Computing Practices

David A. Wood and Mark D. Hill
University of Wisconsin,
Madison

Large memories can make
parallel computing cost-
effective even with modest

speedups.

0018-9162/95/$4.00 © 1995 IEEE

Cost-Effective
Parallel Computing

any academic papers imply that parallel computing is only
M worthwhile when applications achieve nearly linear speedup

(that is, execute p times faster on p processors). We show, to
the contrary, that parallel systems—multiprocessor workstations, net-
works of workstations, and even massively parallel processors—can be
cost-effective at modest speedups when memory cost is a significant frac-
tion of system cost.

Consider the following example. Suppose that you need to run many
simulations that each require large amounts of memory. You may run the
simulations on a uniprocessor or a p-processor parallel system. You know
that your simulation cannot be parallelized perfectly, so speedups will not
be linear. Parallel simulation will reduce response time, but your task is to
select the system that maximizes job throughput per unit cost, or equiva-
lently, to minimize cost/performance (cost divided by performance).

Which system do you select? Conventional wisdom says use the
uniprocessor, since multiprocessor speedups are less than linear.
Alternatively, you could use p uniprocessors to increase throughput and
yet retain the same cost/performance as one uniprocessor—p times the
cost divided by p times the performance. We show, however, that the par-
allel system provides better (that is, lower) cost/performance whenever
speedup exceeds costup—the parallel system cost divided by uniproces-
sor cost. Our result is not tied to simulation, but holds for all applications.

Furthermore, when applications have large memory requirements (for
example, 512 Mbytes), the costup—and hence the speedup necessary to
be cost-effective—can be far less than linear. This is because the parallel
system does not need p times the uniprocessor memory, since paralleliz-
ing a job rarely multiplies its memory requirements by p.

Three decades ago, Gene Amdahl argued that each million instructions
per second (MIPS) of processing power should be accompanied by 1 Mbyte
of memory.! Our results can be interpreted as the converse of Amdahl’s
maxim: Each 1 Mbyte of memory should be accompanied by 1 MIPS of
processing power. If one processor does not provide enough power, mul-
tiple processors should be used to make effective use of the memory’s
capacity and bandwidth.

SPEEDUP AND COSTUP
To formalize our results, let the time to execute a job with p processors
be time(p). Parallel system performance is often characterized using
speedup:
speedup(p) = 1/time(p) _ time(1)
1/time(l) time(p)

Speedups are called linear when speedup(p) =p.

February 1995 (60

70

Let the cost with p processors be cost(p). The cost can be
only the hardware cost (for processors, memory, I/0
devices, backplanes, power supplies, and so forth) or can
include software costs (the costs of building the parallel
application and system software, amortized over their
expected lifetime). Software life-cycle costs are very
important if each new system requires significant software
updates, as are common in today’s parallel systems.
Analogous to speedup, we introduce costup to character-
ize parallel system cost: costup(p) = cost(p)/cost(1).

To determine the cost-effectiveness of a system, per-
formance and cost are often combined to obtain cost/per-
formance:

cost(p)

costperf(p) = ————
peritp 1/time(p)

Parallel computing is more cost-effective whenever its
cost/performance is better (smaller) than a uniproces-
sor’s: costperf(p). < costperf(1). Substitution reveals our
principal result:

Parallel computing is more cost-effective whenever
speedup(p) > costup(p).

Our result does not depend on the assumptions we make
below to calculate specific values. What constitutes cost
depends on one’s point of view. A computer vendor may
see costs as the sum of research and development, com-
ponents, manufacturing, and advertising, while a cus-
tomer may view cost as purchase price.

This theoretical result has practical impact when cost-
ups are less than linear. We show below that this happens
when memory is a significant fraction of system cost.

REMEMBER MEMORY

Memory is an important component in the hardware
costs of today’s machines. Assume that our job requires m
Mbytes on a uniprocessor and m’ Mbytes with p proces-
sors. (If virtual memory is used, m and m’ are determined
by the job’s working-set requirements rather than by the
maximum memory referenced.) Usually m’ is larger than
m to permit partial replication of the application’s code,
an operating system’s code, and their data structures, or
because parallel working sets are larger. When m is small
or p is large, m’ may be much larger than m, because m/p
puts too few memory chips with each processor to ade-
quately satisfy the processor’s bandwidth requirements.
Consider a processor that needs an 8-byte data path to
each of two interleaved banks. If the memory is imple-
mented with 4-megaword by 4-bit dynamic RAMs, the
minimum memory size per processor is 64 Mbytes (4
megaword x 8 bytes per bank x 2 banks).

