
PROCEEDINGS OF THE m, VOL. 54, NO. 12, DECEMBER, 1966 1901

23. H. A. Ernst, “TCS, an experimental multiprogramming system for
the IBM 7090,” IBM Corp., Yorktown Heights, N. Y., Research
Rept. RJ248, June 1963,41 pages.
the IBM 7090.” IBM Research Rept. RJ248, June 1963,41 pages.

24. M. Lehman. R. Eshed, and Z. Netter, “SABRAC, a time sharing low-
cost computer.” Commun. ACM, vol. 6, pp. 427-429, August 1963.

25. R. V. Smith and D. N. Senzig, “Computer organization for array
processing,” IBM Corp., Yorktown Heights, N. Y., Research Rept.
RC 1330, December 1964.

26. A. S . Critchlow, “Generalized multiprocessing and multiprogram-
ming systems,” 1963 AFIPS Proc. FJCC, pp. 107-126.

27. M. E. Conway, “A multiprocessor system design,” ibid., pp. 139-146.
28. R. R. Seeber and A. B. Lindquist. “Associative logic for highly

parallel systems,” ihid., pp. 489493.
29. R. M. Meade, “604 machine description,” IBM internal memo.,

December 1963.38 pages.
30. M. Lehman, R. Eshed, and Z. Netter, “SABRA-a new generation

serial computer,” IEEE Trans. on Electronic Computers, vol. EC-12.
pp. 618628, December 1963.

31. M. W. Allen, T. Pearcey. J . P. Penny, G. A. Rose, and J. G. Sander-
son. “CIRRUS, an economical multiprogram computer with micro-
program control,” ibid., pp. 663-671.

32. W. F. Miller and R. A. Aschenbrenner, “The GUS multicomputer
system,” ibid., pp. 671-676.

33. G. Estrin, B. Russenl, R. Turn, and J. Bibb, “Parallel processing in a
restructurable computer system,” ibid., pp. 747-755.

34. G. Gregory and R. McReynolds, “The Solomon computer,’’ ibid.,

35. H. S . Bright, “A Philco multi-processing system,” 1964 Proc. FJCC,
pp. 97-141.

36. R. G. Ewing and P. M. Davies, “An associative processor,” 1964
AFIPS Proc. FJCC, pp. 147-158.

37. H. A. Kinslow, “The time-sharing monitor system,’’ ibid., pp. 443-
454.

38. J. Nievergelt. “Parallel methods for integrating ordinary differential
equations,” Commun. ACM, vol. 7, pp. 731-733, December 1964.

39. W. H. Desmonde, Real Time Dura Processing Systems. Englewood
Cliffs, N. J.: Prentice-Hall, 1964.

40. M. Lehman. “Serial mode operation and high-speed parallel pro-
cessing,” Information Processing, 1965 Proc. IFIP, pt. 2. New York:
Spartan, 1966, pp. 631-633.

41. R. V. Smith and D. N. Senzig, “Computer organization for array

pp. 774-755.

processing.” 1965 Proc. FJCC, pp. 117-128.
42. E. W. Dijkstra, “Solution of a problem in concurrent programming

control.” Commun. ACM, vol. 8, p. 569. September 1965.
43. J. B. Dennis, “Segmentation and the design of multiprogrammed

computer systems,” J . ACM, vol 12, pp. 589-602, October 1965.
44. F. J. Corbato and V. A. Vyssotsky, “Introduction and overview of’

the multics system,” 1965 Proc. FJCC, pp. 185-196.
45. E. L. Glaser. J. Couleur, and G. Oliver, “System design of a com-

puter for time sharing applications,” ibid.. pp. 197-202.
46. V. A. Vyssotsky, F. J. Corbato, and R. M. Graham, “Structure of the

multics supervisor,” ibid.. pp. 203-212.
47. R. C. Daley and P. G. Neumann, “A general-purpose file system for

secondary storage,” ibid., pp. 213-229.
48. J. F. Ossanna, L. E. Mikus, and S. D. Dursten, “Communication

and input-output switching in a multiple computing system,” ihid..

49. J. W. Forgie, “A time and memory sharing executive program for
quick-response on-line applications,” ibid., pp. 599610.

50. J. D. McCullogh, K. H. Speiennan, and F. W. Zurcher, “Design for
a multiple user multiprocessing system,” ibid., pp. 61 1-618.

51. W. T. Comfort, “A computing system design for user device,” ibid.,
pp. 619-628.

52. J. P. Anderson, “Program structures for parallel processing,”
Commun. ACM, vol. 8, pp. 786788, December 1965.

53. B. W . Arden, B. A. Galler, T. C. D. O’Brien, and F. H. Westervelt,
“Program and addressing structure in a time-sharing environment,”
J . ACM, vol. 13, pp. 1-16. January 1966.

