
A Six Lecture Primer on Parallel Computing

Sauro Succi1

Bruce P. Ayati2

A. E. Hosoi3

1IBM European Center for Science and Engineering Computing, Rome, Italy. Present
address: Institute for Computing Applications, National Research Council, Rome, Italy

2Computational and Applied Mathematics Program, The University of Chicago.
3Department of Physics, The University of Chicago.

2

Contents

Preface v

1 Basic Notions of Parallel Computing 1
1.1 Introduction . 1
1.2 Motivation for Parallel Computing 1
1.3 Pushing the Frontiers of Supercomputing 3

1.3.1 Physical Limits . 3
1.3.2 The “Killer” Micros . 4
1.3.3 Granularity . 4
1.3.4 Peak Performance . 5
1.3.5 Scalability . 5
1.3.6 Formal Scaling Theory of Scalability 6
1.3.7 Iso-scaling . 8
1.3.8 Partitioning . 9

1.4 Architecture Classification . 9
1.4.1 Control . 9
1.4.2 Memory Organization . 11

1.5 Network Topology . 12
1.5.1 Static Networks . 12
1.5.2 Dynamic Networks . 13
1.5.3 Multistage Switch . 14
1.5.4 Tree Structure . 16
1.5.5 Three Different Architectures 17

2 Parallel Programming Models 19
2.1 Explicit vs. Implicit Message-Passing 19
2.2 Global vs. Local Address-Space 20
2.3 Data vs. Control Parallelism . 21
2.4 Navigating Across the Pain-Gain Plane 23

3 Programming Message-Passing Computers 25
3.1 Basic Communication Primitives 25

3.1.1 System Query . 25
3.1.2 Point-to-Point . 25

i

ii CONTENTS

3.2 Latency and Bandwidth . 26
3.3 Message-Passing Overheads . 27
3.4 SP2 System Structure . 28
3.5 PVM . 28
3.6 Data Communication . 28
3.7 Blocking vs. Non-Blocking Communication 29
3.8 Switching Models . 30

3.8.1 Circuit Switching – Telephone Model 30
3.8.2 Packet Switching – Postal Model 30

3.9 Finite-Size Effects . 31
3.10 Examples in Point-to-Point Message Passing 31

3.10.1 Example A-1 (Incorrect) 31
3.10.2 Example A-2 (Correct but Unsafe) 32
3.10.3 Example A-3 (Correct but Unsafe) 33
3.10.4 Example A-4 (Correct and Safe) 33
3.10.5 Example A-5 (Correct and Safe) 34
3.10.6 Example B-1 (Correct but Unsafe) 35
3.10.7 Example B-2 (Correct and Safe) 35
3.10.8 Three Body Interaction . 36

3.11 Collective Communication . 36
3.11.1 Broadcasting . 36
3.11.2 Routines from the IBM Message Passing Library (MPL) . 37

4 Factors Controlling Parallel Efficiency 43
4.1 Parallel Content: Amdahl’s law 44
4.2 Scaled Speed-Up: Gustafson’s Law 45
4.3 Synchronization Overheads . 45
4.4 Orders of Magnitude . 48
4.5 Communication Overheads . 48
4.6 Domain Decomposition . 49
4.7 Data Layout . 51
4.8 Load Balance . 51
4.9 Load Balance Methods . 52

4.9.1 Static Load Balancing . 52
4.9.2 Dynamic Load Balancing by Pool of Tasks 53
4.9.3 Dynamic Load Balancing by Coordination 53

4.10 Redundancy . 54

5 Example Programs 55
5.1 The Heat Equation . 55
5.2 SISD Code for the Heat Equation. 56
5.3 MIMD Code for the Heat Equation – Shared Memory 58
5.4 MIMD Code for the Heat Equation – Distributed Memory . . . 62
5.5 SIMD Code for the Heat Equation 68

CONTENTS iii

6 Sample Application: Lattice Boltzmann Fluid Dynamics on the IBM
SP2 71
6.1 LBE Dynamics . 71
6.2 LBE Parallelization . 72

6.2.1 LBE PRE . 73
6.2.2 LBE . 80
6.2.3 LBE POST . 103

7 Bibliography 107

iv CONTENTS

Preface

This report came about as a result of a lecture series given at the University of
Chicago by the first author in the Summer of 1995. The notes were compiled
and critically revised by the last two authors.

One of the authors (SS) would like to kindly acknowledge financial support
from the Computer Science Department, the Physics Department and the Ma-
terial Research Science and Engineering Center of the University of Chicago.
More specifically, he wishes to express his deep gratitude to Professors Todd
Dupont, Leo Kadanoff and Robert Rosner for their warm and most enjoyable
hospitality during his stay in Chicago.

This work made use of MRSEC Shared Facilities supported by the National Sci-
ence Foundation under Award Number DMR-9400379 and was partially sup-
ported by ONR-AASERT N00014-94-1-0798.

v

vi PREFACE

Chapter 1

Basic Notions of Parallel
Computing

1.1 Introduction

Computer simulations have opened up a third dimension in scientific inves-
tigation alongside theory and experimentation. This has sparked many reac-
tions; some people believe that any problem can be solved with a computer,
while others believe that computers are for those who are not good enough to
do away with them. Fortunately, both of these groups are declining.

This book will take an intermediate point of view and address what one can
reasonably expect from parallel computers today.

1.2 Motivation for Parallel Computing

The three primary goals in parallel computing are:

� Cut Turnaround Time – This is a common goal in industry: do more com-
putations in less time without changing the size of the problem.

� Job Up-size – Common in academia where one would like to be able to
look at the complex scenarios generated by the interactions of more de-
grees of freedom (e.g. fully developed turbulence).

� Both.

There are two factors that allow one to achieve these goals: S1, the speed of a
single processor and P , the number of processors or granularity. S1 is typically
measured in megaflops (millions of floating point operations per second). We
would like to maximize the ratio between complexity and the time needed to

1

2 CHAPTER 1. BASIC NOTIONS OF PARALLEL COMPUTING

S1 , P

η (P)

E
la

ps
ed

 T
im

e

Complexity

Figure 1.1: Processing speed S(P) can be increased by either enhancing the
single processor performance (higher S1) and/or putting many processors at
work together (P > 1). The result is shorter turnaround time at a given
problem size (vertical dashed line) and/or larger problems solved at a given
elapsed time (horizontal dashed line).

solve the problem. The complexity is the size (or rather an increasing function
of the size) of the problem. The common aim of the three goals is to maximize
the processing speed as defined by:

ProcessingSpeed =
Complexity

ElapsedTime
= S1P� (P) � S(P): (1.1)

Traditionally, one would achieve this by cranking up the clock cycle, i.e. in-
crease S1. However, we are now reaching the technological limitations for this
approach. It is generally believed that one cannot go beyond 109 flops/sec on
a single chip. Alternatively one can bundle together a large number of pro-
cessors and have them working concurrently on distinct sub-portions of the
global problem, the ”divide and conquer” approach.

Again, one cannot increase P indefinitely; there is always an interaction
function which causes some loss of efficiency (factor � in eq. 1.1). One of the
primary goals of theoretical parallel computing is to develop models which
allow one to predict the type of efficiency one can obtain. This depends on
many factors relating to both the details of the computational applications and

1.3. PUSHING THE FRONTIERS OF SUPERCOMPUTING 3

MEGAFLOP

GIGAFLOP

TERAFLOP

1

10

10

10

10
2

4

6

8

10 10 10 10 10
5 6 7 8 9

N
um

be
r

of
 P

ro
ce

ss
or

s

Floating Point Operations Per Second Per Processor

Communications Limit

VECTOR MACHINES

MIMD

RS/6000

CM-2

CM-2 FP CRAY T3D
IBM SP2

Speed of L
ight L

im
it

Figure 1.2: Evolution of Supercomputers. This figure is adapted from
Boghosian.

the technological features of the computer architecture. However, there are
scaling arguments which allow one to lump together many parameters and
come out with analytic expressions.

1.3 Pushing the Frontiers of Supercomputing

Fig. 1.2 shows the state of the art today in terms of the two parameters S1 and
P . We have reached the technological boundary of 109 flops/sec/processor.
We can bundle together many less powerful processors (y-axis). Again, if we
go beyond a certain value (� 105), we are limited by �(P), which would drop to
zero for most real-life applications. Today, the intermediate approach of using
a moderate number of moderately fast processors, called Scalable Parallel Com-
puting, is the most popular. One can expect performance somewhere between
a gigaflop and a teraflop.

1.3.1 Physical Limits

There are several physical factors which limit the performance of a single chip:

� Conduction, Dissipation and Transmission Losses.

4 CHAPTER 1. BASIC NOTIONS OF PARALLEL COMPUTING

� Off-chip communication.

� Propagation delays (�p � �s).

The lower value of �p, the propogation time, is limited by the speed of light.
For various switching times, this gives

�s = 1ns =) l < 30cm 1 Gflop,
�s = 1ps =) l < 0:3mm 1 Tflop,

where �s switching time of a single transistor. Solid state physics has been
striving to decrease �s. Today transistors can operate with a cut-off frequency
in excess of 100G-Hz. This means one can switch the state of a single bit in
10ps. The problem occurs when crossing from one chip to another. There are
parasitic currents that decrease the effective switching time by almost an order
of magnitude (fig. 1.3). Also, one cannot make chips too small because of heat
generation problems. For example, if one wants a switching time of 1ps, the
chip cannot be bigger than 0.3mm (speed of light limit), too small for sufficient
cooling. This is one of the most basic limitations, making the gigaflop a natural
barrier due to propagation delays.

τ s : 10ps 100ps

CurrentsParasitic

Figure 1.3: Physical Limits.

1.3.2 The “Killer” Micros

The situation today is that micro processors are catching up to traditional CRAY-
like vector computers. From fig. 1.4 we see that in twenty years, the cycle time
of the vector computers has decreased only by a factor of three. With micropro-
cessor technology, there was a decrease in cycle time by a factor of four over
five years. Some contend that the micros are killing off the vector machines.
There is still a natural one nanosecond limit, so there is not much room for
either processor to evolve on sheer hardware grounds.

1.3.3 Granularity

Typically, one classifies granularity as low (less than 10 processors), medium
(10-100 processors), or massive (more than 100 processors). Fig. 1.5 should have

1.3. PUSHING THE FRONTIERS OF SUPERCOMPUTING 5

Figure 1.4: The “Killer” Micros. This graph shows the maximum configuration
for each machine. Figure from Foster.

vertical error bars since each machine has several possible configurations. The
IBM-SP2 can have between 8-512 processors.

1.3.4 Peak Performance

We see in figure 1.6 that S1, the speed of a single processor, has grown expo-
nentially. The graph is deceptive since it represents peak performance. The
figure that matters is the sustained rate which depends on the program and
the compilers. Compiler problems are a key issue!

1.3.5 Scalability

A problem is scalability if one receives “constant performance returns on pro-
cessor investment.” In other words, if one has twice as many processors, one
would like to get twice as much power. Of course, scalability cannot last for-
ever, since speed-up is given by:

� :=
T (1)

PT (P)
; S = �P: (1.2)

There is saturation at some point. This is illustrated by T , the amount of time

6 CHAPTER 1. BASIC NOTIONS OF PARALLEL COMPUTING

Figure 1.5: Granularity of Different Machines. Figure from Foster.

needed to solve a problem, approximately given by

T (P) =
T (1)

P
+ Tcom (P) : (1.3)

First, T depends on the number of processors, where each processor does one
P th of the work. However the different entities need to interact and exchange
information, like a statistical mechanics n body problem. Calculation time goes
down like P�1. But communication time, at best, decays more slowly than
P�1 since Tcom is an increasing function of the number of processors. With
an infinite number of processors, all time is spent exchanging information and
nothing gets done. This is sometimes called “bad manager mode”.

1.3.6 Formal Scaling Theory of Scalability

To illustrate scalability, we add another parameter to the efficiency; � now de-
pends on the number of processors, P , and the size of the problem, N . Very
often, to 0th order, we can recast � as

� (P;N) = U (s1; � � � ; sM) : (1.4)

 U is a “universal” function which depends on a series, M < N , of non-
dimensional parameters, the “Reynolds numbers of parallel computing”. Pci
is the critical number of processors for the ith mechanism. Pc depends on the
size of the problem. Very often, Pc can be expressed as a power law,

1.3. PUSHING THE FRONTIERS OF SUPERCOMPUTING 7

1e4

1e2

1e6

1e8

1e12

1e10

1950 1960 1970 1980 1990 2000

Mflop

Gflop

Tflop

IBM SP2

ENIAC

UNIVAC
IBM 704

IBM 7090

CDC 6600

CDC 7600

CRAY-1
CRAY X-MP

CRAY Y-MP

CRAY C90Intel DELTA

Fl
oa

tin
g

po
in

t o
pe

ra
tio

ns
 p

er
 s

ec
on

d

Figure 1.6: Peak Performance of a Single Processor. Figure from Foster.

si �
P

Pc (N)
; Pc (N) � N�i : (1.5)

The �i are the “iso-scaling exponents”. These are dimensionless quantities
which measure the relative strengths between the different types of commu-
nication in the algorithm, and between communication and computation. Pci
is defined as the number of processors which gives a factor 2 loss in efficiency.
For the kth kind of communication, communication is taking as much time as
computation. Formally, U is required to fulfill the following relations:

l U (s1 ! 0; s2 ! 0; � � �sM ! 0) = 1

 U (0; � � �sk = 1; � � �0) = 1=2 (1.6)
 U (1; � � �1; � � �1) = 1=M

The ideal situation is when si = 0 for all i, an extremely parallel application.
Often,

 U (s) �
1

1 + s�11 + � � �s�MM
; (1.7)

where �i is the “scaling exponent”, relating to the ith communication mecha-
nism. Thus, small �’s are desired.

8 CHAPTER 1. BASIC NOTIONS OF PARALLEL COMPUTING

Ideal

P P

1 1

1/2

P

Real

c

"bad manager mode"
η

S

Figure 1.7: Scalability; speed-up and efficiency as a function of the number of
processors.

1.3.7 Iso-scaling

We consider the physical interpretation [1]. There are different types of com-
munication (local, global, etc.), and the fewer the better. When writing code for
a parallel machine, always try get an estimate of Pc for your application. Three
variables critical in the calculation of Pc are:

� M ; number of overhead mechanisms (would like to decrease M).

� �i; soft/hard loss of scalability (would like to decrease �).

� �i; iso-scaling coefficients (would like to increase �)

The iso-scaling exponent can be interpreted as follows. P = Pc (N) = N� is
the number of processors needed to keep � = constant, as N increases. N =
Nc (P) = P 1=� is the problem size needed to keep � = constant as P increases.
For a given number of processors, stay far away from N�! Also, P 1=� is the
minimum size of a problem to run given P processors, the critical grain size. To
minimize power losses due to communication:

� Keep P below Pc for a given N .

� Keep N above Nc for a given P .

For regular large-scale lattice calculations, very often Pc � 100; for less regular
geometries, involving irregular sparse matrix algebra, Pc � 10� 20.

Good Bad
Computation Grain

Communication Link

Figure 1.8: Communication (link) to Computation (circle) Ratio. ”Chunky”
molecules make for optimal parallel efficiency.

1.4. ARCHITECTURE CLASSIFICATION 9

1.3.8 Partitioning

Always consider the communication to computation ratio (fig 1.8). For exam-
ple, in an N-body problem, we get N2 communications but N 3 calculations.
This is perfectly acceptable, considering only parallel efficiency.

1.4 Architecture Classification

There are four criteria for standard parallel architecture classification:

� Memory Organization

� Control

� Interconnection Topology

� Granularity

1.4.1 Control

There are four types of control options:

Single Instruction Single Data (SISD) . These are the simplest machines, also
known as Von Neumann machines. Efficiency is increased by speeding
up the processor. Memory stores both instruction and data.

SISDCPU

M

Instructions

Data

Code
OperationAddress of

Data

I/O

P

Figure 1.9: Single Instruction Single Data Architecture

Single Instruction Multiple Data (SIMD) . These machines have a single con-
trol unit with many processors, known as “Non Von”. Each processor
acts on a different data set. This mimics the real world where there are

10 CHAPTER 1. BASIC NOTIONS OF PARALLEL COMPUTING

few physical laws, but a tremendous amount of data (1080 particles). Typ-
ically, each processor is not very powerful (� 1 Mflop), but there are
many of them (� 64k). This is perfectly suited to regular (lattice) calcula-

CU

P P PP

M

CM-2

MASPAR

APE

(image processing)

(QCD machine)

SIMD

Figure 1.10: Single Instruction Multiple Data Architecture.

tions. Typical difficulties arise when processors must do different tasks.
For example boundary conditions where something different is done on
the interior). Keeping all processors busy at the same time may be diffi-
cult.

Multiple Instruction Single Data (MISD) . These machines are essentially non-
existent. As mentioned before, there are generally very few instructions
and lots of data so it makes no sense to parallelize the instructions. However,

+ =

1

2

3

4

1 2 3 4

T
im

e

A,B

A1
B1

A2
B2

A1
B1

C

C

1

2

Figure 1.11: The Principle of Pipelining.

one can view vector computers as MISD; these computers work on the
principle of a pipeline. For example an elementary operation like

C (i) = A (i) �B (i) (1.8)

is actually a four stage operation on a vector machine. The first operation
is done on A1 and B1. Then the second operation is done on A1 and B1

while the first operation is done on A2 and B2. So after a delay of four

1.4. ARCHITECTURE CLASSIFICATION 11

cycles, you get one result every cycle. The best increase in speed on a
vector machine is not given by the number of values it can hold, but by
the length of the pipeline.

Multiple Instruction Multiple Data (MIMD) These are the most flexible ma-
chines. Since every processor is controlled independently one can do
very irregular, asynchronous calculations. This also makes them more
difficult to program and debug.

P P PP

M

MIMD

CU CU CU CU
CRAY-Y/MP

IBM ES/9000

Figure 1.12: Multiple Instruction Multiple Data Shared Memory Architecture.

1.4.2 Memory Organization

There are two types of memory organization, shared memory and distributed
memory. In shared memory, each processor can access any memory location
at a uniform time. In distributed memory, each processor has access to its own
memory.

P P PP

CU CU CU CU

M M M M

CRAY-T3D

IBM-SP2

CONVEX-Exemplar
CM-5

Distributed Memory

Figure 1.13: MIMD Distributed Memory Architecture.

From a programming point of view shared memory is much easier to han-
dle. With distributed memory, the programmer must keep track of who owns
what. A physical analogy is that shared memory is like a long distance inter-
action, e.g. a field whose action is felt globally, while distributed memory is
like specifically treating the propagator between two particles, e.g. Feynman
diagrams. Shared memory is good for a small number of processors. If one has
too many processors, there is a large probability that there will be conflicts over

12 CHAPTER 1. BASIC NOTIONS OF PARALLEL COMPUTING

memory locations. Also, the cost of an interconnecting network grows with the
square of the number of processors. With shared memory, one gets scalability
only for P � 10. With distributed memory, scalability can be preserved up to
P � 102 � 103.