Usually, however, significant memory cost makes cost-
ups less than linear. This is because a parallel system does
not need p times the uniprocessor memory, since paral-
lelizing a job rarely multiplies its memory requirements
by p (that is, m” « p x m). We can emphasize this in new
speedup and costup equations:

speedup(p, m, m’) = time(1, m)/time(p, m’),
costup(p, m, m") = cost(p, m")/cost(1, m)

Computer

Parallel computing is more cost-effective when:
speedup(p, m, m") > costup(p, m, m")
But how does memory affect real costups?

A MULTIPROCESSOR EXAMPLE

As a concrete example, we use 1994 Silicon Graphics
(SGI) prices to show that actual costups can be far less
than linear for systems with hundreds of Mbytes of main
memory. We consider hardware costs but not software
costs, since we do not know how to noncontroversially
measure the latter. All prices are list prices in US dollars
(as of July 15, 1994).2 We ignore the volume discounts
that may favor uniprocessors. Since we take the ratio of
two list prices, our quantitative results also hold exactly
when a vendor gives a customer the same discount on both
systems.

Silicon Graphics products range from low-cost desk-
top workstations to million-dollar, shared-memory mul-
tiprocessors. We focus on their server products so that
our comparison will not be biased by expensive graph-
ics engines and monitors. At the low-end, the Silicon
Graphics Challenge S is a very competitively priced mon-
itorless uniprocessor workstation, with a list price of
$16,600. However, because it is packaged as a small
desktop unit, the Challenge S has a maximum memory
size of 256 Mbytes. While 256 Mbytes is sufficient for
many computations, it is far too small for many of the
large and long-running applications we might want to
parallelize.

To achieve larger memory capacity requires purchasing
a deskside configuration, such as the Challenge DM. These
deskside units can support up to 6 gigabytes of physical
memory, but at a significant premium: a uniprocessor
Challenge DM lists for about $38,400 plus about $100 per
Mbyte. This results in a uniprocessor cost of:

cost(1, m) = $38,400 + $100 xm

For comparison, we use the Silicon Graphics Challenge
XL as the parallel system. (This comparison is somewhat
biased in favor of the uniprocessor, since the Challenge
DM uses a 100-MHz R4400 processor rather than the 150-
MHz R4400 processor of the Challenge XL. Silicon
Graphics does not currently sell a uniprocessor deskside
unit with the faster processor.) The Challenge XL is a rack-
mounted, bus-based multiprocessor that supports two to
forty processors with a cost that closely follows

cost(p, m’) = $81,600 + $20,000 xp + $100xm’

Substitution reveals:
costup(p,m,m”)=
2.125+0.521x p+0.0026 xm’
1+0.0026xm

Figure 1 illustrates costups with SGI prices and the opti-
mistic assumption that parallel computing requires no
additional memory (m’ = m). Different lines represent the
number of processors p, while the log-scale x-axis gives

16
p=32
14 p=16 — — -
p=8 ----
12 p=4
p=2 —-—
Q10 “_ Uniprocessor —--—
3
T g
38~
o ~
a el ~
L ~
T~ ~
2T T — \‘_:: -
o
100 1,000 Mbytes

- W

([l

Jel 2
145 p=16 — — -
\ =g - - - -
125 p=4

\ p=2
101 \Uniprocessor

—_— |

Speedup
[o2]
/

! 100 1,000 Mbytes
|

Figure 1. SGI costups with no memory overhead
(m’'=m).

the memory size m in Mbytes. The uniprocessor line rep-
resents a uniprocessor with degenerate costup of one. The
data supports our principal result:

With real price data, parallel computing can be
more cost-effective at speedups much less than p for
large but practical memory sizes.

For example, in systems requiring 512 Mbytes, 8-, 16-,
and 32-processor systems are more cost-effective than a
uniprocessor when speedups exceed 3.3, 5.0, and 8.6,
respectively. These speedups correspond to efficiencies—
speedup(p, m})/p—of only 0.41, 0.32, and 0.27. Although
512 Mbytes may sound like a lot of memory for a
uniprocessor, it is only 64, 32, and 16 Mbytes per proces-
sor for 8-, 16-, and 32-processor systems, respectively.