54. J. H. Katz, “Simulation ofa multiprocessor computer system,” SR &
D Rept. LA-009, February 1966, to be published in 1966 Proc. SJCC.

55. G. S . Shedler and M. M. Lehman, “Parallel computation and the
solution of polynomial equations,” IBM, Yorktown Heights, N. Y.,
Research Rept. RC 1550, February 1966.

56. H. Hellerman, “Parallel processing of algebraic expressions,” IEEE
Trans. on Electronic Computers, vol. EC-15, pp. 82-91, February
1966.

57. J. B. Dennis and E. C. Van Horn, “Programming semantics for multi-
programmed computation,’’ Commun. ACM, vol. 9, pp. 143-155,
March 1966.

58. N. Wirth, “A note on ‘program structures’ for parallel program-
ming,” Commun. ACM, vol. 9, pp. 32G321, May 1966.

59. D. E. Knuth, “Additional comments on problems in concurrent pro-
gramming control,” ihid., pp. 321-322.

pp. 231-241.

Very High-speed Computing Systems
MICHAEL J. FLYNN; MEMBER, IEEE

Abstract-Very high-speed computers may be clnssified as follows:
1) Single Jktmction Strdingle Data Stream (SISD)
2) S i l e Imbnctioa Stream-Multiple Data Stream (SIMD)
3) Multiple hstmcth StrePntSingle Data Stream (MSD)
4) Mnltiple Instroctioo Stream-Multiple Data Stream (”D).

“Stream,” as nsed here, refers to the sequence of data or irstructiom as seen
by the machine daring tbe execution of a program.

m e coastitaeats of a system :storage, exeation, and htrudon bandhg
(braoching) are dkcussd witb regard to recent developmen6 and/or systems
Limitatim. The COlsMnents are dkcuwd m term of coocarrent SED

Manuscript received June 30,1966; revised August 16,1966. This work
was performed under the auspices of the U. S. Atomic Energy Commission.

The author is with Northwestern University, Evanston, Ill., and
Argonne National Laboratory, Argonne, Ill.

systems (CDC 6600 series and, io particnlar, IBM Modd 90 series), since
mnltiple stream organizations usually do not quire any more elaborate compooents.

Representative organizations are s e l e c t e d from each class and the
arrangement of the comtitwnts is shown.

INTRODUCTION

M ANY SIGNIFICANT scientific problems require
the use of prodigious amounts of computing time.
In order to handle these problems adequately, the

large-scale scientific computer has been developed. This
computer addresses itself to a class of problems character-
ized by having a high ratio of computing requirement to
input/output requirements (a partially de facto situation

1902 PROCEEDINGS OF THE IEEE DECEMBER

caused by the unavailability of matching input/output
equipment). The complexity of these processors, coupled
with the advancement of the state of the computing art
they represent, has focused attention on scientific com-
puters. Insight thus gained is frequently a predictor of com-
puter developments on a more universal basis. This paper
is an attempt to explore large scientific computing equip-
ment, reviewing possible organizations starting with the
“concurrent” organizations which are presently in opera-
tion and then examining the other theoretical organiza-
tional possibilities.

ORGANIZATION
The computing process, in its essential form, is the per-

formance of a sequence of instructions on a set of data.
Each instruction performs a combinatorial manipulation

(although, for economy,. subsequencing is also involved)
on one or two elements of the data set. If the element were a
single bit and only onemchbit could be manipulated at any
unit of time, we would have a variation of the Turing ma-
chine-the strictly serial sequmtial machine.

The natural extension of this is to introduce a data set
whose elements more closely correspond to a “natural”
data quantum (character, integer, floating point number,
etc.). Since the size of datum has increased, so too has the
number of combinatorial manipulations that can be per-
formed (manipulations on two n bit arguments have 22”
possible outcomes). Of course, attention is restricted to
those operations which have arithmetic or logical. sig-
nificance.

A program consists of an ordered set of instructions. The
program has considerably fewer written (or stored) in-
structions than the number of machine instructions to be
performed. The difference is in the recursions or “loops”
which are inherent in the program. It is highly advantageous
if the algorithm being implemented is highly recursive. The
basic mechanism for setting up the loops is the conditional
branch instructions.

For convenience we adopt two working definitions: Zn-
struction Stream is the sequence of instructions as performed
by the machine; Data Stream is the sequence of data called
for by the instruction stream (including input and partial or
temporary results). These two concepts are quite useful in
categorizing computer organizations in an attempt to avoid
the ubiquitous and ambiguous term “parallelism.” Orga-
nizations will be characterized by the multiplicity of the
hardware provided to service the Instruction .and Data
Streams. The mutiplicity is taken as the maximum possible
number of simultaneous operations (instructions) or oper-
ands (data) being in the same phase of execution at the most
constrained component of.the organization.