1.5 Network Topology

Topology was a primary issue in first generation parallel computers, such as
the Hypercube. The programmer was forced to be aware of the topology to be
efficient. In modern machines, such as the IBM SP2, this is no longer the case,
which is a great advantage for the programmer. For example, on the hyper-

Figure 1.14: The hypercube topology.

cube, the generalization of a cube in n dimensions (fig. 1.14), communication
between nearest neighbors is optimal. However, point-to-point remote com-
munication is difficult since one needs a routing mechanism that selects the
best path connecting two remote processors. This routing problem is no longer
an issue on modern parallel machines.

Interconnecting networks fall within two broad categories:

� Static

� Dynamic

1.5.1 Static Networks

Static networks are those in which the interconnection topology is set once and
does not change over time. Typical examples are the linear array, ring, 2-D
mesh, and binary tree, as seen in fig. 1.15.

These interconnections are particularly efficient for those computations whose
information flow pattern can be put in a homeomorphic correspondence with

1.5. NETWORK TOPOLOGY 13

Linear Array 2-D Mesh

Ring Binary Tree
Figure 1.15: Static Network Topologies.

the interconnection topology. A typical example is the two-dimensional Pois-
son equation in a regular domain, solved with a regular finite-difference method.
The ideal interconnection is the 2-D mesh.

1.5.2 Dynamic Networks

In dynamic networks, the connections between the processors and the mem-
ory can change over time. Both shared and distributed memory are dynamic
networks. But distributed memory architectures scale, while shared memory
architecture do not scale. The two most popular architectures for shared mem-
ory machines are the bus and the crossbar (fig. 1.16,1.17), both of which do not
scale. For a bus there is a constant (high � 1GB=s) flow rate of information.

Bus

Cost P

Bandwidth P

~

~

0

-1

M

Figure 1.16: Bus Architecture.

However, if there are many processors accessing the memory, each of them

14 CHAPTER 1. BASIC NOTIONS OF PARALLEL COMPUTING

sees only its own share of the total bandwidth. Therefore, even though the cost
is only weakly dependent on the number of processors, the bandwidth goes
down like P�1. In the scaling regime (highly parallel applications), the band-
width for each processor vanishes as P ! 1. This interconnection is very
useful for low granularity systems,P � 10, such as the IBM ES/9000, but does
not extend to massively parallel applications.

The second interconnection, as used by CRAY, is much more powerful and
much more expensive. It is scalable in terms of connectivity. There is a cer-
tain number of processors and a certain number of memory banks and they
are connected by an array of switches. Thus, the bandwidth is linear in the
number of processors since we can activate many switches at the same time.
However, since we need a full matrix, the cost goes like P2. Again, the ratio of

. .
 .

.

.
Crossbar Switch

M
Cost P

Bandwidth P

~

~

P PP1
2

1

Figure 1.17: Crossbar Architecture.

bandwidth and cost goes like P�1. So for shared memory machines, the num-
ber of processors that can be used efficiently is on the order of 10.

Typical values are a bandwidth of O (1GB=s), roughly 1wordcycle This is very fast!.
We can assume that the message transfer from memory to processor is almost
infinitely fast. Compare this to Ethernet at roughly 1 MB/s. This means that
distributed memory machines have a problem since the interconnection is rel-
atively slow.

1.5.3 Multistage Switch

This is the interconnection used in the SP2 and is an intermediate step between
the bus and the crossbar switch (fig. 1.18).
Given a pool of n processors and n memory banks, at any time, any proces-
sor can talk to any memory location. The processor can access any memory
bank with the same efficiency. However, each memory bank can be accessed

1.5. NETWORK TOPOLOGY 15

1

0

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Processors Memory

Multistage Switch

log P2

Figure 1.18: Multi-Stage Switch.

by only one processor in any given configuration (fig. 1.19). This architecture
is designed to pass through log2P stages. At each pass, the number of paths
is multiplied by two since some paths are redundant. So the cost is no longer
P 2, but only P log2P . Suppose one has a 4 � 4 array of processors and one
would like to use the switch to maximize the number of one-to-one bonds at
any time (fig. 1.20). The price to connect any processor to any memory location
is log2P � fthe clock time of the switchg. For the SP2, the time to go through
the switch is 128ns, so the time it takes to make a connection is 4 (number
of switches) times 128ns = 512ns, regardless of the processor’s identity. This
number is the latency from hardware considerations, only. The actual latency
will be much higher because of software decoding burdens.

Any connection can be represented in a “propagator” form:

hijji = hijk1ihk1jk2i � � � hkN jji: (1.9)

This structure is hidden from the programmer, so one doesn’t need to worry

16 CHAPTER 1. BASIC NOTIONS OF PARALLEL COMPUTING

P

P
BAD!

1

2

Two processors trying to
access the same memory
must line up.

M

Figure 1.19: Two processors attempting to access the same memory at once.

Figure 1.20: One-to-one bonding.

about it provided that two distinct processors i and i0 are not simultaneously
attempting to communicate with j 6= i; i0.

1.5.4 Tree Structure

A switch with tree structure, shown in figure 1.21, can be made even more
elegant by increasing the bandwidth towards the top. This makes remote com-
munication not much more expensive than local communication.

1 2 3 4 5 6 7 8

SS

S

B
an

d
w

id
th 1 2

0

S11 S12 S21 S22

Figure 1.21: Switch with Tree Structure. Nodes 1 and 2 communicate through
switch S11. Nodes 1 and 8 communicate through switches S11, S1, S0, S2, S22.

1.5. NETWORK TOPOLOGY 17

1.5.5 Three Different Architectures

There are two basic parameters which determine the performance of a dis-
tributed memory machine.

� Bandwidth, the asymptotic flow rate of information.

� Latency, the overhead payed to establish a connection between two pro-
cessors, i.e. the cost to send a zero length message. This is very important
for machines based on RISC processors.

cachecachecachecache

P P P P

B U S

G l o b a l M e m o r y

SHM

Figure 1.22: Shared Memory Architecture.

Typically for a shared memory architecture (fig. 1.22), one gets a bandwidth of
about 1GB=s and latency is negligible.

At the other extreme, Ethernet (fig. 1.23) gives bandwidths of about MB=s and
very high latencies on the order of 1ms. This is the most primitive form of
distributed parallel computing and the most widely used in an industrial en-
vironment. Ethernet is not at all efficient since thousands of floating point op-

.P P P P

M M M M

E t h e r n e t

DIME, MIMD

Figure 1.23: Ethernet-DIME,MIMD.

erations are wasted in latency. So, Ethernet is fine for problems characterized
by low communication to computation ratios.

18 CHAPTER 1. BASIC NOTIONS OF PARALLEL COMPUTING

The DIME-SIMD machines (fig. 1.24) were very popular a few years ago. These
have slow nodes of speeds at most 10 Mflop/node, bandwidths on the order of
10 MB/s and very low latencies on the order of 1�s. Since the latencies are so
small, one can fragment the communications without paying a high price. This
allows one to operate in the highly granular regime of thousands of processors.

P PP P P P

P P P P P P

M M M M M M

M M M M M M

DIME, SIMD

Figure 1.24: DIME-SIMD Architecture.

Today the granularity of the most powerful machines is a compromise between
the shared memory machines and the DIME-SIMD, where P is about 100.

Three different examples of parallel architectures are shown in figures 1.22, 1.23,
and 1.24. They represent a shared memory MIMD with bus interconnection
(fig. 1.22), a distributed memory MIMD connected via a local area network
(fig. 1.23), better known as a “cluster”, and a distributed memory SIMD using
a static mesh interconnection.

Chapter 2

Parallel Programming Models

In Chapter 1, we discussed the distinctive features of the main parallel archi-
tectures. In order to run parallel applications on these architectures, we need to
implement them in a given programming language. The choice of languages is
by no means unique, and a number of programming paradigms are available
today. Like parallel architectures, parallel programming paradigms also lend
themselves to a general classification according to the following criteria:

� Explicit vs. Implicit Message Passing.

� Local vs. Global Address-Space.

� Data vs. Control Parallelism.

2.1 Explicit vs. Implicit Message-Passing

One way to encode a parallel algorithm is to explicitly specify how the proces-
sors cooperate in order to solve a given problem in a coherent fashion. This
makes life easy for the compiler, since it does not need to figure out automat-
ically how interprocessor communication should be organized. Instead, the
whole burden is placed on the programmer.

Implicit parallel programming does just the opposite. The programmer codes
his or her application with a serial language, and the compiler inserts the ap-
propriate parallel constructs. There is no question that implicit parallel pro-
gramming is preferred over explicit parallel programming on account of the
great savings in programming efforts and minimal exposure to programming
errors. Unfortunately, the automatic parallelization of serial code is a very dif-
ficult task. The compiler needs to analyze and understand the dependencies
of virtually every portion of the sequential code in order to generate a correct
and efficient mapping onto a multiprocessor architecture.

19

20 CHAPTER 2. PARALLEL PROGRAMMING MODELS

So far, the goal of automatic parallelism has only been achieved for shared-
memory machines. For these machines, all leading vendors are offering re-
liable parallel FORTRAN compilers and library extensions. The situation is
much less developed for distributed memory machines. Only simple applica-
tions with pretty regular data structures can be dealt with by parallel compil-
ers, such as FORTRAN D and High Performance FORTRAN.

It is worth mentioning that shared-address programming can also be imple-
mented on distributed memory machines. The memory is physically distributed,
but is logically shared (CRAY T3D, CONVEX Exemplar). This emulation is
done by tagging part of the local memory of each processor as a communica-
tion buffer accessible to all other processors via remote read/write operations
(fig. 2.1). This approach is more encompassing, but is also more expensive. The
CPU of each processor needs to be able to resolve the addresses of another CPU
in hardware, which adds to the complexity, and hence the cost, of the CPU.

P P

Logically and Physically Local Physically Local but Logically Global

Figure 2.1: Shared-address programming on distributed memory machines:
remote read/write.

On the other hand, message-passing only requires the CPU to be interfaced to
the network via some standard input/output port (adapter, fig. 2.2).

2.2 Global vs. Local Address-Space

For the global address-space model, the programmer views his or her program
as a collection of processes, all of which are allowed to access a central pool
of shared variables. Two distinct processes communicate by reading/writing
these shared variables from/to a globally accessible memory. This program-
ming model is naturally suited to shared-memory parallel computers. Auto-
matic parallelization is feasible, but the scalability limits described in Chapter 1
become manifest as soon as more than 10-20 processors are involved.

In the local address-space paradigm, each process is only entitled to access
its private variables residing in its own local memory. Interprocessor com-
munication can only take place via an explicit exchange of messages across
an interconnecting network, whence the domination of the “message-passing”

2.3. DATA VS. CONTROL PARALLELISM 21

P

M

A

M

P

ANetwork
Adaptor

Network

Figure 2.2: Message-passing across a network. The CPU’s send and receive
data via a relatively inexpensive network adaptor.

paradigm.

Message-passing is the natural choice for distributed memory machines. Being
a form of explicit parallel programming, message-passing requires some pro-
gramming labor to be put in place. The payoff, however, can be very rewarding
in that scalability can be pushed way beyond the capabilities of shared-address
programming. This is why several efforts are underway around the world to
lay down message-passing programming standards, such as MPI, the Message
Passing Interface.

2.3 Data vs. Control Parallelism

Many problems in the physical sciences come in the form of a few operations
repeatedly applied to a large amount of data items. Such problems can be
parallelized by assigning data elements to various processors, each of which
performs the same operation on its own share of data. This is called data par-
allelism.

A typical example is matrix multiplication, Cij =
P

kAikBki. The element Cij
results from the dot product of the ith row of the matrix A and the jth column
of the matrix B. Thus we have N2 instances (A, B, and C have dimension
N � N) of the same operation, the dot product, executed on different data.

Several programming languages exist which make it easy to exploit data par-
allelism. Data parallel programs consist of a single sequence of instructions
executed on each of the data sets in lockstep. Clearly, data parallel programs
are naturally suited to SIMD computers.

22 CHAPTER 2. PARALLEL PROGRAMMING MODELS

Data parallel algorithims can also be executed on MIMD computers. However,
the strictly synchronous execution typical of SIMD machines would set a need-
lessly heavy toll on MIMD computers, where global synchronization is a costly
operation. A popular solution is to relax the constraint of strict synchronization
and move to “loosely synchronous” execution. This means that each processor
executes the same program, but not necessarily the same instruction, thus the
definition of SPMD, Single Program Multiple Data (fig. 2.3). Synchronization
only takes place when processors need to exchange data.

In
st

ru
ct

io
ns P P

I
I

Data

1

21

2

Figure 2.3: SPMD Execution: Processors P1 and P2 execute two different in-
structions of the same program on different data.

Another popular programming model which is unique to MIMD machines is
the so-called “host-node” paradigm. Here the host plays the role of a master
who coordinates the actions of the slaves without doing any work itself. This
setting is particularly convenient in heterogeneous computing environments
when one computer is significantly slower than the others. Of course, noth-
ing prevents the master from doing any work, the “cooperative host-node”
paradigm. These are illustrated in figure 2.4. }

Host

Nodes Nodes

Host

Host-Node Programming Model Cooperative Host-Node
Programming Model

Figure 2.4: Illustrations of the host-node paradigms.

Control parallelism refers to the simultaneous execution of different instruc-
tions on the same or different data streams. A typical example is the pipelining
process used in vector machines. Control parallelism is only possible on MIMD
machines because multiple instructions are needed to execute the different op-
erations. Control parallelism does not lend itself to fine grain parallelism since
the number of different instructions is usually very limited, especially when

2.4. NAVIGATING ACROSS THE PAIN-GAIN PLANE 23

compared with the amount of different data to be acted upon.

2.4 Navigating Across the Pain-Gain Plane

There is more to parallel programming than just parallel languages. Parallel
profiling and debugging tools are also of great importance if one is to navigate
the “pain-gain” plane depicted in figure 2.5.

Effort (Pain)

Pa
ra

lle
l E

ff
ic

ie
nc

y
(G

ai
n)

Innovative
Algorithm

Special-Purpose
Tools

Kernel
Replace

Code
Restructuring

Model
Reformulation

Figure 2.5: Approaches to Parallel Enablement: Pain vs. Gain.

In fact, the ultimate goal of the parallel programmer is by no means unique.
Possibly the most fortunate of parallel programmers is the scientist who is
given the task of designing a new, innovative algorithm from scratch, having
parallel computers well in mind from the start. Less fortunate is the “paral-
lel enabler”, typically a computer company specialist, who is given the task
of porting a pre-existing, and often rather complex, huge piece of code to a
parallel machine. Fortunately, even the task of the latter unlucky parallel pro-
grammer is nowadays made easier by a series of serial-to-parallel automatic
conversion tools. These are starting to consolidate the framework of software
tools for parallel computing. The maturation of such software tools is pivotal to
the broad expansion of parallel computing beyond the relatively narrow world
of computer specialists. Software is the pacing issue in parallel computing.

24 CHAPTER 2. PARALLEL PROGRAMMING MODELS

Chapter 3

Programming
Message-Passing Computers

3.1 Basic Communication Primitives

Message-passing computers are programmed via explicit exchange of mes-
sages between the communicating processes. We consider the following com-
munication primitives:

� System query (“Who am I?”)

� Point-to-point (send/receive)

� Collective (one-to-all, all-to-one, all-to-all)

3.1.1 System Query

In order to undertake the proper actions, each process needs to be aware of
its own identity (pid = process identity), as well as the number of processes
contributing to the communication pool. This information can be obtained by
issuing a query to the system. Generally, this query takes the form:

query(mid,numprocs)

where mid is the processor id and numprocs is the number of active processes.

3.1.2 Point-to-Point

These are the building blocks of any message-passing code, usually called
send/receive. This code illustrates a small subset of the message-passing li-
brary. In addition to the usual send and receives, there are primitives that do
both (fig. 3.1). These are recommended. Another important issue is collective

25

26 CHAPTER 3. PROGRAMMING MESSAGE-PASSING COMPUTERS

s d{SEND(buf_out,size,type,dest,rc)

SEND_AND_RECV

RECV(buf_in,size,type,source,rc)

Figure 3.1: Point-to-point communication.

communication. For a numerical solution to a partial differential equation, we
need a local stencil with local communication. When we need to synchronize
or, for example, do a fast Fourier transform, we need collective communication.
The different types are illustrated in fig. 3.2.

One to All (Broadcast) All to All

One to All (Personalized) All to All (Personalized)

0

1

2

3
M

M

M01

03
02

0

1 2

3

M

M

M01

03

02

Figure 3.2: Collective communication.

3.2 Latency and Bandwidth

We will consider more general issues, like technological parameters. Once the
code is running, we would like to have some idea of the efficiency. The time T
it takes to exchange a message of length L is given by

T (L) = � +
L

B
=
L0 + L

B
�

L

Beff
�
Leff
B

: (3.1)

� is the start-up overhead, called latency, B is the bandwidth, and L0 = B�
is the critical message length. � can constitute a significant penalty if one is

3.3. MESSAGE-PASSING OVERHEADS 27

Machine �(�s) B(MB=s) S1(Mflops) L0(kB) F0(kflops)
IBM-SP2 40 40 250 1.6 10
CM-5 80 10 128 0.8 10
Paragon 120 80 75 2.6 9
Delta 80 10 0.8
Cray T-3D 1 300 150 0.3 0.15
Virtual Shared Memory
SGI-P Challenge 0.01 1000 70 0.01 0.7
Shared Memory
WS-Enet 1500 1 100 1.5 150
FDDI 1000 5 100 5.0 100

Table 3.1: Statistics for Present Day Machines. F0 = S1� is the number of flops
wasted in latency.

sending small messages. It is better to aggregate messages as much as possible.
From here we can calculate an effective message length, Leff, or an effective
bandwidth, Beff.

Beff =
B

1 + L0=L
; Leff = L + L0: (3.2)

What we would like to know is:

� What is the shortest message that will not penalize our communication
or

� How many floating point operations do we waste during latency.

These depend on the machine, as shown in Table 3.1. Latency is basically a
software constraint. Recall that the hardware latency for a switch is roughly
100ns, while here the latency is on the order of microseconds.

3.3 Message-Passing Overheads

One reason for these high latency costs is historical. Originally, the networks
were not designed for parallel computing. Only later, it was realized that the
networks could be used to build parallel architectures. Typically, data has to
flow through a number of software layers before it can be processed (fig. 3.3).
So we would like to strip off as many layers as possible and use only the data
transport layer. The main sources of overhead come from three places, the op-
erating system, Application Programming Interface (A.P.I.), and protocol. In
the operating system, system calls to protect or manage communication re-
sources and context switches to field interrupts are sources of overhead. In
A.P.I., buffer management and error checking are sources of overhead. In pro-
tocol, checking message tags and handshaking before incoming messages are
accepted are sources of overhead.

28 CHAPTER 3. PROGRAMMING MESSAGE-PASSING COMPUTERS

Process

Transport

Network

Data

TCP, UDP

IP

Process

Transport

Network

Data

Physical
Network

Figure 3.3: Message Passing Overheads.

3.4 SP2 System Structure

The early version IBM’s used sockets. Today, on the SP2, one can bypass many
of the communication policies (fig. 3.4). These are referred to as light-weight, or
lean, protocols. Today there are two libraries available for this, MPL and PVMe.