But what happens when parallel computing requires
more memory than a uniprocessor does? Figure 2 illus-
trates costups with 100-percent memory overhead; that
is, m" = 2 x m. Our principal result is qualitatively
unchanged: Parallel computing can still be cost-effective
at speedups far from linear. When memory is small, dou-
bling parallel-memory cost has little effect. When it is
large, costups approach 2.0 instead of 1.0, but are still
much less than linear.

MORE GENERALLY
We can generalize the result using a simple hardware
cost model:

cost(1, m) =f(1) + g(m),
cost(p, m’) = f(p) + g(m")

where g is memory cost and fis the cost of everything else
(for example, processor(s), disks, backplane, power sup-
ply), normalized so thatf(1) = 1. This model assumes that
memory costs the same in a uniprocessor or a parallel sys-
tem of any size. While this assumption seems reasonable
given current technologies, marketing considerations can
make parallel-system memory more expensive.? Using this
model,

Figure 2. SGI costups with 100-percent memory
overhead (m’'=2 x m).

m,m) < LI+ 8m)

costup(p, 1+ g(m)

If memory costs are negligible, costup isf(p). The value
of f(p) can be less than p if there is a significant fixed cost
for both a uniprocessor and a paratlel system. On the other
hand, f(p) can be more than p if the fixed cost for a
uniprocessor is much less than the fixed cost for a parallel
system or if the interconnection network constitutes a
large part of the parallel-system cost. Whenf(p) > p, a par-
allel system cannot be cost-effective (even with linear
speedups) until memory costs become significant.

Our principal result, however, is manifest when the
memory costs are significant. When memory cost domi-
nates, the costup approaches g(m”)/g(m). If g(m) is pro-
portional to m, then g(m")/g(m) = m’/m and is likely to
be much less than p. More importantly, costups can be
small even when memory costs are significant but not
dominant. When memory in each system is half the
uniprocessor’s cost (g(m) = g(m’) = 1.0, for example),
costupsare f(p)/2 + 1/2, or approximately half of f(p) for
large systems.

This result may surprise those who define parallel-
system efficiency in the traditional way: speedup(p)/p.
With this definition, efficiency is maximized at 1.0 when
p = 1. Why then do we find parallel systems with even
modest speedups to be more “efficient?” The explanation
is that speedup(p)/p is processor-centric: It measures the
utilization of processors but ignores memory. Our results
show that when memory is sufficiently large (and expen-
sive), more than one processor should be used to make
effective use of the memory capacity and bandwidth. This
result may also call into question the wisdom of time-shar-
ing large-memory jobs without considering memory-

processor interaction metrics like the space-time product.*

OUR RESULTS SHOW THAT PARALLEL COMPUTING carn cost-
effectively maximize throughput whenever speedup
exceeds costup (the parallel system cost divided by

February 1995

uniprocessor cost). Furthermore, when applications have
large memory requirements (for example, 512
megabytes), the costup—and hence speedup necessary to

" be cost-effective—can be far less than linear.

Intuitively, when memory is sufficiently large (and expen-
sive), more than one processor may be needed to efficient-
ly utilize the memory. This result can be thought of as the
converse of Amdahl’s maxim: Rather than accompanying
each 1 MIPS of processing power with 1 Mbyte of memory,
we find that each 1 Mbyte of memory should be accompa-
nied by 1 MIPS of processing power. If one processor does
not provide enough power, multiple processors should be
used to balance the memory’s capacity and bandwidth.

This work indicates that parallel computing can be cost-
effective. However, a broader view of cost should also
include the software development costs needed to paral-
lelize applications. Getting these costs under control is
necessary for parallel computing to flourish. 1

Acknowledgments

This work was performed as part of the Wisconsin Wind
Tunnel Project, which is led by Mark Hill, James Larus,
and David Wood (http://www.cs.wisc.edu/~wwt or
ftp.cs.wisc.edu/wwt). Babak Falsafi was a coauthor of the
paper that inspired this work. Viranjit Madan provided
SGI price data. Doug Burger, Babak Falsafi, Jim Goodman,
Shubu Mukherjee, David Nicol, Anne Rogers, Guri Sohi,
and Jim Smith gave valuable feedback.

