays. The policy is seen to be

more effective at smaller block sizes. At smaller block

sizes, it is more likely that blocks belonging to the same

track are not bunched together in the LRU chain and

hence a higher likelihood of the proposed write-back

policy being effective at reducing the number of write

operations.
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4.7 Impact of two levels of caching

In most systems, part of the main memory is used as an

1/0 cache (file cache). Besides this cache, the 1/0 sys-

tem may have a cache on its own (disk cache). If 1/0

cache is used in two places, in the memory and the 1/0

system, the second level cache in the 1/0 system may

be of little benefit depending on the size of the cache

employed in the main memory. This is illustrated in

Fig. 10. The figure shows the effective access times

observed at the second level cache in the 1/0 system

when the system has a first level 1/0 cache of 4 Mbytes,

in both caches the block size and the fetch size being

4 kbytes. It is observed that up to a size of 4 Mbytes,

there is very little improvement in access times. It is

also observed that even at higher cache sizes, the second

level in a two-level cache bas effective access times that

are higher than a single level cache of the same size.

The reason for this is that the first level cache takes

away much of locality and hence the second level cache

observes higher miss ratios and hence higher effective

access times than a single level cache of same size. This

indicates that benefits of cache are more significant if

the cache space is located in one level. This also raises

the question that if there should be a cache close to the

disk system since a main memory 1/0 cache reduces its

benefit significantly.
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Fig. 10. Access times of a two-level cache.

Keeping the cache closer to the processor (in main

memory) reduces page fault ratio and other process-

ing overheads as well. Keeping it closer to the disks

enables sharing the cache between different processors

connected to the same 1/0 system. This question is

also addressed in [17]. The optimal configuration for

1/0 caching (between main memory and the disk sys-

tem) remains an open question and further study is

required.

5 Conclusions and Future work

In this paper, we have presented a study of 1/0 sys-
tem organizations. Several design choices and policies
were evaluated through trace-driven simulations. It
was shown that decoupling the cache block size and
the fetch size yielded significant performance benefits.
It was also shown that by suitably choosing these pa-
rameters, the readiwrite characteristics of the workload
seen by the disk system can be considerably altered.
This is particularly useful in 1/0 systems such as disk
arrays where the costs of reads and writes are differ-
ent. A new write-back policy presented in this paper
is shown to reduce the number of disk write opera-
tions considerably. It was also shown that a previous

conjecture about block size being determined by the

product of latency and data rate is indeed true. It was

shown that split access operation of disk could result in

considerable performance benefits. Some results were

presented to show the effects of two levels of caching in

the 1/0 system.

The impact of various parameters and policies in a

cached disk array system remains to be studied. The

effect of two levels of caching is only briefly explored

here. Given a performance goal, what is the best way

to organize a cached 1/0 system at a fixed cost? We

intend to pursue these questions in our future work.

6 Acknowledgements

Discussions with John Fu, of University of Illinois, Jai

Menon, Dick Mattson, Robert Morris, Rich Freitas,

John Palmer and Jim Brady, of IBM corporation, have

been helpful.

[1]

[2]

References

G. M. Amdahl. Validity of the single processor

approach to achieving large scale computing capa-
bilities. Proc. AFIPS Spring Joznt Comput. Co7Lj.,

30:483-485, April 1967.

J. Akella and D. P. Siewiorek. Modeling and mea-

surement of the impact of input/output on system

performance. Proc. of 18th Ann. Symp. on Com-

puter Arch., May 1991.

316



[3] D. A. Pattersonl G. Gibson, and R. H. Katz.

A case for redundant arrays of inexpensive disks

(RAID). ACM SIGMOD Confertmce, June 1988.

[4] A. L. Narasimha R,eddy and P. Banerjee. An eval-

uation of multiple-disk 1/0 systems. IEEE Trans.

Comput., C-38, no. 12:1680-1690, Dec. 1989,

[5] K. Salem and H. Garcia-Molina. Disli striping. Int.

CoIif. on Data Enganecrzng, pages 336-342, 1986.

[6] M. Livny, S. Khoshafiau, and H. Boral. Multi-disk

management, algorithms. Proc. ACM SIGMET-

RICS C’onf., pages 69-77, May 1987.

[7] M. Y. Kim. Synchronized disk interleaving. IEEE

Trans. Compuf., C-3.5, no. 11:978-988, Nov. 1986.

[8] A. J. Smith. Disk cache-miss ratio analysis and

design considerations. ACM Trans. on Comput.

Systems, 3, no. 3:161-203, Aug. 1985.

[9] J. K. Ousterhout, H. DaCosta, D. Harrison,

J. Kunze, M. Kupfer, and .1. Thompson. A trace-

driven analysis of the unix 4.2 bsd file system.

Proc. 10th Symp. on Operatzng System Prtnctples,

pages 15–24, Dec. 1985.

[10] J. Ousterhout and F. Douglis. Beating the 1/0

bottleneck: A case for log-structured file systems.

Tech. Rep., Dept. of EECS, Un~u. of Cahfornza,

Berkeley, Aug. 1988.

[11] M. Rosenblum and J. K. Ousterhout. The LFS

storage manager. Proc. of ACM Symp. on Oper.

Syst. Prtnctples, 1991.

[12] The SPEC benchmark suite. SPEC, Fremont, CA,

Dec. 1990.

[13] A. L. Narasimha Reddy. Reads and writes: when

1/0s aren’t quite the same. IBM Tech. Report: RJ

8033, March 1991.

[14] A. J. Smith. Line (block) size choice for cpu cache

memories. IEEE Trans. on Computers, Sept. 1987.

[15] P. M. Cheu and D. Patterson. hlaximizing per-
formance in a striped disk array. Proc. 17th Ann.

Int. $ymp. on Computer Archzier-ture, June 1990.

[16] S. Przyhylski. The performance impact of block

sizes and fetch strategies. Proc. of 1 ‘7th Ann.

Symp. on Computer Archacture, May 1990.

[17] K. Li and K. Petersen. Evaluation of memory sys-

tem extensions. Proc. of 18th Ann. Symp. on Com-

puter Arch., May 1991.

317