3.5 PVM

The cheap way to do parallel computing is to use a type of public domain soft-
ware known as Parallel Virtual Machine (PVM) (fig. 3.5). This software allows
one to connect many different types of machines together. All of these ma-
chines become part of one heterogeneous computer. PVMe (PVM enhanced),
fig. 3.6, allows one to run exceptionally fast if all of the components are of the
same type, in this case IBM. PVMe is also completely compatible with PVM.
PVMe bypasses most of the levels in fig. 3.3. Most significantly, PVMe bypasses
data conversion between different types of machines. The main advantages of
PVMe are error detection and lack of data conversion.

3.6 Data Communication

Once we understand how bandwidth and latency relate to efficiency, we can
address the different types of send/receive statements. Message passing may
be sufficient for now. However, many believe that in the long run it must be

3.7. BLOCKING VS. NON-BLOCKING COMMUNICATION 29

Process

Transport

Network

Data Link

Telnet NFS
Other
Socket
Clients

IP Device
Driver

Lean
Protocol

Bypass

MPL PVMe

Sockets
CSS-CI

TCP UDP

IP

IP Device
Driver

Other Comm.
Adapters

HPS-2 Adapter

Switch Port

User Mode

Kernel Mode

Figure 3.4: Bypassing communication protocol on the IBM SP2.

replaced by something that relieves the user of the burden of explicit message-
passing programming. The main reason for this is that ”send/receive” code is
error-prone. A mismatch between the destination and the source is generally
unforgiving. On the plus side, the system is very flexible so the rewards can
be very high in terms of performance. In addition, since the program is so
close to the processor distribution, it is able to take full advantage of hardware
scalability (fig. 3.7).

3.7 Blocking vs. Non-Blocking Communication

There is a useful graphical convention for send/receive communications, as
illustrated in figure 3.8. In a blocking receive, the task issues a request to receive
and stops until the requested message is received. In a non-blocking receive,
the task issues a request to receive, but continues to do work while waiting for
the requested message. In a blocking send, the task issues a request to send and
blocks until an acknowledgment of receipt is issued by the receiving process.
In a non-blocking send, the task issues a request to send but goes on with its
work without waiting for the message to be received. Due to a lack of idle
times, non-blocking primitives are faster but less safe than blocking primitives.
Non-blocking primitives should only be used when the program has already
been well debugged.

30 CHAPTER 3. PROGRAMMING MESSAGE-PASSING COMPUTERS

Vax

Component Instances

Sun SMM Sun

Butterfly
RS/6000

LAN 1 LAN 2

Cube

Application 2

Application 1

PVM System

Figure 3.5: PVM: Parallel Virtual Machine made up of different computers
linked by a local area network (LAN).

3.8 Switching Models

The interconnect networks of modern parallel architectures are designed in
such a way that the programmer need not consider the network topology. This
is achieved by letting interprocessor communication take place over switching
networks that are able to support dynamic connectivity patterns. Two switch-
ing policies are very popular today:

� Circuit switching (telephone model).

� Packet switching (postal model).

3.8.1 Circuit Switching – Telephone Model

In a circuit switch (fig. 3.9), the link, once established, is kept busy until com-
pletion of the message exchange. The message travels as a rigid body. This is a
non-optimal allocation of resources.

3.8.2 Packet Switching – Postal Model

In a packet switch (fig. 3.10), the packet proceeds on its own and can split into
several sub-packets, each following its own path, “worm–hole” routing. The
processor can proceed concurrently, “send and forget”, since the network is
now intelligent and can steer the packet to its correct destination.

3.9. FINITE-SIZE EFFECTS 31

Low Level
IMCS Calls

Low Level
IMCS Calls

Low Level
IMCS Calls

Network

Internet UDP Sockets

User Process

pvmd

User Process

pvmd

pvmd

User Process

Unix
UDP
socket

Unix
UDP
socket

socket
UDP
Unix

Figure 3.6: PVMe: a faster PVM.

3.9 Finite-Size Effects

Finite-size effects (fig. 3.11) can produce unpredictable results (“Heisenbugs”)
such as buffer overflow, indefinite wait status (“bubbles”), and incorrect de-
livery. A solution is to receive a message as soon as possible after it was sent,
“produce and consume asap”.

3.10 Examples in Point-to-Point Message Passing

These examples of the circular shift program are drawn ’verbatim’ from the
IBM MPL library.

3.10.1 Example A-1 (Incorrect)

CALL MP_ENVIRON(NUMPE,ME)
IF (ME.LT.NUMPE-1)

THEN RIGHT = ME+1
ELSE RIGHT = 0

END IF
CALL MP_BRECV(INMSG1,MSGLEN,SOURCE,TYPE,NBYTES)
CALL MP_BSEND(OUTMSG1,MSGLEN,RIGHT,TYPE)

32 CHAPTER 3. PROGRAMMING MESSAGE-PASSING COMPUTERS

1 2

Network

{send(out_msg,size,dest,type,rc)

recv(in_msg,size,source,type,rc)

out

in

Communication
Protocol

Figure 3.7: Basic send and receive primitives. Mismatch of call parameters is
usually unforgiving.

Request to Receive

Requested Message
Received

Blocking Receive Non-blocking Receive

Time
Idle

Time
Idle

Blocking Send

Request to Send

Acknowledgement
of Receipt

Request to Send

Acknowledgement
of Receipt

Non-blocking Send

Figure 3.8: Graphical conventions for send and receive. Here time is moving
along the vertical axis.

This program is incorrect because it will never complete. Reason is that all
processors issue a request to receive prior to receiveing so that deadlock results.

3.10.2 Example A-2 (Correct but Unsafe)

CALL MP_ENVIRON(NUMPE,ME)
IF (ME.LT.NUMPE-1)

THEN RIGHT = ME+1
ELSE RIGHT = 0

END IF
CALL MP_RECV(INMSG1,MSGLEN,SOURCE,TYPE)
CALL MP_BSEND(OUTMSG1,MSGLEN,RIGHT,TYPE)

3.10. EXAMPLES IN POINT-TO-POINT MESSAGE PASSING 33

Figure 3.9: Circuit Switch – Telephone Model

Figure 3.10: Packet Switch – Postal Model

This code solves the deadlock problem by replacing the blocking receive with
a non-blocking receive. It is unsafe since we only have a finite-size buffer, and
buffer space is required for both incoming and outgoing messages.

3.10.3 Example A-3 (Correct but Unsafe)

CALL MP_ENVIRON(NUMPE,ME)
IF (ME.LT.NUMPE-1)

THEN RIGHT = ME+1
ELSE RIGHT = 0

END IF
CALL MP_BSEND(OUTMSG1,MSGLEN,RIGHT,TYPE)
CALL MP_BRECV(INMSG1,MSGLEN,SOURCE,TYPE,NBYTES)

This code solves the deadlock problem by reversing the order of the blocking
routines. Again, it is unsafe since we only have a finite-size buffer.

3.10.4 Example A-4 (Correct and Safe)

CALL MP_ENVIRON(NUMPE,ME)
IF (ME.LT.NUMPE-1)

THEN RIGHT = ME+1
ELSE RIGHT = 0

34 CHAPTER 3. PROGRAMMING MESSAGE-PASSING COMPUTERS

1

1

2

 0
 0

 0 1 2

Too Late !

Figure 3.11: Finite-Size Effects – “Heisenbugs”

END IF
IF ((ME \ 2).EQ.0)

CALL MP_BSEND(OUTMSG1,MSGLEN,RIGHT,TYPE)
CALL MP_BRECV(INMSG1,MSGLEN,SOURCE,TYPE,NBYTES)

ELSE
CALL MP_BRECV(INMSG1,MSGLEN,SOURCE,TYPE,NBYTES)
CALL MP_BSEND(OUTMSG1,MSGLEN,RIGHT,TYPE)

END IF

Odd and even tasks alternate send and receive operations, so the only cause of
a buffer overflow is a single message that is larger than the buffer size. Given
the actual size of present-day buffers (a few MBytes), such a condition is very
unlikely to occur under ordinary circumstances.

3.10.5 Example A-5 (Correct and Safe)

CALL MP_ENVIRON(NUMPE,ME)
IF (ME.LT.NUMPE-1)

THEN RIGHT = ME+1
ELSE RIGHT = 0

END IF
CALL MP_BSENDRECV(OUTMSG1,MSGLEN,RIGHT,TYPE,INMSG1,MSGLEN,SOURCE,NBYTES)

The best solution to the problem uses a combined blocking send and receive
call. Here the routine has internal buffer management schemes that minimize
the demands on system-buffer space.

3.10. EXAMPLES IN POINT-TO-POINT MESSAGE PASSING 35

3.10.6 Example B-1 (Correct but Unsafe)

CALL MP_ENVIRON(NUMPE,ME)
IF (ME.EQ.1)

THEN
DO I = 1, LARGE
DEST=2
TYPE=I
CALL MP_SEND(OUTMSG(I),MSGLEN,DEST,TYPE)

END DO
CALL MP_WAIT(ALLMSG)

ELSE IF (ME.EQ.2)
DO I = LARGE, 1, -1
SOURCE=1
TYPE=I
CALL MP_BRECV(INMSG(I),MSGLEN,SOURCE,TYPE,NBYTES)

END DO
END IF

This will probably cause a buffer overflow due to the way the messages are re-
ceived by type. All messages must be sent before any of them can be received.

3.10.7 Example B-2 (Correct and Safe)

CALL MP_ENVIRON(NUMPE,ME)
IF (ME.EQ.1)

THEN
DO I = 1, LARGE
DEST=2
TYPE=I
CALL MP_BSEND(OUTMSG(I),MSGLEN,DEST,TYPE)

END DO
ELSE IF (ME.EQ.2)
DO I = LARGE, 1, -1
SOURCE=1
TYPE=I
CALL MP_BRECV(INMSG(I),MSGLEN,SOURCE,TYPE,NBYTES)

END DO
END IF

This program is safe since it reverses the order in which messages are received.
In general, to avoid deadlock and buffer overflow:

� Do not call a blocking routine that can never be satisfied.

� Guarantee that you have a receive for every message sent.

36 CHAPTER 3. PROGRAMMING MESSAGE-PASSING COMPUTERS

� Do not allow a number of messages to accumulate without being re-
ceived.

3.10.8 Three Body Interaction

All of the above recommendations hold even more true in the presence of
”multi-point” communication patterns such as the one depicted in fig. 3.12.

Caller

send(1)

recv(any)

send(0)

send(0)

recv(1)

recv(2)

Caller

Callee
recv(0)

send(2)

send(1)

recv(any)

0 1 2

Figure 3.12: Three-Body Interaction

3.11 Collective Communication

Collective communication helps clarify the message-passing programs by re-
placing several elementary primitive calls with a single ”macro” call. Besides
clarity, this is also beneficial in terms of code efficiency.

3.11.1 Broadcasting

Figures 3.13- 3.16 illustrate various broadcasting models:

� Simple broadcast.

� Recursive broadcast.

� Binary broadcast.

� Fibonnaci broadcast.

The Fibonnaci broadcast takes 6 stages instead of the 7 required by the binary-
tree pattern. The Fibonacci broadcast supersedes binary-tree communication
patterns whenever the latency takes more than one unit of computation. The
time of a Fibonnaci broadcast (fig. 3.16) is given by

f�(n) = minft; F� � ng; (3.3)

F� =

�
1 if 0 � t � �;
F�(t� 1) + F�(t� �) if t > �:

(3.4)

3.11. COLLECTIVE COMMUNICATION 37

0 1 2 3 4 5 6 7

Figure 3.13: Simple Broadcast, � = 1.

0 1 2 3 4 5 6 7

Figure 3.14: Recursive Broadcast (Binary Tree), � = 1.

3.11.2 Routines from the IBM Message Passing Library (MPL)

Figures 3.18- 3.25 illustrate routines from the IBM Message Passing Library
(MPL). These implement various forms of collective communication, fig. 3.17

38 CHAPTER 3. PROGRAMMING MESSAGE-PASSING COMPUTERS

0 1 2 3 4 5 6 7

Figure 3.15: Binary Broadcast, � = 2. For binary tree recursive doubling, tcom =
�ln2P .

0 1 2 3 4 5 6 7

Figure 3.16: Fibonacci Broadcast, � = 2

3.11. COLLECTIVE COMMUNICATION 39

A0 A0

A0

A0

A0

A0

A0

Broadcast
pr

oc
es

se
s

data

A0 A0

pr
oc

es
se

s

data

A1

A2

A3

A4

A5

A1 A2 A3 A4 A5

Scatter

Gather

A0 A0

pr
oc

es
se

s

data

B0

C0

D0

E0

F0

A0

A0

A0

A0

A0

B0

B0

B0

B0

B0

B0

C0

C0

C0

C0

C0

C0

D0

D0

D0

D0

D0

D0D0

E0

E0

E0

E0

E0

E0

F0

F0

F0

F0

F0

F0

Allgather

A0 A0

pr
oc

es
se

s

data

B0

C0

D0

E0

F0

B0 C0 D0 E0 F0

E1

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

C1 C2 C3 C4 C5

D1 D2 D3 D4 D5

E2 E3 E4 E5

F1 F2 F3 F4 F5

A1

A2

A4

A5

B1

B2

B3

B4

B5

C1

C2

C3

C4

C5

D1

D2

D3

D4

D5

E1

E2

E4

E5

F1

F2

F3

F4

F5

E3A3

AlltoAll

Figure 3.17: Various Forms of Collective Communication.

3

3 3 3 3

0 1 2 3

msg(before)

msg(after)

Figure 3.18: MP BCAST broadcasts a message from one task to all tasks in the
group. Here, task “0”, is the source task. This is useful in host-to-node global
data distribution.

40 CHAPTER 3. PROGRAMMING MESSAGE-PASSING COMPUTERS

3

0 1 2 3

12 5 7

27

outmsg

inmsg

Figure 3.19: MP REDUCE applies a reduction operation on all the tasks in the
group and places the result in one task. Here, the reduction operator is integer
addition and task “0” is the destination task. This is useful in convergence
checks during iterative computations.

0 1 2 3

outmsg

inmsg

1 3 9 5

5 1 3 9

Figure 3.20: MP SHIFT shifts data up or down some number of steps in the
group. Here, data is shifted one task to the “right” with wraparound. This is as
easily implemented on a MIMD machine as on a SIMD machine. This is useful
in regular lattice calculations.

0 1 2 3

outmsg

inmsg

3 5 712

3 15 20 27

Figure 3.21: MP PREFIX applies a parallel prefix with respect to a reduction
operation across a task group and places the corresponding result in each task
in the group. This is useful in multilevel, hierarchical computations.

0 1 2 3

outmsg

inmsg

3 5 712

3 3 3 3

12 12 12 12

5 5 5 5

7 7 7 7

Figure 3.22: In MP CONCAT, each task performs a one-to-all broadcast.

3.11. COLLECTIVE COMMUNICATION 41

0 1 2 3

outmsg

inmsg

3 5 712

27272727

Figure 3.23: In MP INDEX, each task in a group performs a scatter operation,
sending a distinct message to all the tasks in the group in order by index. This
is useful for matrix transposition, such as multidimensional Fast Fourier Trans-
form computations.

0 1 2 3

3

12

5

7

inmsg

outmsg

3 12 5 7

Figure 3.24: MP SCATTER scatters distinct messages from a single source task
to each task in the group. Here, task “0” is the source task. This is useful in
irregular, finite element or molecular dynamics computations

0 1 2 3

outmsg

inmsg

3 5 712

3

12

5

7

Figure 3.25: MP GATHER gathers distinct messages from each task in the
group to a single destination task. It is the reverse operation of scatter. This
is useful in irregular computations.

42 CHAPTER 3. PROGRAMMING MESSAGE-PASSING COMPUTERS

Chapter 4

Factors Controlling Parallel
Efficiency

The main factors controlling parallel efficiency are:

� Fraction of parallel content

� Communication and synchronization overheads

� Load balance across the various processors

� Redundancy

We shall express the parallel efficiency in the following general form:

�(P) =
4Y
i

�i �
4Y
i

1

1 + OVHi
; (4.1)

where OVHi refers to the parallel overhead introduced by the ith mechanism.
Typically OVHi is expressed as the ratio between CPU time wasted setting up
parallel operations versus CPU time usefully spent in computation.

A problem is said to be scalable as long as the parallel overhead is much smaller
than 1 so that efficiency is basically unaffected. Mostly, parallel overhead is an
increasing function of time and therefore scalability cannot last forever. More
specifically, one can always introduce the notion of a critical processor number
Pc beyond which parallel efficiency drops rapidly down to zero.

lim
P>>Pc

�(P) ' 0: (4.2)

Scalability requires high Pc’s and, to a minor extent, smooth fallout for P > Pc.

Equation 4.1 implies that in order to achieve a satisfactory parallel efficiency, all
parallel overheads must be kept small. Thus, parallel computing, albeit trans-
parent from the conceptual viewpoint, is by no means an easy job in practice.

43

44 CHAPTER 4. FACTORS CONTROLLING PARALLEL EFFICIENCY

f S1 Pc S(Pc) P fc S(fc)

1/4 4/3 4 2/3 2
1/2 2 1 1 8 6/7 4
3/4 4 3 2 16 14/15 8
0.9 10 9 5 64 0.94 32
0.99 100 99 50 128 0.982 64
0.999 1000 999 500 1024 0.999 512

Table 4.1: Amdahl’s Law

4.1 Parallel Content: Amdahl’s law

The parallel potential, f , is the fraction of time spent by the CPU in the par-
allel section of the code. If T (1) is the time taken by a single processor, the
corresponding time with P processors is given by:

T (P) = T (1) �

�
f

P
+ (1� f)

�
: (4.3)

To determine the optimal number of processors, we consider the parallel speedup:

S(P) =
T (1)

T (P)
=

P

f + (1� f)P
�!

1

1� f
� S1; as P !1: (4.4)

Thus, the parallel speed-up for a given problem is bounded above by (1�f)�1.
Since there are not many massively parallel problems, P can be taken fairly
low. The maximum number of processors for a given f is Pc = f=(1 � f) since

S

S1
=

1

1 + Pc=P
: (4.5)

The minimum parallel fraction for a given number of processors is given by
gc = (P � 1)�1 since

S

S1
=

1

1 + g=gc
; S �! S1 = P; as f ! 1; (4.6)

where g = 1� f .

Finally, we can write down Amdahl’s law as follows

�(f) =
1

1 + g=gc
: (4.7)

Table 4.1 gives values for Amdahl’s Law with fc = 1�gc. From this table we get
a clear perception that massive parallelism, thousands of processors or more,
is only viable for applications spending no more than one part per thousands
of their CPU time in the non-parallelizable section of the code.

4.2. SCALED SPEED-UP: GUSTAFSON’S LAW 45

Kernel Complexity 1� f

I/O N � O(1) 1

Direct N � O(N2=3) �NT N�5=3

Iterative N � O(N1=3) �NT N�4=3

FFT N � O(log2N) �NT N�1= log2N
Explicit N � O(1) �NT N�1

N-Body N � O(N) �NT N�2

Table 4.2: Gustafson’s Rescue from Amdahl’s Law. Here NT is the number of
time steps to complete a job. It is assumed NT � N .