This work is supported in part by Wright Laboratory
Avionics Directorate, Air Force Material Command, US Air
Force, under Grant #F33615-94-1-1525 and ARPA Order
No. B550, NSF PYI Awards MIP-8957278 and CCR-
9157366, NSF Grant MIP-9225097, and donations from
AT&T Bell Laboratories, Digital Equipment Corporation,
Sun Microsystems, Thinking Machines Corporation, and
Xerox Corporation.

References

1. J.L. Hennessy and D.A. Patterson, Computer Architecture: A

Quantitative Approach, Morgan Kaufmann, Palo Alto, Calif.,
1990, p. 17.

2. E.Reidenbach, Challenge Server Periodic Table, Silicon Graph-
ics Computer Systems, Mountain View, Calif., 1994.

3. S.H. Fuller, “Price/Performance Comparison of C.mmp and
the PDP-10,” Proc. Third Int’l Symp. Computer Architecture,
IEEE CS Press, Los Alamitos, Calif., Order No. 099 (micro-
fiche only), 1976, pp. 195-202.

4. P.J. Denning, “Virtual Memory,” ACM Computing Surveys,
Vol. 2, No. 3, Sept. 1970, pp. 153-189.

David A. Wood is an assistant professor in both the Com-
puter Sciences and Electrical and Computer Engineering
Departments at the University of Wisconsin, Madison. His
interests include the design and evaluation of computer archi-
tectures, with an emphasis on memory systems for shared-
memory multiprocessors. He codirects the Wisconsin Wind
Tunnel Project.

Wood received his BS degree in electrical engineering and
computer science and his PhD in computer science from the
University of California, Berkeley, in 1981 and 1990, respec-

Computer

RELATED WORK

Few papers address the cost-effectiveness of par-
allel computing. Fuller' compared the CMU C.mmp
multiprocessor (based on the DEC PDP 11/20 and
11/40 processors) with the DEC PDP-10 uniproces-
sor. He found C.mmp to be three to four times
more cost-effective; however, his results depended
on the specific processor and (differing) memory
costs of these systems.

Falsafi and Wood? investigated the cost-effec-
tiveness of the Wisconsin Wind Tunnel (WWT) par-
allel simulator. The WWT runs on a Thinking
Machines CM-5 (the host) but models the proces-
sors and memories of alternative cache-coherent,
shared-memory machines (the targets) with
enough detail to run target executables. Falsafi
and Wood found that the WWT is more cost-effec-
tive than uniprocessor simulations for studying
large target systems (32 or more nodes), because
those runs demand vast host memory. Our work
generalizes their result.

References

1. S.H. Fuller, “Price/Performance Comparison of
C.mmp and the PDP-10,” Proc. Third int’l Symp.
Computer Architecture, \EEE CS Press, Los Alamitos,
Calif., Order No. 099 (microfiche only), 1976, pp.
195-202.

2. B. Falsafi and D.A. Wood, “Cost/Performance of a
Parallel Computer Simulator,” Proc. Eighth Work-
shop Parallel and Distributed Simulation (PADS 94),
|EEE CS Press, Los Alamitos, Calif., Order No. 6495-02,
1994, pp. 173-182.

tively. He is a 1991 recipient of the National Science Foun-
dation’s Presidential Young Investigator award and a mem-
ber of ACM, IEEE, and the IEEE Computer Society.

Mark D. Hill is an associate professor in both the Computer
Sciences Department and the Electrical and Computer Engi-
neering Department at the University of Wisconsin, Madi-
son. His work targets the memory systems of shared-memory
multiprocessors and high-performance uniprocessors. He
codirects the Wisconsin Wind Tunnel Project.

Hill earned a BSE degree in computer engineering from the
University of Michigan, Ann Arbor, in 1981, and MS and PhD
degrees in computer science from the University of
California, Berkeley, in 1983 and 1987, respectively. He is a
1989 recipient of the National Science Foundation’s Presi-
dential Young Investigator award, a director of ACM SIGArch,
and a member of IEEE, IEEE Computer Society, and ACM.

Readers can contact the authors at the Computer Sciences
Department, University of Wisconsin, 1210 W. Dayton Street,
Madison, WI 53705-1685; e-mail {david, markhill} @
cs.wisc.edu. The Web page for the Wisconsin Wind Tunnel
Project is http./www.cs. wisc.edu/~wwt.