4.2 Scaled Speed-Up: Gustafson’s Law

The two uses of parallel computing are to increase the size of the problem (ther-
modynamic limit), and cut turnaround (continuum limit). The continuum limit
is the Amdahl’s Law case, where as P !1 and N ! C, a constant,N=P ! 0.
This leads to rather gloomy conclusions as far as massively parallel computing,
P > 1000, is concerned.

The best use of parallel computing is to increase the size of the problem. As
P !1 and N !1, N=P ! C, a constant. The parallel potential, f , increases
as the problem size N , increases. Thus we have Gustafson’s Rescue from Am-
dahl’s Law, as seen in table 4.2.

In this table, we report the computational complexity of some typical kernels
of scientific applications as a function of the problem size. Assuming that the
serial fraction of the code, g, scales linearly with the problem size (like an I/O
operation), we obtain the data reported in the 3rd column; f ! 1 as N !1.

4.3 Synchronization Overheads

In this section we will work through some examples to estimate the different
types of overheads which arise when calculating parallel efficiencies. Recall
that the efficiency, �, is given by

� =
T (1)

P (Tcal (P) + Tcom (P))
; (4.8)

where P is the number of processors, T (1) the time it takes to run on a sin-
gle processor, Tcal(P) and Tcom(P) is the time for calculation and the time for
communication running on P processors. If we assume that PTcal(P) = T (1)
then

� =
1

1 + Tcom(P)
Tcal(P)

=
1

1 + CCR
(4.9)

46 CHAPTER 4. FACTORS CONTROLLING PARALLEL EFFICIENCY

where CCR is the communication to computation ratio.

We have already seen that there are various forms of penalties for communica-
tion. We will specifically address synchronization overheads. Synchronization
means that we have spawned some processes and at some point we need to
re-synchronize (fig. 4.1).

{ {
}τcalc

synτ
Figure 4.1: Synchronization overheads.

This concept is illustrated in figure 4.1. However, in practice, there are sev-
eral algorithms which will implement this function (the alpha trees, the binary
trees, etc.). In figure 4.1, we show just two processes, but we are dealing with
global communication since we are spawning work for all the processors. Prac-
tical instances of synchronization overhead include checking iteration conver-
gence, advancing the time step, and I/O.

We would like to know what the penalties associated with these kinds of oper-
ation are. The time spent in synchronization is given by

�syn = �'(P) �! �

8<
:

P (P � 1)=2
(P � 1)
2 log2 P

+ ��(P): (4.10)

Again, � is the latency, ' depends on the kind of algorithm we use to make the
broadcast, and ��(P) is the “traffic congestion”, when two processors want to
speak to a single processor. Suppose we want to try three different types of
global communication (fig. 4.2 and table 4.3).

The three types of communication illustrated are:

� All-to-all, which gives very poor efficiency.

� Linear, where one master processor takes information from the others.

4.3. SYNCHRONIZATION OVERHEADS 47

0 1

23

r

r

3
2

1

r r3

r2

r1

+2r

LinearAll-to-All Collective

Figure 4.2: Three different types of communication

� � 100�s; S1 � Mflops; Nc = �S1=�

All-to-All Linear Collective
P

� = 102; N = 106 104=3 102 104=4

� = 10; N = 105 102=3 10 102

Table 4.3: Orders of Magnitude of P for three different communication archi-
tectures

� Collective, which is the best case.

P for the all-to-all communication is better than that observed in practice. The
best solution is to use collective communication. Since the limit as P tends to
infinity of CCR is infinity, we have broken scalability.

Note that in all these examples, we have assumed that there is only one syn-
chronization point per time step. This is not necessarily the case, such as for
conjugate gradient methods, so there is another factor, the number of synchro-
nization points, that needs to be multiplied in. It should be made clear that
no matter which scheme is used, '(P) grows with P , while �calc decreases. So
global communication is doomed to kill efficiency beyond a certain P .

For now, we will assume that we are doing a blocking send or receive. The case
where �syn � P 2 is a simple linear do loop, which loops over all processors, is
highly inefficient and yields unacceptable performance results, even for small
values of P . The synchronization communication to computation ratio is

CCR =
�syn

�calc

=

�
�S1
�

�
P'(P)

N
� Nc

P'(P)

N
: (4.11)

Here �calc = �N=(S1P) andNc = �S1=� is the critical grain size. � is the number
of flops per grid point and S1 is the speed of a single processor. N is the grain
size (number of grid points or number of degrees of freedom in the problem).
Recall that S1� is essentially the number of floating point operations wasted in
establishing a connection between two processors. This is the most important
parameter. The synchronization-free condition is CCR � 1,

48 CHAPTER 4. FACTORS CONTROLLING PARALLEL EFFICIENCY

P'(P)�
N

Nc
�

flops to Update
flops wasted in latency

: (4.12)

We clearly see that we need to minimize the number of flops that are wasted in
latency. The dimensionless numberN=Nc can be regarded as a sort of Reynolds
number of parallel computing. Nc is limited by technology andN is numerical,
i.e. the density of the algorithm. Both of these need to be adjusted so that the
ratio is in the scaling regime.

4.4 Orders of Magnitude

With reference to fluid dynamics algorithms, we typically assume that � is on
the order of 100 flops/grid point and the target architecture has a latency of
about 100 �s The problem size is N , which is typically 106 for industrial fluid
dynamics, and S1 about 100 Mflops. This gives us a critical size of

Nc =
�S1
�

� 102: (4.13)

Fully developed turbulence has N roughly 109.

In 2D, the synchronization time is equivalent to the time spent updating a 10�
10 square over one time step. Similarly, in 3D, we are losing the time it would
take to update a 5 � 5 � 5 cube. This means that if we have a partitioning
scheme such that each processor gets less than a 10 � 10 square (in 2D), then
the efficiency is completely lost. Again, this depends on the scheme that we
use.

4.5 Communication Overheads

τcomm

}

Figure 4.3: Communication overhead

The same exercise we did with synchronization overheads can be done with
local communication requirements. We do the same calculation for communi-
cation cost due to data passing across a local stencil (fig. 4.3). The time spent in
communication is given by

4.6. DOMAIN DECOMPOSITION 49

�comm =
��

B
+NM�; (4.14)

where � is the “surface density” measured in bytes per grid point on the sur-
face (if there is just one variable being passed, then � is 8 or 4),� is the exchange
surface measured in grid points, B is the bandwidth, and NM is the number
(granularity) of messages. Then the communication to computation ratio, as-
suming no extra cost for long range communication, is given by (neglecting
NM�)

CCR =
�comm

�calc

=

�
��

�N

��
B

S1

�
: (4.15)

The first factor on the right hand side is the ratio of bytes to be sent per flop
required to advance the calculation one time step. It is a measure of the com-
municativity of the algorithm; there are no hardware constraints here. For B
approximately 10 MB/s and S1 roughly 100 Mflops/s, we get ��=�N < 10�1.
At least 10 flops per each byte is sent off. These are all order of magnitude es-
timates to give some idea of whether the code is running efficiently.

Hint: Use at least 10 flops per bytes sent off (� 100 flop/word).

4.6 Domain Decomposition

Communication overheads are very sensitive to the way that data are parti-
tioned in the ”divide-and-conquer” strategy. The method of choice for many
problems in physics and engineering is domain decomposition. Domain de-
composition is very straight-forward in the case of structured problems, where
calculations can be mapped onto a cube. First we need to decide what type of
partitioning to use (fig. 4.4).

P2

P4

P1
P2
P3
P4

P2

P4
P8

P5 P6

1-D 2-D 3-D

P1

P3 P3

P1

Figure 4.4: Domain decomposition: The three types of partitions are pictured
above. Set l to be the length of one edge of a cube in a three-dimensional
partition. SetN = L3 = P l3.

Generally, the most efficient partition is 3-dimensional. We want to minimize
the surface to volume ratio since data is flowing across the surfaces. Using N
as the global size of the problem, and l as the linear size of the problem on

50 CHAPTER 4. FACTORS CONTROLLING PARALLEL EFFICIENCY

a single processor (N = P l3 = L3), we can estimate the efficiencies for the
different types of partitioning.

� 3-Dimensional Decomposition.

� = 6P l2; (4.16)

P < Pc =

�
B�L

6S1�

�3
/ N; (4.17)

�

N
� P 1=3L�1: (4.18)

The ratio of calculation to communication goes up like P 1=3. A three-
dimensional partition is best if there is a large number of processors.

� 2-Dimensional Decomposition.

� = 4P lL; (4.19)

P < Pc =

�
B�L

4S1�

�3=2
/ N1=2; (4.20)

�

N
� 4P 2=3L�1: (4.21)

A two-dimensional partition is a fair compromise between one and three
dimensions. This works well on the SP2 which has roughly 100 proces-
sors.

� 1-Dimensional Decomposition.

� = 2PL2; (4.22)

P < Pc =

�
B�L

2S1�

�
/ N1=3; (4.23)

�

N
� 2PL�1: (4.24)

A one-dimensional partition is the easiest to program, since there is only
one exchange surface. It is less scalable, but also less latency exposed.
There are less messages and they are longer. A one-dimensional parti-
tion is better suited for large latency machines or low granularity.

4.7. DATA LAYOUT 51

4.7 Data Layout

A large amount of research has gone into more complex models of data layout.
Again we would like to minimize the surface to volume ratio. If the geome-
try is non-trivial, identifying the best partition is also non-trivial. One has to
ensure that each processor gets approximately the same amount of work (load
balancing) and that the boundary surface for every processor is approximately
the same, while minimizing the global surface. For the majority of industrial
applications, such as aircraft design, automobile design or chemical engineer-
ing, the geometry is the major problem. There is a lot of research in computer
science to identify automatic domain decomposition tools for non-trivial ge-
ometries.

Figure 4.5: Here is a bad data layout. The data assigned to each processor is
scattered, thus triggering a lot of communication.

Figure 4.6: Here is a good data layout. Related data is mapped to the same
processor. Communication is minimal.

4.8 Load Balance

A difficult but important goal is to keep all processors equally busy. The prob-
lem is that the pace is dictated by the slowest processor, thus we are working in

52 CHAPTER 4. FACTORS CONTROLLING PARALLEL EFFICIENCY

the infinity norm since we have to give infinite weight to the slowest processor.
We are dealing with a scenario where, once a processor has finished its job, it
cannot go on to something else. There is no overlapping communication. This
is especially difficult to achieve if one has irregular lattice structures or even
regular lattice structures if the physics is inhomogeneous, such as shocks or a
lot of activity in a narrow domain, or in systems with a time varying geometry.
Some causes of load imbalance are:

� N mod P 6= 0,

� Boundary conditions,

� Irregular data structures,

� Inhomogeneous computation or communication loads,

� Time-varying geometry or topology.

4.9 Load Balance Methods

4.9.1 Static Load Balancing

In static load balancing, the problem is divided up and tasks are assigned to
processors once and only once. The number or size of tasks may be varied to
account for different computational powers of machines. This is the method
that is used in regular problems with static geometries. It is well adapted to
both SIMD and MIMD machines. For complex geometries, the task is much
more difficult, it is NP-complete. In fact, the simultaneous matching of the
following three requirements:

1. Even computational work (volume),

2. Even communication,

3. Minimal Surface-to-Volume,

cannot be solved exactly for arbitrary geometries. As a result, quasi-optimal
optimization techniques are used. Among them, perhaps the most popular is
Recursive Spectral Bisection.

Recursive Spectral Bisection

Suppose we have a finite element geometry with no regularity in the mesh (see
fig. 4.7). The number of neighbors varies from point to point. There is a recipe
we can use to obtain the minimum surface to volume ratio partition. First, the
Laplace matrix is defined as Lij = Dij � Aij, where

4.9. LOAD BALANCE METHODS 53

Dij = ��ij; (4.25)

Aij =

�
1; if ji� jj = 1
0; otherwise. (4.26)

Aij is a connectivity matrix which is 1 if two nodes are connected and zero if
they are not (for j 6= i). For a regular grid, this reduces to the usual discretiza-
tion of the Laplace operator. The Fiedler vector, �!x (1), is the eigenvector that
corresponds with the first non-zero eigenvalue of the Laplace matrix. It turns
out that the Fiedler vector contains the “metric of the system.” Once we get
the coordinates of the Fiedler vector, we can sort the nodes, �!x n, along �!x . In
other words, we project our domain onto thex-axis and all of the nodes that fall
between two adjacent coordinates in the Fiedler vector are given to the same
processor. This optimizes the partitioning of the computational domain. The
scheme can then be implemented recursively. This is by far the most common
scheme used in engineering calculations.

Figure 4.7: This is a cartoon of the domain for internal engine combustion. This
illustrates a well divided complex geometry. The cuts are always made orthog-
onal to the leading dimension (different colors go with different processors).
This is done with a method called Recursive Coordinate Bisection.

4.9.2 Dynamic Load Balancing by Pool of Tasks

This method is typically used with the master/slave scheme. The master keeps
a queue of tasks and continues to give them to idle slaves until the queue is
empty. Faster machines get more tasks naturally.

4.9.3 Dynamic Load Balancing by Coordination

This method is typically used in the SPMD programming model. All the tasks
stop and redistribute their work at fixed times or if some condition occurs, such

54 CHAPTER 4. FACTORS CONTROLLING PARALLEL EFFICIENCY

as if the load imbalance between tasks exceeds some limit. This method may
be ill-suited to message-passing machines if the processor workload undergoes
abrupt changes in time.

4.10 Redundancy

Optimal parallel algorithms are not necessarily the plain extension of their op-
timal serial counterpart. In order to achieve optimal parallel efficiency, one
is sometimes forced to introduce extra computations which are simply not
needed by the serial algorithm. Perhaps the most straightforward example is
the so-called ”overlapped domain decomposition” technique, where, in order
to speed-up convergence of the parallel algorithm, the subdomains are forced
to overlap along the interprocessor boundaries. Since the overlapping regions
are computed by all processors which own them, a certain amount of extra
computation cannot be avoided. The bargain is to offset these extra computa-
tions by the gain in convergence speed. A typical layout of a matrix resulting
from overlapped domain decomposition is shown in Fig. 4.8.

A11 A12

A21 A22

Figure 4.8: Overlap partitioning for sparse matrices.

Chapter 5

Example Programs

In this chapter, we shall deal with the problem of solving a simple partial dif-
ferential equation, the heat equation (5.1) on the line, illustrating four distinct
programming styles:

1. Serial Program.

2. Parallel Program on Shared-Memory MIMD Machine.

3. Parallel Program on Distributed-Memory MIMD Machine.

4. Parallel Program on Distributed-Memory SIMD Machine.

5.1 The Heat Equation

We shall consider the one-dimensional diffusion equation

@

@t
= D

@2

@x2
; (5.1)

with the following initial and boundary conditions

 (t = 0; x) = 0 (x) ; (5.2)
 (x = 0; t) = (x = L; t) ; (Periodic) : (5.3)

Using centered finite differences in space and Euler forward time stepping,
equation (5.1) yields

 ̂l = b l�1 + a l + b l+1; (5.4)

where a caret denotes t + �t, and l labels the spatial lattice. The numerical
coefficients are given by

55

56 CHAPTER 5. EXAMPLE PROGRAMS

a = 1� 2D
�t

(�x)2
; (5.5)

b = D
�t

(�x)2
: (5.6)

Boundary conditions are handled by “ghost” nodes, as seen in fig. 5.1.

Periodic Boundary Conditions

Figure 5.1: Boundary Conditions as handled by “ghost” nodes.

5.2 SISD Code for the Heat Equation.

The serial code consists of four logical steps (fig. 5.2):

1. Initialize the system (INPUT).

2. Update the state of the system at time t+�t (UPDATE).

3. Advance the system by preparing for the next time step (ADVANCE).

4. OUTPUT.

Note that boundary conditions are implemented via “ghost” nodes (locations
0 and n+ 1), serving as temporary buffers for the boundary values. Also note
that two levels of storage are explicitly retained (psi and psi new) for the sake
of simplicity.

The Code

c--
c Heat Equation: serial Program
c IBM XL Fortran 3.1
c--

parameter (n=100,nstep=100)
dimension psi(0:n+1),psi_new(0:n+1)

c ---

5.2. SISD CODE FOR THE HEAT EQUATION. 57

U

Input

Update

Advance

OutputO

A

I

Figure 5.2: Time line of the serial code.

open(unit=21,file=’sisd.out’)
dt = 1.
dx = 1.
D = 0.1
b = D*dt/(dx*dx)
a = 1.- 2.*b

pi = 4.*atan(1.)

c time-step control
if(b.ge.1.) stop "STOP HERE, DT TOO HIGH!!!"

c initialize <--
do i=1,n
psi(i) = sin(pi*float(i))
write(21,*) i,psi(i)

end do
c time loop

do istep=1,nstep

c periodic boundary conditions
psi(0) = psi(n)
psi(n+1)= psi(1)

c update <--
do i=1,n

58 CHAPTER 5. EXAMPLE PROGRAMS

psi_new(i) = b*psi(i-1) + a*psi(i) + b*psi(i+1)
end do

c advance <--
do i=1,n
psi(i) = psi_new(i)

end do
c output <--

if(mod(istep,50).eq.0) then
write(21,*) ’start step n. ’,istep
do i=1,n
write(21,*) i,psi(i)
end do
endif

end do ! end time looping

stop
end

------- end -------

5.3 MIMD Code for the Heat Equation – Shared Mem-
ory

As discussed in chapter 1, on a shared-memory machine, each parallel task is
entitled to reference the whole addressing space as a single shared resource.
With respect to the serial code, four additional actions are required:

1. Task generation (ORIGINATE).

2. Task operation (DISPATCH).

3. Task synchronization (WAIT).

4. Task termination (TERMINATE).

Task Generation

This is accomplished by the ORIGINATE ANY TASK parallel FORTRAN call
(IBM VS FORTRAN). Each task defines the left-most boundary of its own com-
putational domain (ibegin) as well as the corresponding size (isize). This in-
formation is needed to allow each task to proceed concurrently just on its own
share of data.

Task Operation

Here, each task invokes a separate instance of the same routine (UPDATE),
which performs the update of the discrete variables owned by the given task.

5.3. MIMD CODE FOR THE HEAT EQUATION – SHARED MEMORY 59

Global address space is made available via the psicom common, and specific
data are properly addressed via ibegin and isize. Note that having used two
distinct arrays for time t and t+�t, no errors due to data corruption can occur.
What may eventually occur is competition for the boundary cells, which may
be needed for two tasks at a time (fig. 5.3). Such a problem is no concern for
the routine ADVANCE, which just copies psi onto psi new with no memory
shifts.

∆t +

it-1 it+1it

This location needed
by both it and it-1

t

t

Figure 5.3: Competition for the same memory location by two different tasks.

Task Synchronization

In order to guard against time-misalignmentbetween the various tasks, a global
barrier (WAIT FOR ALL TASKS) is implemented at completion of both the UP-
DATE and ADVANCE steps.

Task Termination

Once all the time-cycles are completed, the tasks have exhausted their function
and can consequently be annihilated (fig. 5.4). Note that we have been cavalier
about parallel I/O operations.

The Code

c --
c Heat Equation: MIMD Program for shared_memory multiprocessor
c Coarse-grain implementation
c IBM VS PARALLEL FORTRAN
c --

parameter (n=100,n1=n+1)
parameter (ntask=4)
common /psicom/ psi,psi_new
dimension psi(0:n1),psi_new(0:n1)

60 CHAPTER 5. EXAMPLE PROGRAMS

I

U

A A

O

A

U U

Initialize

Originate

Dispatch (UPDATE)

Wait

Dispatch(ADVANCE)

Wait

Terminate

Output

Figure 5.4: Timeline of the shared-memory code.

dimension ibegin(ntask),isize(ntask)
c --

open(unit=21,file=’shm.out’)
nstep = 100
dt = 1.
dx = 1.
D = 0.1
a = D*dt/(dx*dx)
b = 1. -2.*a
pi= 4.*atan(1.)

c time-step control
if(a.ge.1.) stop "STOP HERE, DT TOO HIGH!!!"

c ---> initialize (one task for al
do i=1,n
psi(i) = sin(pi*float(i))
end do

do 10 it=1,ntask ! spawn ntask tasks
isize (it) = n/ntask
ibegin(it) = (it-1)*isize(it) + 1
ORIGINATE ANY TASK ITASK(it)

10 continue
c ---> time evolution

do 1000 istep=1,nstep

5.3. MIMD CODE FOR THE HEAT EQUATION – SHARED MEMORY 61

do 20 it=1,ntask ! tasks in action
dispatch task itask(it),

+ sharing(psicom),
+ calling(UPDATE(ibegin(it),isize(it),nstep,a,b)

WAIT FOR ALL TASKS

dispatch task itask(it),
+ sharing(psicom),
+ calling(ADVANC(ibegin(it),isize(it),nstep,a,b)

WAIT FOR ALL TASKS
20 continue
c ---> output (one task for all)

if(mod(istep,50).eq.0) then
do i=1,n
write(21,*) psi(i)
end do
endif

1000 continue ! end time-loop
c ---

do 1100 it=1,ntask
1100 TERMINATE TASK ITASK(it) ! fork-in

stop
end

c ===
subroutine UPDATE (imin,ichunk,nstep,a,b)

c ===
parameter (n=100,n1=n+1)
common /psicom/ psi,psi_new
dimension psi(0:n1),psi_new(0:n1)

c ---
c boundary conditions (no risk, psi is read-only at this stage)

psi(0) = psi(n)
psi(n1)= psi(1)

* loop within processor data
do i=imin,imin+ichunk
psi_new(i) = b*psi(i-1) + a*psi(i) + b*psi(i+1)

end do

return
end

c ===
subroutine ADVANC(imin,ichunk,nstep,a,b)

62 CHAPTER 5. EXAMPLE PROGRAMS

c ===
c advance

parameter (n=100,n1=n+1)
common /psicom/ psi,psi_new
dimension psi(0:n1),psi_new(0:n1)

c ---
do i=imin,imin+ichunk
psi(i) = psi_new(i)
end do

return
end

------- end -------

5.4 MIMD Code for the Heat Equation – Distributed
Memory

As opposed to a shared-memory environment, in a distributed-memory (DM)
context, data intercommunication among the various processors takes place
via explicit messages. This requires the programmer to specify in full detail
all the information needed to complete the message-passing operation. The
sample DM code presented here consists of the following logical sections:

1. System query (MP ENVIRON).

2. Setting up the interprocessor communication topology.

3. Local initialization.

4. Task synchronization (MP WAIT).

5. Message passing (MP BSEND/MP BRECV).

6. Update.

7. Advance.

8. Output.

System Query

Each task queries the number of tasks involved in the parallel job (ntask) as
well as its own task identity (taskid, an integer between 0 and ntask-1).

Communication Topology

Each processor defines a left and right neighbor, according to a one-dimensional
cyclic geometry, as seen in figure 5.5.

5.4. MIMD CODE FOR THE HEAT EQUATION – DISTRIBUTED MEMORY63

0 p-1 p p+1 P-1

Figure 5.5: One-dimensional cyclic geometry.

Initialization

Each task initializes its own sub-piece of the array psi. Note that a linear map
between the local (i) and global (ig) addresses is needed.

Task Synchronization

As usual, all processes must be aligned and synchronized before starting and
after completing each time cycle.

Message-Passing

This is the tricky part of the code. Message-passing is organized in 4 steps
(fig. 5.6):

1. Even tasks send to left � Odd tasks receive from right.

2. Even tasks receive from left � Odd tasks send to right.

3. Even tasks send to right � Odd tasks receive from left.

4. Even tasks receive from right � Odd tasks send to left.

The reason for organizing communication according to this sort of “parlor
game” is to make sure that each request for sending/receiving is matched
quickly by a corresponding request for receive/send. This is to “produce and
consume asap” the messages, thus minimizing the network traffic. In addition,
this pattern is contention-free in the sense that at each stage, disjoint pairs of
processors are in communication.

Update and Advance

Once the parlor game is over, the code can proceed as if it were serial, since
the communication buffers, psi(0) and psi(np-1), have been properly set up
during the message-passing stage. Note that no explicit barrier is required
since synchronization has been performed implicitly by the blocking send and
receive primitives.

64 CHAPTER 5. EXAMPLE PROGRAMS

0 1 2 3

np

Figure 5.6: Message-passing in four steps.

Output

Each processor writes its share of data on a different file, much the same way
a serial code would. Given the fact that output is produced for a series of time
snapshots, say at t = 0; 50; 100, a recomposition tool is needed to reproduce a
globally consistent output file (fig. 5.7). Such a recomposition step will be au-
tomatically taken care of by parallel I/O facilities whose description is beyond
the scope of this book.

t=100
t=50
t=0

t=0

t=100

t=50

Figure 5.7: Recomposition of data from different processors.

5.4. MIMD CODE FOR THE HEAT EQUATION – DISTRIBUTED MEMORY65

The Code

Note that this program could have been written in a much more compact form
using collective communication primitives (MP SHIFT).

c--
c Heat Equation: MIMD Program for Distributed memory multiprocessor
c SPMD: all execute the same code
c IBM MPL Library
c--

parameter (n=100)
parameter (ntask=4,np=n/ntask,np1=np+1)
dimension psi(0:np1),psi_new(0:np1)
integer taskid
integer left(0:ntask-1),right(0:ntask-1)

c ---
dt = 1.0
dx = 1.0
D = 0.1
b = D*dt/(dx*dx)
a = 1. -2.*b
nstep = 100
pi = 4.*atan(1.)

c time-step control
if(b.ge.1.) stop "STOP HERE, DT TOO HIGH!!!"

c ---
c message passing prologue: how many procs? whoami?

call MP_ENVIRON(ntask,taskid)

c interprocessor communication topology (redundant)

do iproc = 0,ntask-1
left(iproc) = iproc-1
right(iproc) = iproc+1
end do
left (0) = ntask-1
right(ntask-1) = 0

c code message type: moving left +0 ; right +1
c ---
c initialize: each processor its piece-only (SPMD-mode)

do i=1,np
ig = i + np*taskid ! note global address ig
psi(i) = sin(pi*float(ig))

end do

66 CHAPTER 5. EXAMPLE PROGRAMS

c ---
call MP_WAIT(allmsg,nbytes) ! global barrier: all aligned befor
write(6,*) ’barrier passed’

c time loop
do istep=1,nstep

c message passing machinery in action !

msglen = 4 ! # of bytes transmitted

if (mod(taskid,2).eq.0) then

c even send to left odd
c 0 1<-----2 3<----0

mtype = 0
mdest = left(taskid)
call MP_BSEND(psi(1),msglen, mdest, mtype)

c even receive from left odd
c 0 1----->2 3---->0

mtype = +1
msrce = left(taskid)
call MP_BRECV(psi(0),msglen, msrce, mtype,nbytes)

c even send to right odd
c 0----->1 2---->3

mtype = +1
mdest = right(taskid)
call MP_BSEND(psi(np1),msglen, mdest, mtype)

c even receive from right odd
c 0<-----1 2<----3

mtype = 0
msrce = right(taskid)
call MP_BRECV(psi(np1),msglen, msrce, mtype,nbytes)

else ! ==

c odd receive from right even
c 0 1<-----2 3<----0

mtype = 0
msrce = right(taskid)

call MP_BRECV(psi(np1),msglen, msrce, mtype,nbytes)

c odd send to right even
c 0 1----->2 3---->4 5

mtype = +1

5.4. MIMD CODE FOR THE HEAT EQUATION – DISTRIBUTED MEMORY67

mdest = right(taskid)

call MP_BSEND(psi(np),msglen, mdest, mtype)

c odd receive from left even
c 0----->1 2---->3

mtype = +1
msrce = left(taskid)

call MP_BRECV(psi(0),msglen, msrce, mtype,nbytes)

c odd send to left even
c 0<-----1 2<----3

mtype = 0
mdest = left(taskid)

call MP_BSEND(psi(0),msglen, mdest, mtype)

endif

c boundary conditions: not needed; embedded in the update step
c --
c serial lookalike section
c from now on the code is serial lookalike

do i=1,np
psi_new(i) = b*psi(i-1) + a*psi(i) + b*psi(i+1)

end do

c advance

do i=1,np
psi(i) = psi_new(i)

end do

call MP_WAIT(allmsg,nbytes) ! all aligned before next step
c ---
c output (distributed, each on its file: 21, 22, 23)
c these files need to be sensibly recomposed in the absence of parallel I/O‘

if(mod(istep,50).eq.0) then
do i=1,np
write(21+taskid,*) psi(i)
end do

endif

68 CHAPTER 5. EXAMPLE PROGRAMS

if(taskid.eq.0) write(6,*) ’completed step n. ’,istep

end do ! end time looping

stop
end

------- end -------

5.5 SIMD Code for the Heat Equation

SIMD machines, and the corresponding data-parallel programming model ex-
hibit a natural match to regular grid problems, such as the one under inspec-
tion. No wonder that this programming paradigm gives rise to the most com-
pact and readable code, if not the most efficient. The logic of our SIMD code
barely needs any further explanation, except for a few technical remarks.

First, we note that the parallel structure of the code is entirely hidden from the
programmer, who just sees a single global address space as in a serial program.
The code only manipulates global arrays with no need to reference indexed
memory locations, thus avoiding any loops. The interprocessor communica-
tion involved by the update stage is triggered by “stencil software” routines,
like cshift, with no need for the programmer to spell out any details of the
communication topology. These will be passed to the compiler by a data dis-
tribution directive, such as

DISTRIBUTE psi(block),psi_new(block)

informing the compiler to drop data into nprocs blocks, each of size n/nprocs.

The Code

c--
c Heat Equation: Data parallel SIMD program
c IBM XL FORTRAN 3.1 (FORTRAN 90 features inside)
c emulates data parallel execution
c--

parameter (n=100,nstep=100)
real :: x(1:n)
real :: psi(1:n),psi_new(1:n)

c ---
open(unit=21,file=’simd.out’)

dt = 1.
dx = 1.
D = 0.1
b = D*dt/(dx*dx)

5.5. SIMD CODE FOR THE HEAT EQUATION 69

a = 1.- 2.*b

pi = 4.*atan(1.)

c time-step control
if(b.ge.1.) stop "STOP HERE, DT TOO HIGH!!!"

c ---
c initialize

do i=1,n
x(i) = pi*float(i)
end do

psi = sin(x) ! parallel intrinsic function
c ---
c time loop

do istep=1,nstep

c update: data communication is automatically taken care of by the compiler

psi_new = b*cshift(psi,-1,1) + a*psi + b*cshift(psi,+1,1)

c advance: perfect alignement: no communication

psi = psi_new

c output
if(mod(istep,50).eq.0) then
write(21,*) ’start step n. ’,istep
do i=1,n
write(21,*) i,psi(i)
end do
endif

end do ! end time looping

stop
end

------- end -------

70 CHAPTER 5. EXAMPLE PROGRAMS

Chapter 6

Sample Application: Lattice
Boltzmann Fluid Dynamics
on the IBM SP2

In this chapter we shall present in a great detail an extended excerpt of a
message-passing code for three-dimensional fluid dynamics based upon the
Lattice Boltzmann method. The text reported here refers to an early version of
the code written for the IBM SP1 scalable parallel computer by F. Massaioli, G.
Punzo and the first author.

6.1 LBE Dynamics

The Lattice Boltzmann Equation method can be regarded as a finite difference
map, even though this theory was derived from kinetic theory rather than from
finite difference methods. At each lattice site, we evolve a population, fi, which
is bounded between 0 and 1. These fi propagate in the directions shown in
fig. 6.1, with velocities, ci. This mimics the free-streaming in the Boltzmann
Equation or in the Navier-Stokes equation. The second step is particle inter-
action, i.e. scattering from direction i to direction j. This scattering is active
as long as the distribution function has not yet relaxed to a local equilibrium.
Note that the right hand side of equation (6.1) is completely local, while the left
hand side involves nearest neighbor propagation only.

This problem is well suited for parallel computing because the calculation to
communication ratio is high. Here communication is minimal since we are
only looking at nearest neighbor interactions but the complexity of the calcula-
tion is roughly b2 where b, the number of discrete speeds, is approximately 20
in three dimensions.

71

72CHAPTER 6. SAMPLE APPLICATION: LATTICE BOLTZMANN FLUID DYNAMICS ON THE IBM

Figure 6.1: Stencil of LBE computation.

The Lattice Boltzmann Equations for gas dynamics are:

fi(~x+ ~ci; t+ 1)� fi(~x; t) =
bX

j=1

Aij(fj � fej)(x; t); (6.1)

fej (x; t) = d(1 +
~ci~u

c2s
+

1

2c4s

~~Qi : ~u~u); (6.2)

~~Qi = ~ci~ci � c2s
~~I; c2s = 1=2: (6.3)

For the specific example we will look at, b = 24. The scheme is elemen-
tary. However, since the stencil is somewhat “chunky,” there is a considerable
amount of bookkeeping that needs to be done in the code.

6.2 LBE Parallelization

The code consists of three stages:

1. Pre-processing, which includes initial conditions, boundary conditions,
grid set-up, etc.

2. Solving the equations. This is done in parallel.

3. Collecting the data to get back to a serial environment.

The initial step can be trivially parallelized. The final step is less trivial, es-
pecially if the geometry is complicated. One would like to use existing tools,
rather than writing this step on one’s own. In the pre-processing stage, we set
the initial conditions and the topology information. The topology includes the
boundaries of the computational domain, the list of neighbors, etc.

6.2. LBE PARALLELIZATION 73

LBE_PRE

LBE_POST

0 P-1

Output Fields

Input Data

Global Output

. . .

. . .

. . .

Topology,
Initial Configuration

LBE

Figure 6.2: LBE Parallelization

6.2.1 LBE PRE

The preprocessing stage, LBE PRE, does two things. First, it initializes the pop-
ulation, fi (A01 to A24 in the code), and writes them onto a set of separate files,
one per processor. Second, it prepares the interprocessor communication topol-
ogy and writes the corresponding information on the files mentioned above (20
+ processor identity).

The interconnection topology is a two-dimensional mesh along y and z with
processors numbered in lexicographic y–z order, as in figure 6.3.

2 3

4 6

8 9

1

5

7

x

y

z

Figure 6.3: 2-D partition.

74CHAPTER 6. SAMPLE APPLICATION: LATTICE BOLTZMANN FLUID DYNAMICS ON THE IBM

Each processor gets four neighbors, known as lefty (left along y), righty (right
along y), leftz (left along z), and rightz (right along z). For example, processor
5 in figure 6.3 has lefty=4, righty=6, leftz=2, and rightz=8. Processors lying on
the border get assigned -1 for non-existing neighbors. For example, lefty(1) =
-1 and rightz(8) = -1. Each subdomain of size l �m � n is identified by a pair
of offsets, jstart and kstart, whose meaning is made clear in figure 6.4.

y

z

kstart
jstart

m

nP

Figure 6.4: Offsets jstart and kstart.

The Pre-processing Code

lbehw.copy

C
C INCLUDE FILE WITH LATTICE DIMENSIONS FOR LBE 3D CONVECTION
C

cmicro PARAMETER (LGL = 32 , MGL = 32 , NGL = 32)
PARAMETER (LGL = 32 , MGL = 48 , NGL = 64) ! 18M

cmed PARAMETER (LGL = 64 , MGL = 96 , NGL = 128) ! 144M
cbig PARAMETER (LGL = 128, MGL = 192 , NGL = 256) ! 1152
cgiga PARAMETER (LGL = 256, MGL = 192 , NGL = 256) ! 2304
cgiga2 PARAMETER (LGL = 256, MGL = 256 , NGL = 256) ! 3272
cgiga3 PARAMETER (LGL = 256, MGL = 512 , NGL = 256) ! 6544
cgiga4 PARAMETER (LGL = 512, MGL = 512 , NGL = 512) ! 6544

lbepar.copy

C
C INCLUDE FILE WITH LATTICE DIMENSIONS FOR LBE 3D CONVECTION
C

include ’lbehw.copy’

c1 PARAMETER (NPY = 1, NPZ = 1)
c2 PARAMETER (NPY = 1, NPZ = 2)
c4 PARAMETER (NPY = 2, NPZ = 2)
c6 PARAMETER (NPY = 2, NPZ = 3)

PARAMETER (NPY = 2, NPZ = 4)

6.2. LBE PARALLELIZATION 75

c12 PARAMETER (NPY = 3, NPZ = 4)
c16 PARAMETER (NPY = 4, NPZ = 4)
c24 PARAMETER (NPY = 4, NPZ = 6)
c32 PARAMETER (NPY = 4, NPZ = 8)
c64 PARAMETER (NPY = 8, NPZ = 16)

PARAMETER (L = LGL, M = MGL/NPY , N = NGL/NPZ)

lbeproc.copy

C ***
C * INCLUDE FILE FOR LBECNV3D
C ***

INCLUDE ’lbepar.copy’

PARAMETER (LGL1=LGL+1, MGL1=MGL+1, NGL1=NGL+1)

PARAMETER (L1=L+1, M1=M+1, N1=N+1)
CG LEN=number of bytes involved in each transmission
CG if using real*4 => *4, if real*8 => *8 in the following multiply

PARAMETER (LEN = (M+2)*(L+2)*4)
CG needed by EUI simulator

parameter (mode=3)

REAL*4
* A01(0:LGL1,0:MGL1,0:NGL1), A02(0:LGL1,0:MGL1,0:NGL1),
* A03(0:LGL1,0:MGL1,0:NGL1), A04(0:LGL1,0:MGL1,0:NGL1),
* A05(0:LGL1,0:MGL1,0:NGL1), A06(0:LGL1,0:MGL1,0:NGL1),
* A07(0:LGL1,0:MGL1,0:NGL1), A08(0:LGL1,0:MGL1,0:NGL1),
* A09(0:LGL1,0:MGL1,0:NGL1), A10(0:LGL1,0:MGL1,0:NGL1),
* A11(0:LGL1,0:MGL1,0:NGL1), A12(0:LGL1,0:MGL1,0:NGL1),
* A13(0:LGL1,0:MGL1,0:NGL1), A14(0:LGL1,0:MGL1,0:NGL1),
* A15(0:LGL1,0:MGL1,0:NGL1), A16(0:LGL1,0:MGL1,0:NGL1),
* A17(0:LGL1,0:MGL1,0:NGL1), A18(0:LGL1,0:MGL1,0:NGL1),
* A19(0:LGL1,0:MGL1,0:NGL1), A20(0:LGL1,0:MGL1,0:NGL1),
* A21(0:LGL1,0:MGL1,0:NGL1), A22(0:LGL1,0:MGL1,0:NGL1),
* A23(0:LGL1,0:MGL1,0:NGL1), A24(0:LGL1,0:MGL1,0:NGL1)

INTEGER NTASK, TASKID, ALLMSG, ALLGRP, QBUF(4)
INTEGER LEFTY, LEFTZ, RGHTY, RGHTZ

COMMON /CPOI3/
* A01,A02,A03,A04,A05,A06,A07,A08,A09,
* A10,A11,A12,A13,A14,A15,A16,A17,A18,
* A19,A20,A21,A22,A23,A24

76CHAPTER 6. SAMPLE APPLICATION: LATTICE BOLTZMANN FLUID DYNAMICS ON THE IBM

COMMON /PAR/ SVISC,SCHI,ALFAG,DELTAT

COMMON /COLL/ A,B,C,D,E,F,AMF,CPF,EMF,FRCEZ,FRCET

COMMON /EIGEN/ ELAMBDA,EMU,TAU,SIGMA

COMMON /NDOSTAMO/ NTASK, TASKID, ALLMSG, ALLGRP, QBUF

COMMON /TOPOLOGY/ LEFTY, LEFTZ, RGHTY, RGHTZ

preproc.f

PROGRAM PREPROC

C
C STARTING CONDITION FOR 3D LBE CONVECTION SIMULATION
C
C VELOCITY FIELD WITH ZERO DIVERGENCE
C
C 20 IS OUTPUT FILE
C

INCLUDE ’preproc.copy’

PARAMETER(QF = 1./12., RF = 1./288.)

PARAMETER(PI=3.1415926)

PARAMETER(AM1=0.16, WX1=1., WY1=2., WZ1=3.)

PARAMETER(AM2=0.21, WX2=4., WY2=5., WZ2=6.)

REAL*4 CXJ(LGL,MGL,NGL),
* CYJ(LGL,MGL,NGL),
* CZJ(LGL,MGL,NGL),
* CTJ(LGL,MGL,NGL)

logical serial
dimension ipp(0:npy-1,0:npz-1)

c ---
CG WRITE(6,*) ’DELTA T?’
CG READ(5,*) DELTAT

DELTAT = .2
c WRITE(6,*) ’SERIAL? (T/F)’
c READ(5,*) SERIAL
C SERIAL = .FALSE.

WRITE(6,*) ’BUILDING STARTING CONFIGURATION’

6.2. LBE PARALLELIZATION 77

C
C VELOCITY FIELD
C

AL1 = WX1*PI/FLOAT(LGL)
BE1 = WY1*PI/FLOAT(MGL)
GA1 = WZ1*PI/FLOAT(NGL)

AL2 = WX2*PI/FLOAT(LGL)
BE2 = WY2*PI/FLOAT(MGL)
GA2 = WZ2*PI/FLOAT(NGL)

DO K = 1, NGL
DO J = 1, MGL
DO I = 1, LGL

X = FLOAT(I)-0.5
Y = FLOAT(J)-0.5
Z = FLOAT(K)-0.5

CXJ(I,J,K) =
* AM1*SIN(AL1*X)*(GA1*COS(GA1*Z)-BE1*COS(BE1*Y))
* +AM2*SIN(AL2*X)*(GA2*COS(GA2*Z)-BE2*COS(BE2*Y))

CYJ(I,J,K) =
* AM1*SIN(BE1*Y)*(AL1*COS(AL1*X)-GA1*COS(GA1*Z))
* +AM2*SIN(BE2*Y)*(AL2*COS(AL2*X)-GA2*COS(GA2*Z))

CZJ(I,J,K) =
* AM1*SIN(GA1*Z)*(BE1*COS(BE1*Y)-AL1*COS(AL1*X))
* +AM2*SIN(GA2*Z)*(BE2*COS(BE2*Y)-AL2*COS(AL2*X))

END DO
END DO
END DO

C
C BUILDS THE POPULATIONS
C

DO K = 1, NGL

TJ = -DELTAT * 24. *
C (FLOAT(NGL1)/FLOAT(2*NGL)-FLOAT(K)/FLOAT(NGL))

78CHAPTER 6. SAMPLE APPLICATION: LATTICE BOLTZMANN FLUID DYNAMICS ON THE IBM

DO J = 1, MGL
DO I = 1, LGL

XJ = 24.*CXJ(I,J,K)
YJ = 24.*CYJ(I,J,K)
ZJ = 24.*CZJ(I,J,K)

VSQ=XJ*XJ+YJ*YJ+ZJ*ZJ+TJ*TJ

A01(I,J,K) = QF*(XJ-YJ) + RF*((XJ-YJ)*(XJ-YJ)- .5*VSQ)
A02(I,J,K) = QF*(XJ -ZJ) + RF*((XJ-ZJ)*(XJ-ZJ)- .5*VSQ)
A03(I,J,K) = QF*(XJ+YJ) + RF*((XJ+YJ)*(XJ+YJ)- .5*VSQ)
A04(I,J,K) = QF*(XJ +ZJ) + RF*((XJ+ZJ)*(XJ+ZJ)- .5*VSQ)
A05(I,J,K) = QF*(XJ +TJ) + RF*((XJ+TJ)*(XJ+TJ)- .5*VSQ)
A06(I,J,K) = QF*(ZJ+TJ) + RF*((ZJ+TJ)*(ZJ+TJ)- .5*VSQ)
A07(I,J,K) = QF*(YJ+ZJ) + RF*((YJ+ZJ)*(YJ+ZJ)- .5*VSQ)
A08(I,J,K) = QF*(YJ +TJ) + RF*((YJ+TJ)*(YJ+TJ)- .5*VSQ)
A09(I,J,K) = QF*(YJ-ZJ) + RF*((YJ-ZJ)*(YJ-ZJ)- .5*VSQ)
A10(I,J,K) = QF*(-XJ-YJ) + RF*((XJ+YJ)*(XJ+YJ)- .5*VSQ)
A11(I,J,K) = QF*(-XJ -ZJ) + RF*((XJ+ZJ)*(XJ+ZJ)- .5*VSQ)
A12(I,J,K) = QF*(-XJ+YJ) + RF*((XJ-YJ)*(XJ-YJ)- .5*VSQ)
A13(I,J,K) = QF*(-XJ +ZJ) + RF*((XJ-ZJ)*(XJ-ZJ)- .5*VSQ)
A14(I,J,K) = QF*(-XJ +TJ) + RF*((XJ-TJ)*(XJ-TJ)- .5*VSQ)
A15(I,J,K) = QF*(-ZJ+TJ) + RF*((ZJ-TJ)*(ZJ-TJ)- .5*VSQ)
A16(I,J,K) = QF*(-YJ-ZJ) + RF*((YJ+ZJ)*(YJ+ZJ)- .5*VSQ)
A17(I,J,K) = QF*(-YJ +TJ) + RF*((YJ-TJ)*(YJ-TJ)- .5*VSQ)
A18(I,J,K) = QF*(-YJ+ZJ) + RF*((YJ-ZJ)*(YJ-ZJ)- .5*VSQ)
A19(I,J,K) = QF*(XJ -TJ) + RF*((XJ-TJ)*(XJ-TJ)- .5*VSQ)
A20(I,J,K) = QF*(ZJ-TJ) + RF*((ZJ-TJ)*(ZJ-TJ)- .5*VSQ)
A21(I,J,K) = QF*(YJ -TJ) + RF*((YJ-TJ)*(YJ-TJ)- .5*VSQ)
A22(I,J,K) = QF*(-XJ -TJ) + RF*((XJ+TJ)*(XJ+TJ)- .5*VSQ)
A23(I,J,K) = QF*(-YJ -TJ) + RF*((YJ+TJ)*(YJ+TJ)- .5*VSQ)
A24(I,J,K) = QF*(-ZJ-TJ) + RF*((ZJ+TJ)*(ZJ+TJ)- .5*VSQ)

END DO
END DO
END DO

WRITE(6,*) ’START SAVING ’

c goto 1234
c if (serial) then

REWIND(20)

WRITE(20) 0

6.2. LBE PARALLELIZATION 79

DO K=1,NGL
DO J=1,MGL

WRITE(20)
* (A01(I,J,K),A02(I,J,K),A03(I,J,K),A04(I,J,K),
* A05(I,J,K),A06(I,J,K),A07(I,J,K),A08(I,J,K),
* A09(I,J,K),A10(I,J,K),A11(I,J,K),A12(I,J,K),
* A13(I,J,K),A14(I,J,K),A15(I,J,K),A16(I,J,K),
* A17(I,J,K),A18(I,J,K),A19(I,J,K),A20(I,J,K),
* A21(I,J,K),A22(I,J,K),A23(I,J,K),A24(I,J,K),
* I=1,LGL)

END DO
END DO

c else
c1234 continue

np = npz*npy
write(6,*) ’processor topology’
write(6,*) ’------------------’
do ip = 1, np

c topology: process allocation: as fortran allocates data
c neighbours 0 if it is a wall

lefty = (ip-1) * min(mod(ip-1,npy) , 1) -1
leftz = max(ip - npy,0) -1
rghty = (ip+1) * min(mod(ip,npy) , 1) -1
rghtz = mod(min(ip+npy,np+1), (np+1)) -1
write(6,*) ip-1,lefty,rghty,leftz,rghtz

rewind(20+ip)
write(20+ip) 0, lefty, rghty, leftz, rghtz

jstart = mod(ip-1,npy) * m
kstart = ((ip-1)/npy) * n

do k = kstart+1, kstart+n
do j = jstart+1, jstart+m

WRITE(20+ip)
* (A01(I,j,k),A02(I,j,k),A03(I,j,k),A04(I,j,k),
* A05(I,j,k),A06(I,j,k),A07(I,j,k),A08(I,j,k),
* A09(I,j,k),A10(I,j,k),A11(I,j,k),A12(I,j,k),
* A13(I,j,k),A14(I,j,k),A15(I,j,k),A16(I,j,k),
* A17(I,j,k),A18(I,j,k),A19(I,j,k),A20(I,j,k),
* A21(I,j,k),A22(I,j,k),A23(I,j,k),A24(I,j,k),

80CHAPTER 6. SAMPLE APPLICATION: LATTICE BOLTZMANN FLUID DYNAMICS ON THE IBM

* I=1,L)
end do

end do
end do

WRITE(6,*) ’SAVE COMPLETED’

c plot the processor topology
do 100 ipz=0,npz-1
do 100 ipy=0,npy-1
ipp(ipy,ipz) = ipz*npy + ipy

100 continue

do 200 ipz=npz-1,0,-1
write(6,*) (ipp(ipy,ipz),ipy=0,npy-1)

200 continue

stop
END

6.2.2 LBE

This is the fluid solver, the program to which parallelization applies. The core
of the parallelization is lumped into a single routine, BCOND, which deals with
the boundary conditions. There are actually two BCOND’s, BCOND EVEN
and BCOND ODD, which manage the communication from odd to even pro-
cessors, and vice-versa. This split is motivated by the same needs discussed in
the sample code for the heat equation, the “produce and consume asap” phi-
losophy and a desire to be free of contention between processors.

For BCOND EVEN, we distinguish three steps:

1. Message-passing preparation.

2. Intersparse boundary conditions.

3. Actual reception of messages.

Message-Passing Preparation

We first stipulate a naming convention for the messages:

� Message Type = 100 + ip, 200 + ip, 300 + ip. This is for the propogation of
population ip (1 � ip � 24) along x; y; z respectively.

� Message Identity = mi��
, where

– � = s; r, depending on whether the message is sent or received.

6.2. LBE PARALLELIZATION 81

– � = x; y; z, depending on the direction of propagation.

–
, the population number.

The program starts with message-passing preparation across the surface “west”
and “east” of populations 7, 9, 16, and 18, which propagate according to fig-
ure 6.5. Note that diagonal propagation (yz) is decomposed into two subse-
quent steps, first along y(z) and then along z(y). This is to avoid latency over-
heads which would be triggered by sending “corner” elements or a separate
message.

y

z
7

916

18

w

l

east west

south

top

bottom

north

Figure 6.5: Propagation of populations 7, 9, 16, and 18.

We will focus on the “west” surface; 16 and 18 have to be sent and 7 and 9
received. Population 16 is sent with message type 200+16 = 216 and message
id misy16 (send population 16 along y). For the sake of clarity, the array a16 is
first packed into a buffer array, buffone, which stores the l �nmemory locations
corresponding to the surface “west” in a contiguous format. Today, this opera-
tion would not be needed since the IBM MPL takes care of direct send/receive
of messages consisting of non-contiguous memory locations.

The sequence of operations is (fig. 6.6):

1. send 16.

2. receive 7.

3. send 18.

4. receive 9.

For the sake of compactness, we could have combined 16 and 18 into a sin-
gle message, as well as 7 and 9. Since there are enough data to offset latency
overheads, there is no compelling need for combining these messages. It is
important to note that the non-blocking character of the send/receive primi-
tives allows the CPU, while waiting for the message-passing operation to be
completed, to move on to independent work. This reduces part of the commu-
nication overhead. This is the reason why the code, once the message-passing

82CHAPTER 6. SAMPLE APPLICATION: LATTICE BOLTZMANN FLUID DYNAMICS ON THE IBM

7

16

9

18

send 7

receive 16

send 9

receive 18

16

7

18

9

Figure 6.6: Sequence of operations for populations 7, 9, 16, and 18.

requests to send/receive on “west/east” surfaces are over, moves on to process
independent boundary conditions, rather than going on with other message-
passing requests. More specifically, on “north/south” walls, the code han-
dles no-slip (zero velocity) boundary conditions, and on “west/east” walls,
it handles free-slip (zero normal velocity) boundary conditions. Readers can
convince themselves that these boundary conditions do not involve any data
needed by the message-passing across “west/east”, and can therefore proceed
concurrently. Before moving to other message-passing operations, we need to
secure correct completion of the message-passing across “west/east”. This is
performed in section 3 of the code, where selective barriers, mp wait, are in-
voked upon completion of the messages issued in section 1. Note that selective
barriers make use of the specific message-passing identities (misy16 .. miry09).

The Code

lbe main.f
lbe.copy

PROGRAM LBECNV3D
C PARALLEL PROGRAM: version for argonne: may 10 1994
c from S. Succi, G. Punzo, F. Massaioli, IBM Rome
C---
C VQ = THETA = T-TEQ = T-(DELTAT/2-DELTAT/M*Y)
C---
C SVISC : VISCOSITY
C SCHI : CONDUCTIVITY
C TAU : GHOST DENSITY EIGENVALUE
C SIGMA : GHOST MOMENTUM EIGENVALUE
C ALFAG : THERMAL EXPANSION COEFFICIENT * GRAVITY ACCELERATION
C DELTAT : LOWER-UPPER BOUNDARY TEMPERATURE DIFFERENCE
C A01,A24 : ARRAY OF POPULATION, DEFINED AS : (NI-D)/D
C---
C ITFIN : FINAL TIME STEP
C ITSTART : STARTING TIME STEP
C IVTIM : TIME LAP BETWEEN TWO MACRO-CONFIGURATION COMPUTATION
C ITEMP : TIME LAP BETWEEN TWO PROBES MEASURES

6.2. LBE PARALLELIZATION 83

C ITSAVE : TIME LAP BETWEEN TWO SALVAGES
C ICHECK : TIME LAP BETWEEN TWO CONSERVATIONS CHECKS
C---
C INPUT AND OUTPUT FILES
C
C 20 : STARTING CONFIGURATION
C 16 :.COPY OF SCREEN OUTPUT
C 40 : SAVED CONFIGURATION (TO CONTINUE AT A LATER TIME)
C 60 : MACRO VARIABLES OUTPUT
C 95 : TEMPERATURE GRADIENTS
C 99 : TEMPERATURE MEASURES
C---
C DIRECTION 1 UNIT VECTOR = (1,-1, 0, 0)
C DIRECTION 2 UNIT VECTOR = (1, 0,-1, 0)
C DIRECTION 3 UNIT VECTOR = (1, 1, 0, 0)
C DIRECTION 4 UNIT VECTOR = (1, 0, 1, 0)
C DIRECTION 5 UNIT VECTOR = (1, 0, 0, 1)
C DIRECTION 6 UNIT VECTOR = (0, 0, 1, 1)
C DIRECTION 7 UNIT VECTOR = (0, 1, 1, 0)
C DIRECTION 8 UNIT VECTOR = (0, 1, 0, 1)
C DIRECTION 9 UNIT VECTOR = (0, 1,-1, 0)
C DIRECTION 10 UNIT VECTOR = (-1,-1, 0, 0)
C DIRECTION 11 UNIT VECTOR = (-1, 0,-1, 0)
C DIRECTION 12 UNIT VECTOR = (-1, 1, 0, 0)
C DIRECTION 13 UNIT VECTOR = (-1, 0, 1, 0)
C DIRECTION 14 UNIT VECTOR = (-1, 0, 0, 1)
C DIRECTION 15 UNIT VECTOR = (0, 0,-1, 1)
C DIRECTION 16 UNIT VECTOR = (0,-1,-1, 0)
C DIRECTION 17 UNIT VECTOR = (0,-1, 0, 1)
C DIRECTION 18 UNIT VECTOR = (0,-1, 1, 0)
C DIRECTION 19 UNIT VECTOR = (1, 0, 0,-1)
C DIRECTION 20 UNIT VECTOR = (0, 0, 1,-1)
C DIRECTION 21 UNIT VECTOR = (0, 1, 0,-1)
C DIRECTION 22 UNIT VECTOR = (-1, 0, 0,-1)
C DIRECTION 23 UNIT VECTOR = (0,-1, 0,-1)
C DIRECTION 24 UNIT VECTOR = (0, 0,-1,-1)
C---

INCLUDE ’lbe.copy’

CHARACTER*80 TITLE
integer cpu1, cpu2, elap1, elap2, cputot, elaptot
real*8 ttot1, ttot2, tmov1, tmov2, tcol1, tcol2, ttmov, ttcol
real*8 trun1, trun2, tbcon1, tbcon2, ttbcon
real*8 atime

C
C following routines are needed when using EUI

84CHAPTER 6. SAMPLE APPLICATION: LATTICE BOLTZMANN FLUID DYNAMICS ON THE IBM

C
C this routine returns the number of tasks and the task identifier
C when the program is running in parallel mode

call mp_environ(ntask,taskid)
c ‘‘WHO AM I’’
c timing statements

open(15,file=’lbe.input’)
ttmov = 0.d0
ttcol = 0.d0
ttbcon = 0.d0

c --
ttot1 = atime()

C
C READ INPUT PARAMETERS
C

CALL INPUT
& (TITLE,ITFIN,IVTIM,ITEMP,ITSAVE,ICHECK,IBENCH)

C WRITE RUN DATA ON OUTPUT FILE
C

CALL OUTDAT
& (TITLE,ITFIN,ITSTART,IVTIM,ITEMP,ITSAVE,ICHECK)

C
C COLLISION PARAMETERS
C

CALL HENCOL
C
C GET STARTING CONFIGURATION
C
C ibench = 0 => production
C ibench = 1 => benchmark

if (ibench.eq.0) then
CALL PICK(ITSTART)

else
call INIT

endif

CALL DIAGNO(ITSTART)
C
C>>>>>>>>>> time loop >>>>>>>>>>>>>>>>>>>>>>>
C

trun1=atime()

DO 1000 ITIME=ITSTART+1,ITFIN

6.2. LBE PARALLELIZATION 85

if(taskid.eq.0) WRITE(6,*) ’itime’,ITIME
C
C BOUNDARY CONDITIONS
C

tmov1 = atime()
tbcon1 = atime()

if(mod(taskid,2).eq.0) then
C Even talk to Odd

CALL BCOND_EVEN
else

C Odd talk to Even
CALL BCOND_ODD
endif

tbcon2 = atime()
ttbcon = ttbcon + tbcon2 - tbcon1

C
C GET MACROSCOPIC VALUES
C

IF (MOD(ITIME,IVTIM).EQ.0) THEN
CALL VARM(ITIME)

END IF

IF (MOD(ITIME,ITEMP).EQ.0) THEN
CALL VARTMP(ITIME)

END IF

IF (MOD(ITIME,ICHECK).EQ.0) THEN
CALL DIAGNO(ITIME)

END IF
C
C PROPAGATION
C

CALL MOVEF

tmov2 = atime()
ttmov = ttmov + tmov2 - tmov1

C
C COLLISION
C

tcol1 = atime()

CALL COL

86CHAPTER 6. SAMPLE APPLICATION: LATTICE BOLTZMANN FLUID DYNAMICS ON THE IBM

tcol2 = atime()
ttcol = ttcol + tcol2 - tcol1

C
C SAVE ALL POPULATIONS
C

IF (MOD(ITIME,ITSAVE).EQ.0) THEN
CALL SAVE(ITIME)

END IF

1000 CONTINUE

trun2 = atime()
ttot2 = atime()

write(6,*) taskid,’tot time’,ttot2-ttot1
write(6,*) taskid,’tot run ’,trun2-trun1
write(6,*) taskid,’tot move’,ttmov
write(6,*) taskid,’tot bcond ’,ttbcon
write(6,*) taskid,’tot col ’,ttcol

stop
END

\noindent {\bf bcond.f}
\begin{verbatim}

SUBROUTINE BCOND_EVEN
css send receive for even processors
C
C BOUNDARY CONDITIONS
C LATERAL WALLS (EAST/WEST): FREE SLIP
C TOP & BOTTOM WALLS : NO SLIP & THETA = 0
C
c message types = i*100 + population number, where i = 1,2,3 for movemen
c along x,y,z
c message id names = mi + {s|r (send/receive)} + {x|y|z (axis)} + popula
c number
c --

INCLUDE ’lbe.copy’
real*4 buffone((l+2)*n,8,2)

c (L+2)*n; size of the surface
c 8 ; # of messages per processor
c 1,2 ; message sent/received across the surface
c
c--
c SECTION 1

6.2. LBE PARALLELIZATION 87

c--
c 1st step: transmission of yz-populations along y: surface SY_MINUS (WEST)

nllen = n * l * rlen

if (lefty.ne.-1) then
call my_pack(a16(1,1,1),buffone(1,1,1),l,yst,n)
call mp_send(buffone(1,1,1),nllen,lefty,216,misy16)
call mp_recv(buffone(1,3,2),nllen,lefty,207,miry07)

call my_pack(a18(1,1,1),buffone(1,2,1),l,yst,n)
call mp_send(buffone(1,2,1),nllen,lefty,218,misy18)
call mp_recv(buffone(1,4,2),nllen,lefty,209,miry09)

endif

if (rghty.ne.-1) then
call my_pack(a07(1,m,1),buffone(1,3,1),l,yst,n)
call mp_send(buffone(1,3,1),nllen,rghty,207,misy07)
call mp_recv(buffone(1,1,2), nllen,rghty,216,miry16)

call my_pack(a09(1,m,1),buffone(1,4,1),l,yst,n)
call mp_send(buffone(1,4,1),nllen,rghty,209,misy09)
call mp_recv(buffone(1,2,2),nllen,rghty,218,miry18)

endif
c
c--
c SECTION 2
c--
c Boundary Conditions on North/South. Profit from non-blocking
c send/receive to keep on with independent work.

jstart = 1
jstop = m
if (lefty.eq.-1) jstart = 2
if (rghty.eq.-1) jstop = m-1

do k = 1, n
do j = jstart, jstop

a10(l1,j,k) = a01(l,j,k)
a12(l1,j,k) = a03(l,j,k)
a01(0,j,k) = a10(1,j,k)
a03(0,j,k) = a12(1,j,k)

end do
end do

c for xz- and yz-populations boundary conditions on x and y walls
kstart = 1
kstop = n
if (leftz.eq.-1) kstart = 2

88CHAPTER 6. SAMPLE APPLICATION: LATTICE BOLTZMANN FLUID DYNAMICS ON THE IBM

if (rghtz.eq.-1) kstop = n-1

c x walls for xz-populations : before xz-populations z-transmissions
do k = kstart, n

do j = 1, m
a11(l1,j,k) = a02(l,j,k)
a02(0,j,k) = a11(1,j,k)

end do
end do
do k = 1, kstop

do j = 1, m
a13(l1,j,k) = a04(l,j,k)
a04(0,j,k) = a13(1,j,k)

end do
end do

c y walls for yz-populations : before yz-populations z-transmissions
if (lefty.eq.-1) then

do k = kstart, n
do i = 1, l

a09(i,0,k) = a16(i,1,k)
end do

end do
do k = 1, kstop

do i = 1, l
a07(i,0,k) = a18(i,1,k)

end do
end do

end if

if (rghty.eq.-1) then
do k = kstart, n

do i = 1, l
a16(i,m1,k) = a09(i,m,k)

end do
end do
do k = 1, kstop

do i = 1, l
a18(i,m1,k) = a07(i,m,k)

end do
end do

end if
c
c--
c SECTION 3
c--
c SECURE RECEPTION BEFORE STORING

6.2. LBE PARALLELIZATION 89

c allmsg = qbuf(2)
c call mp_wait(allmsg,nb)

if (lefty.ne.-1) then
call mp_wait(misy16, nb)
call mp_wait(misy18, nb)
call mp_wait(miry07, nb)
call mp_wait(miry09, nb)

endif
if (rghty.ne.-1) then
call mp_wait(misy07, nb)
call mp_wait(misy09, nb)
call mp_wait(miry16, nb)
call mp_wait(miry18, nb)

endif
c
c--
c SECTION 4
c--
c ACTUAL RECEIVE COMPLETED: STORE CAN PROCEED
c x walls for xy-populations : before xy-populations y-transmissions

if (lefty.ne.-1) then
call my_unpack(a07(1,0,1),buffone(1,3,2),l,yst,n)
call my_unpack(a09(1,0,1),buffone(1,4,2),l,yst,n)

c Note:stored into buffer. Move will take care of shifting into the
c physical domain

endif
if (rghty.ne.-1) then

call my_unpack(a16(1,m1,1),buffone(1,1,2),l,yst,n)
call my_unpack(a18(1,m1,1),buffone(1,2,2),l,yst,n)

endif
css --
c 2nd step: transmission of yz-populations along z
css --

if (leftz.ne.-1) then
call mp_send(a09(0,0,1),yst*rlen,leftz,309,misz09)
call mp_recv(a07(0,0,0),yst*rlen,leftz,307,mirz07)
call mp_send(a16(0,0,1),yst*rlen,leftz,316,misz16)
call mp_recv(a18(0,0,0),yst*rlen,leftz,318,mirz18)

endif
if (rghtz.ne.-1) then

call mp_send(a07(0,0,n),yst*rlen,rghtz,307,misz07)
call mp_recv(a09(0,0,n1),yst*rlen,rghtz,309,mirz09)
call mp_send(a18(0,0,n),yst*rlen,rghtz,318,misz18)
call mp_recv(a16(0,0,n1),yst*rlen,rghtz,316,mirz16)

endif

90CHAPTER 6. SAMPLE APPLICATION: LATTICE BOLTZMANN FLUID DYNAMICS ON THE IBM

c transmission of xy-populations along y: 1,10
if (lefty.ne.-1) then
call my_pack(a01(0,1,1),buffone(1,1,1),(l+2),yst,n)
call mp_send(buffone(1,1,1),n*(l+2)*rlen,lefty,201,misy01)
call mp_recv(buffone(1,3,2),n*(l+2)*rlen,lefty,203,miry03)

call my_pack(a10(0,1,1),buffone(1,2,1),(l+2),yst,n)
call mp_send(buffone(1,2,1),n*(l+2)*rlen,lefty,210,misy10)
call mp_recv(buffone(1,4,2),n*(l+2)*rlen,lefty,212,miry12)
endif

if (rghty.ne.-1) then
call my_pack(a03(0,m,1),buffone(1,3,1),(l+2),yst,n)
call mp_send(buffone(1,3,1),n*(l+2)*rlen,rghty,203,misy03)
call mp_recv(buffone(1,1,2),n*(l+2)*rlen,rghty,201,miry01)

call my_pack(a12(0,m,1),buffone(1,4,1),(l+2),yst,n)
call mp_send(buffone(1,4,1),n*(l+2)*rlen,rghty,212,misy12)
call mp_recv(buffone(1,2,2),n*(l+2)*rlen,rghty,210,miry10)
endif

c transmission of y-populations along y
if (lefty.ne.-1) then

call my_pack(a17(1,1,1),buffone(1,5,1),l,yst,n)
call mp_send(buffone(1,5,1),n*l*rlen,lefty,217,misy17)
call mp_recv(buffone(1,7,2),n*l*rlen,lefty,208,miry08)

call my_pack(a23(1,1,1),buffone(1,6,1),l,yst,n)
call mp_send(buffone(1,6,1),n*l*rlen,lefty,223,misy23)
call mp_recv(buffone(1,8,2),n*l*rlen,lefty,221,miry21)

endif
if (rghty.ne.-1) then

call my_pack(a08(1,m,1),buffone(1,7,1),l,yst,n)
call mp_send(buffone(1,7,1),n*l*rlen,rghty,208,misy08)
call mp_recv(buffone(1,5,2),n*l*rlen,rghty,217,miry17)

call my_pack(a21(1,m,1),buffone(1,8,1),l,yst,n)
call mp_send(buffone(1,8,1),n*l*rlen,rghty,221,misy21)
call mp_recv(buffone(1,6,2),n*l*rlen,rghty,223,miry23)

endif

c transmission of xz-populations along z

if (leftz.ne.-1) then
call mp_send(a02(0,1,1),(l+2)*m*rlen,leftz,302,misz02)
call mp_recv(a04(0,1,0),(l+2)*m*rlen,leftz,304,mirz04)
call mp_send(a11(0,1,1),(l+2)*m*rlen,leftz,311,misz11)

6.2. LBE PARALLELIZATION 91

call mp_recv(a13(0,1,0),(l+2)*m*rlen,leftz,313,mirz13)
endif
if (rghtz.ne.-1) then

call mp_send(a04(0,1,n),(l+2)*m*rlen,rghtz,304,misz04)
call mp_recv(a02(0,1,n1),(l+2)*m*rlen,rghtz,302,mirz02)
call mp_send(a13(0,1,n),(l+2)*m*rlen,rghtz,313,misz13)
call mp_recv(a11(0,1,n1),(l+2)*m*rlen,rghtz,311,mirz11)

endif
c transmission of z-populations along z

if (leftz.ne.-1) then
call mp_send(a15(0,1,1),(l+2)*m*rlen,leftz,315,misz15)
call mp_recv(a06(0,1,0),(l+2)*m*rlen,leftz,306,mirz06)
call mp_send(a24(0,1,1),(l+2)*m*rlen,leftz,324,misz24)
call mp_recv(a20(0,1,0),(l+2)*m*rlen,leftz,320,mirz20)

endif

if (rghtz.ne.-1) then
call mp_send(a06(0,1,n),(l+2)*m*rlen,rghtz,306,misz06)
call mp_recv(a15(0,1,n1),(l+2)*m*rlen,rghtz,315,mirz15)
call mp_send(a20(0,1,n),(l+2)*m*rlen,rghtz,320,misz20)
call mp_recv(a24(0,1,n1),(l+2)*m*rlen,rghtz,324,mirz24)

endif

c x walls for x-populations : commute with y- and z-transmissions
do k = 1, n

do j = 1, m
a14(L1,j,k) = a05(L,j,k)
a22(L1,j,k) = a19(L,j,k)
a05(0,j,k) = a14(1,j,k)
a19(0,j,k) = a22(1,j,k)

end do
end do

c y walls for y-populations : commute with z-transmissions
if (lefty.eq.-1) then

do k = 1, n
do i = 1, l

a08(i,0,k) = a17(i,1,k)
a21(i,0,k) = a23(i,1,k)

end do
end do

end if

if (rghty.eq.-1) then
do k = 1, n

do i = 1, l

92CHAPTER 6. SAMPLE APPLICATION: LATTICE BOLTZMANN FLUID DYNAMICS ON THE IBM

a17(i,m1,k) = a08(i,m,k)
a23(i,m1,k) = a21(i,m,k)

end do
end do

end if

c y walls for xy-populations : commute with z-transmissions
if (lefty.eq.-1) then

do k = 1, n
a03(0,0,k) = a10(1,1,k)
do i = 2, l-1

a03(i,0,k) = a01(i,1,k)
a12(i,0,k) = a10(i,1,k)

end do
a12(l1,0,k) = a01(l,1,k)

end do
end if

if (rghty.eq.-1) then
do k = 1, n

a01(0,m1,k) = a12(1,m,k)
do i = 2, l-1

a01(i,m1,k) = a03(i,m,k)
a10(i,m1,k) = a12(i,m,k)

end do
a10(l1,m1,k) = a03(l,m,k)

end do
end if

c z walls : commute with y-transmissions
if (leftz.eq.-1) then

do j = 1, m
do i = 1, l

a06(i,j,0) = a24(i,j,1)
a20(i,j,0) = a15(i,j,1)
a04(i-1,j,0) = a11(i,j,1)
a13(i+1,j,0) = a02(i,j,1)
a07(i,j-1,0) = a16(i,j,1)
a18(i,j+1,0) = a09(i,j,1)

end do
end do

end if

if (rghtz.eq.-1) then
do j = 1, m

do i = 1, l

6.2. LBE PARALLELIZATION 93

a24(i,j,n1) = a06(i,j,n)
a15(i,j,n1) = a20(i,j,n)
a02(i-1,j,n1) = a13(i,j,n)
a11(i+1,j,n1) = a04(i,j,n)
a09(i,j-1,n1) = a18(i,j,n)
a16(i,j+1,n1) = a07(i,j,n)

end do
end do

end if
css ====================== BARRIER # 2 ======================
c allmsg = qbuf(2)
c call mp_wait(allmsg,nb)

if (leftz.ne.-1) then
call mp_wait(misz09, nb)
call mp_wait(misz16, nb)
call mp_wait(mirz07, nb)
call mp_wait(mirz18, nb)
call mp_wait(misz02, nb)
call mp_wait(mirz04, nb)
call mp_wait(misz11, nb)
call mp_wait(mirz13, nb)
call mp_wait(misz15, nb)
call mp_wait(mirz06, nb)
call mp_wait(misz24, nb)
call mp_wait(mirz20, nb)

endif
if (rghtz.ne.-1) then
call mp_wait(misz07, nb)
call mp_wait(misz18, nb)
call mp_wait(mirz09, nb)
call mp_wait(mirz16, nb)
call mp_wait(misz04, nb)
call mp_wait(mirz02, nb)
call mp_wait(misz13, nb)
call mp_wait(mirz11, nb)
call mp_wait(misz06, nb)
call mp_wait(mirz15, nb)
call mp_wait(misz20, nb)
call mp_wait(mirz24, nb)

endif
if (lefty.ne.-1) then
call mp_wait(misy01, nb)
call mp_wait(miry03, nb)
call mp_wait(misy10, nb)
call mp_wait(miry12, nb)
call mp_wait(misy17, nb)

94CHAPTER 6. SAMPLE APPLICATION: LATTICE BOLTZMANN FLUID DYNAMICS ON THE IBM

call mp_wait(miry08, nb)
call mp_wait(misy23, nb)
call mp_wait(miry21, nb)

endif
if (rghty.ne.-1) then
call mp_wait(misy03, nb)
call mp_wait(misy12, nb)
call mp_wait(miry01, nb)
call mp_wait(miry10, nb)
call mp_wait(misy08, nb)
call mp_wait(miry17, nb)
call mp_wait(misy21, nb)
call mp_wait(miry23, nb)

endif
css ====================== BARRIER # 2 ======================

c transmission of xy-populations along y
if (lefty.ne.-1) then

call my_unpack(a03(0,0,1),buffone(1,3,2),l+2,yst,n)
call my_unpack(a12(0,0,1),buffone(1,4,2),l+2,yst,n)

endif

if (rghty.ne.-1) then
call my_unpack(a01(0,m1,1),buffone(1,1,2),l+2,yst,n)
call my_unpack(a10(0,m1,1),buffone(1,2,2),l+2,yst,n)

endif

c transmission of y-populations along y
if (lefty.ne.-1) then

call my_unpack(a08(1,0,1),buffone(1,7,2),l,yst,n)
call my_unpack(a21(1,0,1),buffone(1,8,2),l,yst,n)

endif

if (rghty.ne.-1) then
call my_unpack(a17(1,m1,1),buffone(1,5,2),l,yst,n)
call my_unpack(a23(1,m1,1),buffone(1,6,2),l,yst,n)

endif

return
end

c --
SUBROUTINE BCOND_ODD

c --
css receive/send sequence for odd-numbered processors
C
C BOUNDARY CONDITIONS

6.2. LBE PARALLELIZATION 95

C LATERAL WALLS : FREE SLIP
C LOWER & UPPER WALLS : NO SLIP & THETA = 0
C
c message types = i*100 + population number, where i = 1,2,3 for movemen
c along x,y,z
c message id names = mi + {s|r (send/receive)} + {x|y|z (axis)} + popula
c number
c --

INCLUDE ’lbe.copy’
real*4 buffone((l+2)*n,8,2)

c (L+2)*n; size of the surface
c 8 ; # of messages per processor
c 1,2 ; message sent/received across the surface
c --
c 1st step: transmission of yz-populations along y: surface SY_MINUS

nllen = n * l * rlen

if (lefty.ne.-1) then
call mp_recv(buffone(1,3,2),nllen,lefty,207,miry07)
call my_pack(a16(1,1,1),buffone(1,1,1),l,yst,n)
call mp_send(buffone(1,1,1),nllen,lefty,216,misy16)

call mp_recv(buffone(1,4,2),nllen,lefty,209,miry09)
call my_pack(a18(1,1,1),buffone(1,2,1),l,yst,n)
call mp_send(buffone(1,2,1),nllen,lefty,218,misy18)

endif

if (rghty.ne.-1) then
call mp_recv(buffone(1,1,2), nllen,rghty,216,miry16)
call my_pack(a07(1,m,1),buffone(1,3,1),l,yst,n)
call mp_send(buffone(1,3,1),nllen,rghty,207,misy07)

call mp_recv(buffone(1,2,2),nllen,rghty,218,miry18)
call my_pack(a09(1,m,1),buffone(1,4,1),l,yst,n)
call mp_send(buffone(1,4,1),nllen,rghty,209,misy09)

endif
jstart = 1
jstop = m
if (lefty.eq.-1) jstart = 2
if (rghty.eq.-1) jstop = m-1

do k = 1, n
do j = jstart, jstop

a10(l1,j,k) = a01(l,j,k)
a12(l1,j,k) = a03(l,j,k)
a01(0,j,k) = a10(1,j,k)

96CHAPTER 6. SAMPLE APPLICATION: LATTICE BOLTZMANN FLUID DYNAMICS ON THE IBM

a03(0,j,k) = a12(1,j,k)
end do

end do
c for xz- and yz-populations boundary conditions on x and y walls

kstart = 1
kstop = n
if (leftz.eq.-1) kstart = 2
if (rghtz.eq.-1) kstop = n-1

c x walls for xz-populations : before xz-populations z-transmissions
do k = kstart, n

do j = 1, m
a11(l1,j,k) = a02(l,j,k)
a02(0,j,k) = a11(1,j,k)

end do
end do
do k = 1, kstop

do j = 1, m
a13(l1,j,k) = a04(l,j,k)
a04(0,j,k) = a13(1,j,k)

end do
end do

c y walls for yz-populations : before yz-populations z-transmissions
if (lefty.eq.-1) then

do k = kstart, n
do i = 1, l

a09(i,0,k) = a16(i,1,k)
end do

end do
do k = 1, kstop

do i = 1, l
a07(i,0,k) = a18(i,1,k)

end do
end do

end if

if (rghty.eq.-1) then
do k = kstart, n

do i = 1, l
a16(i,m1,k) = a09(i,m,k)

end do
end do
do k = 1, kstop

do i = 1, l
a18(i,m1,k) = a07(i,m,k)

end do

6.2. LBE PARALLELIZATION 97

end do
end if

css ========================= BARRIER # 1 ================
c allmsg = qbuf(2)
c call mp_wait(allmsg,nb)

if (lefty.ne.-1) then
call mp_wait(misy16, nb)
call mp_wait(misy18, nb)
call mp_wait(miry07, nb)
call mp_wait(miry09, nb)

endif
if (rghty.ne.-1) then
call mp_wait(misy07, nb)
call mp_wait(misy09, nb)
call mp_wait(miry16, nb)
call mp_wait(miry18, nb)

endif
css ========================= BARRIER # 1 ================
c x walls for xy-populations : before xy-populations y-transmissions

if (lefty.ne.-1) then
call my_unpack(a07(1,0,1),buffone(1,3,2),l,yst,n)
call my_unpack(a09(1,0,1),buffone(1,4,2),l,yst,n)

endif
if (rghty.ne.-1) then

call my_unpack(a16(1,m1,1),buffone(1,1,2),l,yst,n)
call my_unpack(a18(1,m1,1),buffone(1,2,2),l,yst,n)

endif
css --
c 2nd step: transmission of yz-populations along z
css --

if (leftz.ne.-1) then
call mp_recv(a07(0,0,0),yst*rlen,leftz,307,mirz07)
call mp_send(a09(0,0,1),yst*rlen,leftz,309,misz09)
call mp_recv(a18(0,0,0),yst*rlen,leftz,318,mirz18)
call mp_send(a16(0,0,1),yst*rlen,leftz,316,misz16)

endif
if (rghtz.ne.-1) then

call mp_recv(a09(0,0,n1),yst*rlen,rghtz,309,mirz09)
call mp_send(a07(0,0,n),yst*rlen,rghtz,307,misz07)
call mp_recv(a16(0,0,n1),yst*rlen,rghtz,316,mirz16)
call mp_send(a18(0,0,n),yst*rlen,rghtz,318,misz18)

endif

c transmission of xy-populations along y: 1,10
if (lefty.ne.-1) then

98CHAPTER 6. SAMPLE APPLICATION: LATTICE BOLTZMANN FLUID DYNAMICS ON THE IBM

call mp_recv(buffone(1,3,2),n*(l+2)*rlen,lefty,203,miry03)
call my_pack(a01(0,1,1),buffone(1,1,1),(l+2),yst,n)
call mp_send(buffone(1,1,1),n*(l+2)*rlen,lefty,201,misy01)

call mp_recv(buffone(1,4,2),n*(l+2)*rlen,lefty,212,miry12)
call my_pack(a10(0,1,1),buffone(1,2,1),(l+2),yst,n)
call mp_send(buffone(1,2,1),n*(l+2)*rlen,lefty,210,misy10)
endif

if (rghty.ne.-1) then
call mp_recv(buffone(1,1,2),n*(l+2)*rlen,rghty,201,miry01)
call my_pack(a03(0,m,1),buffone(1,3,1),(l+2),yst,n)
call mp_send(buffone(1,3,1),n*(l+2)*rlen,rghty,203,misy03)

call mp_recv(buffone(1,2,2),n*(l+2)*rlen,rghty,210,miry10)
call my_pack(a12(0,m,1),buffone(1,4,1),(l+2),yst,n)
call mp_send(buffone(1,4,1),n*(l+2)*rlen,rghty,212,misy12)
endif

c transmission of y-populations along y
if (lefty.ne.-1) then

call mp_recv(buffone(1,7,2),n*l*rlen,lefty,208,miry08)
call my_pack(a17(1,1,1),buffone(1,5,1),l,yst,n)
call mp_send(buffone(1,5,1),n*l*rlen,lefty,217,misy17)

call mp_recv(buffone(1,8,2),n*l*rlen,lefty,221,miry21)
call my_pack(a23(1,1,1),buffone(1,6,1),l,yst,n)
call mp_send(buffone(1,6,1),n*l*rlen,lefty,223,misy23)

endif
if (rghty.ne.-1) then

call mp_recv(buffone(1,5,2),n*l*rlen,rghty,217,miry17)
call my_pack(a08(1,m,1),buffone(1,7,1),l,yst,n)
call mp_send(buffone(1,7,1),n*l*rlen,rghty,208,misy08)

call mp_recv(buffone(1,6,2),n*l*rlen,rghty,223,miry23)
call my_pack(a21(1,m,1),buffone(1,8,1),l,yst,n)
call mp_send(buffone(1,8,1),n*l*rlen,rghty,221,misy21)

endif

c transmission of xz-populations along z

if (leftz.ne.-1) then
call mp_recv(a04(0,1,0),(l+2)*m*rlen,leftz,304,mirz04)
call mp_send(a02(0,1,1),(l+2)*m*rlen,leftz,302,misz02)
call mp_recv(a13(0,1,0),(l+2)*m*rlen,leftz,313,mirz13)
call mp_send(a11(0,1,1),(l+2)*m*rlen,leftz,311,misz11)

endif

6.2. LBE PARALLELIZATION 99

if (rghtz.ne.-1) then
call mp_recv(a02(0,1,n1),(l+2)*m*rlen,rghtz,302,mirz02)
call mp_send(a04(0,1,n),(l+2)*m*rlen,rghtz,304,misz04)
call mp_recv(a11(0,1,n1),(l+2)*m*rlen,rghtz,311,mirz11)
call mp_send(a13(0,1,n),(l+2)*m*rlen,rghtz,313,misz13)

endif
c transmission of z-populations along z

if (leftz.ne.-1) then
call mp_recv(a06(0,1,0),(l+2)*m*rlen,leftz,306,mirz06)
call mp_send(a15(0,1,1),(l+2)*m*rlen,leftz,315,misz15)
call mp_recv(a20(0,1,0),(l+2)*m*rlen,leftz,320,mirz20)
call mp_send(a24(0,1,1),(l+2)*m*rlen,leftz,324,misz24)

endif

if (rghtz.ne.-1) then
call mp_recv(a15(0,1,n1),(l+2)*m*rlen,rghtz,315,mirz15)
call mp_send(a06(0,1,n),(l+2)*m*rlen,rghtz,306,misz06)
call mp_recv(a24(0,1,n1),(l+2)*m*rlen,rghtz,324,mirz24)
call mp_send(a20(0,1,n),(l+2)*m*rlen,rghtz,320,misz20)

endif

c x walls for x-populations : commute with y- and z-transmissions
do k = 1, n

do j = 1, m
a14(L1,j,k) = a05(L,j,k)
a22(L1,j,k) = a19(L,j,k)
a05(0,j,k) = a14(1,j,k)
a19(0,j,k) = a22(1,j,k)

end do
end do

c y walls for y-populations : commute with z-transmissions
if (lefty.eq.-1) then

do k = 1, n
do i = 1, l

a08(i,0,k) = a17(i,1,k)
a21(i,0,k) = a23(i,1,k)

end do
end do

end if

if (rghty.eq.-1) then
do k = 1, n

do i = 1, l
a17(i,m1,k) = a08(i,m,k)
a23(i,m1,k) = a21(i,m,k)

100CHAPTER 6. SAMPLE APPLICATION: LATTICE BOLTZMANN FLUID DYNAMICS ON THE IBM

end do
end do

end if

c y walls for xy-populations : commute with z-transmissions
if (lefty.eq.-1) then

do k = 1, n
a03(0,0,k) = a10(1,1,k)
do i = 2, l-1

a03(i,0,k) = a01(i,1,k)
a12(i,0,k) = a10(i,1,k)

end do
a12(l1,0,k) = a01(l,1,k)

end do
end if

if (rghty.eq.-1) then
do k = 1, n

a01(0,m1,k) = a12(1,m,k)
do i = 2, l-1

a01(i,m1,k) = a03(i,m,k)
a10(i,m1,k) = a12(i,m,k)

end do
a10(l1,m1,k) = a03(l,m,k)

end do
end if

c z walls : commute with y-transmissions
if (leftz.eq.-1) then

do j = 1, m
do i = 1, l

a06(i,j,0) = a24(i,j,1)
a20(i,j,0) = a15(i,j,1)
a04(i-1,j,0) = a11(i,j,1)
a13(i+1,j,0) = a02(i,j,1)
a07(i,j-1,0) = a16(i,j,1)
a18(i,j+1,0) = a09(i,j,1)

end do
end do

end if

if (rghtz.eq.-1) then
do j = 1, m

do i = 1, l
a24(i,j,n1) = a06(i,j,n)
a15(i,j,n1) = a20(i,j,n)

6.2. LBE PARALLELIZATION 101

a02(i-1,j,n1) = a13(i,j,n)
a11(i+1,j,n1) = a04(i,j,n)
a09(i,j-1,n1) = a18(i,j,n)
a16(i,j+1,n1) = a07(i,j,n)

end do
end do

end if
css ====================== BARRIER # 2 ======================
c allmsg = qbuf(2)
c call mp_wait(allmsg,nb)

if (leftz.ne.-1) then
call mp_wait(misz09, nb)
call mp_wait(misz16, nb)
call mp_wait(mirz07, nb)
call mp_wait(mirz18, nb)
call mp_wait(misz02, nb)
call mp_wait(mirz04, nb)
call mp_wait(misz11, nb)
call mp_wait(mirz13, nb)
call mp_wait(misz15, nb)
call mp_wait(mirz06, nb)
call mp_wait(misz24, nb)
call mp_wait(mirz20, nb)

endif
if (rghtz.ne.-1) then
call mp_wait(misz07, nb)
call mp_wait(misz18, nb)
call mp_wait(mirz09, nb)
call mp_wait(mirz16, nb)
call mp_wait(misz04, nb)
call mp_wait(mirz02, nb)
call mp_wait(misz13, nb)
call mp_wait(mirz11, nb)
call mp_wait(misz06, nb)
call mp_wait(mirz15, nb)
call mp_wait(misz20, nb)
call mp_wait(mirz24, nb)

endif
if (lefty.ne.-1) then
call mp_wait(misy01, nb)
call mp_wait(miry03, nb)
call mp_wait(misy10, nb)
call mp_wait(miry12, nb)
call mp_wait(misy17, nb)
call mp_wait(miry08, nb)
call mp_wait(misy23, nb)

102CHAPTER 6. SAMPLE APPLICATION: LATTICE BOLTZMANN FLUID DYNAMICS ON THE IBM

call mp_wait(miry21, nb)
endif
if (rghty.ne.-1) then
call mp_wait(misy03, nb)
call mp_wait(misy12, nb)
call mp_wait(miry01, nb)
call mp_wait(miry10, nb)
call mp_wait(misy08, nb)
call mp_wait(miry17, nb)
call mp_wait(misy21, nb)
call mp_wait(miry23, nb)

endif
css ====================== BARRIER # 2 ======================

c transmission of xy-populations along y
if (lefty.ne.-1) then

call my_unpack(a03(0,0,1),buffone(1,3,2),l+2,yst,n)
call my_unpack(a12(0,0,1),buffone(1,4,2),l+2,yst,n)

endif

if (rghty.ne.-1) then
call my_unpack(a01(0,m1,1),buffone(1,1,2),l+2,yst,n)
call my_unpack(a10(0,m1,1),buffone(1,2,2),l+2,yst,n)

endif

c transmission of y-populations along y
if (lefty.ne.-1) then

call my_unpack(a08(1,0,1),buffone(1,7,2),l,yst,n)
call my_unpack(a21(1,0,1),buffone(1,8,2),l,yst,n)

endif

if (rghty.ne.-1) then
call my_unpack(a17(1,m1,1),buffone(1,5,2),l,yst,n)
call my_unpack(a23(1,m1,1),buffone(1,6,2),l,yst,n)

endif

return
end

c ---
subroutine my_pack(a, b, l, stride, n)

c ---
real a(*), b(*)
integer stride
do i = 0, n-1

do k = 1, l
b(k+l*i) = a(k+stride*i)

6.2. LBE PARALLELIZATION 103

enddo
enddo
return
end

c ---
subroutine my_unpack(a, b, l, stride, n)

c ---
real a(*), b(*)
integer stride
do i = 0, n-1

do k = 1, l
a(k+stride*i) = b(k+l*i)

enddo
enddo
return
end

6.2.3 LBE POST

This is the post-processing program designed to recompose data into a single
file for post-processing purposes. All that it does is read off the sub-portions of
the population arrays, A01...A24, out of the corresponding files and recompose
the partial results into a single series of global arrays, taking into account the
proper offsets jstart and kstart. As a test, the arrays, A01...A24, are compared
with B01...B24, where B is the solution from the serial code.

The Post-processing Code

postpop.copy

C
C INCLUDE FILE WITH LATTICE DIMENSIONS FOR LBE 3D CONVECTION
C

include ’lbehw.copy’

PARAMETER (NPY = 1, NPZ = 1)

PARAMETER (L = LGL, M = MGL , N = NGL)

postpop.f

PROGRAM POSTPROC
C
C STARTING CONDITION FOR 3D LBE CONVECTION SIMULATION
C
C VELOCITY FIELD WITH ZERO DIVERGENCE
C

104CHAPTER 6. SAMPLE APPLICATION: LATTICE BOLTZMANN FLUID DYNAMICS ON THE IBM

C 40 IS INPUT FILE
C

INCLUDE ’postpop.copy’
integer cx, cy, cz

EQUIVALENCE (a01,avec)
EQUIVALENCE (b01,bvec)

write(6,*) ’npy, npz’,npy, npz

c first read parallel files
do ip = 1, npz*npy

read(40+ip) itime, lefty, rghty, leftz, rghtz

jstart = mod(ip-1,npy) * m
kstart = ((ip-1)/npy) * n

do k = kstart+1, kstart+n
do j = jstart+1, jstart+m

read(40+ip)
* (A01(I,j,k),A02(I,j,k),A03(I,j,k),A04(I,j,k),
* A05(I,j,k),A06(I,j,k),A07(I,j,k),A08(I,j,k),
* A09(I,j,k),A10(I,j,k),A11(I,j,k),A12(I,j,k),
* A13(I,j,k),A14(I,j,k),A15(I,j,k),A16(I,j,k),
* A17(I,j,k),A18(I,j,k),A19(I,j,k),A20(I,j,k),
* A21(I,j,k),A22(I,j,k),A23(I,j,k),A24(I,j,k),
* I=1,L)

end do
end do

end do

REWIND(40)

read(40) itime

DO K=1,NGL
DO J=1,MGL

read(40)
* (B01(I,J,K),B02(I,J,K),B03(I,J,K),B04(I,J,K),
* B05(I,J,K),B06(I,J,K),B07(I,J,K),B08(I,J,K),
* B09(I,J,K),B10(I,J,K),B11(I,J,K),B12(I,J,K),
* B13(I,J,K),B14(I,J,K),B15(I,J,K),B16(I,J,K),
* B17(I,J,K),B18(I,J,K),B19(I,J,K),B20(I,J,K),

6.2. LBE PARALLELIZATION 105

* B21(I,J,K),B22(I,J,K),B23(I,J,K),B24(I,J,K),
* I=1,L)

END DO
END DO

200 write(6,*) ’which matrix? (0 exit)’
read(5,*) nmat
if (nmat.eq.0) stop

sum = 0.
max = -9999.
max1 = -9999.
max2 = -9999.

DO 3 K= (nmat-1)*lgl*mgl*ngl+1, nmat*lgl*mgl*ngl
c = abs (avec(k) - bvec(k))
c1 = abs (avec(k))
c2 = abs (bvec(k))
if (c .gt. max) then

max = c
kmax = k

endif
c if (c .gt. 1.e-6) then
c cz = (k - (nmat-1)*lgl*mgl*ngl + 1) / ngl
c write(6,*) k,avec(k), bvec(k)
c endif

if (c1.gt. max1) max1= c1
if (c2.gt. max2) max2= c2

3 sum = sum + c
sum = sum / (1.*ngl*mgl*lgl)

write(6,*) ’sum’,sum
write(6,*) ’max’,max
write(6,*) ’max par’,max1
write(6,*) ’max ser’,max2

c write(6,*) ’kmax’,kmax

goto 200

stop
END

106CHAPTER 6. SAMPLE APPLICATION: LATTICE BOLTZMANN FLUID DYNAMICS ON THE IBM

Chapter 7

Bibliography

General

1. V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to Parallel Computing,
Benjamin Cummings, 1994

2. I. Foster, Designing and Building Parallel Programs, Addison-Wesley, 1995

3. G. Almasi, A. Gottlieb, Higly Parallel Computing, 2nd edition, Benjamin Cum-
mings, 1994

4. K. Hwang, Advanced Computer Architecture; Parallelism, Scalability, Programma-
bility, Mc Graw Hill, NY, 1993

SIMD Programming

5. B. Boghosian, Computational Physics on the Connection Machine, Computers
in Physics, Jan/Feb 1990

Message-Passing

6. A. Geist, A. Beguelin, J. Dongarra, R. Manchek, V. Sunderam, PVM:Parallel
Virtual Machine, MIT Press, 1994

7. IBM AIX Parallel Environment, User’s Guide and Reference, sh23-0019, 1994
available thru IBM branch offices.

LBE Application

8. G. Punzo, F. Massaioli, S. Succi, High resolution Lattice Boltzmann Com-
puting on the IBM SP1 scalable parallel computer, Computers in Physics, 5, 1-7,
1994

107