Several questions are immediately evident: what is an
instruction; what is an operand; how is the “constraining
component’’ found? These problems can be answered
better by establishment of a reference. If the IBM 704.were
compared to the Turing machine, the 704 would appear
highly parallel. On the other hand, if a definition were made
in terms of the “natural” data unit called for by a problem,

the situation would be equally untenable, since in many
problems one would consider a large matrix of data a unit.
Thus we arbitrarily select a reference organization : the IBM
704-70927090. This organization is then regarded as the
prototype of the class of machines which we label :

1) Single Instruction Stream-Single Data Stream (SISD).

Three additional organizational classes are evident.

2) Single Instruction Stream-Multiple Data Stream

3) Multiple Instruction Stream-Single Data Stream

4) Multiple Instruction Stream-Multiple Data Stream

(SIMD)

(MISD)

(MIMD).

Before continuing, we define two additional useful
notions.

Bandwidth is an expression of time-rate of occurrence. In
particular, computational or execution bandwidth is the
number of instructions processed per second and storage
bandwidth is the retrieval rate of operand and operation
memory words (words/second).

Latency or latent period is the total time associated with
the processing (from excitation to response) of a particular
data unit at a phase in the computing process.

Thus far, categorization has depended on the multiplicity
of simultaneous events at the system’s component which
imposes the most constraints. The ratio of the number of
simultaneous instructions being processed to this con-
strained multiplicity is called the confluence (or concurrence)
of the system.

Confluence is illustrated in Fig. 1 for an SISD organiza-
tion. Its effect is to increase the computational bandwidth
(instructions processed/second) by maximizing the utility

GENERATE AOORESS OF INSTRUCTION

-FETCH INSTRUCTION

DECOOE NSTRUCTION

GENERATE AOORESS OF OPERANO 1 1 1 FETCH OPERfD

EXECUTE INSTRUCTION

INST.#2

I N S T . # I

L

. . .

4- INSTRUCTION #I STARTS

INSTRUCTION #2 STARTS

INSTRUCTION #3 STARTS

Fig. 1 . Concurrency and instruction processing.

1966 FLYNN: VERY HIGH-SPEED COMPUTING 1903

of the constraining component (or “bottleneck”). The pro-
cessing of the first instruction proceeds in the phases shown.
In order to increase the computational speed, we begin
processing instruction 2 as soon as instruction 1 completes
its first phase. Clearly, it is desirable to minimize the time in
each phase, but there is no advantage in minimizing below
the time required by a particular phase or mechanism.
Suppose, for a given organization, that the instruction de-
coder is an absolute serial mechanism with resolution time,
At . If the average instruction preparation and execution time
is t,, then the computational bandwidth may be improved by
t ,/At. Thus if only one instruction can be handled at a
time at the bottleneck, then the maximum achevable per-
formance is l/Ar. (1 being the multiplicity of the constraint.)

In order to process a given number of instructions in a
particular unit of time, a certain bandwidth of memory
must be achieved to insure an ample supply of operands and
operations in the form of instructions. Similarly, the data
must be operated on (executed) at a rate consistent with the
desired computational rate.

CONSTITUENTS OF THE SYSTEM

We will treat storage, execution, and instruction handling
(branching) as the major constituents of a system. Since
multiple stream organizations usually represent multiple
attachments of one or more of the above constituents, we
lose no generality in discussing the constituents of a sys-
tem as they have evolved in SISD organizations. Indeed,
confluent SISD organizations-by their nature-must
allow arbitrary interaction between elements of the data
stream or instruction stream. Multiple stream organiza-
tion may limit this interaction, thus simplifying some of the
considerations in an area. Therefore, for now, we shall be
mainly concerned with techniques to extend computational
performance in a context of a confluent SISD system. We
will further assume that the serial mechanism which con-
strains the organization is the decoding of instructions.
Thus, on the average, the processing of one instruction per
decode cycle will be an upper limit on performance.

The relationship between the constituents is shown in
Fig. 2 for the SISD organization.

I\ /I [7 1 STORAGE j n-
EXECUTION BANDWIDTH

INSTRUCTION STREAY

INSTRUCTION
HANDLING

UNIT
>

OPERAUO STREAY

n...
0
(I

Fig. 2. SISD Organization.

A . Storage
The instruction and data streams are assumed sequential.

Thus, accessing to storage will also be sequential. If there
were available storage whose access mechanism could be
operated in one decode cycle and this accessing could be
repeated every cycle, the system would be relatively simple.
The only interference would develop when operands had to
be fetched in a pattern conflicting with the instructions.
Unfortunately, accessing in most storage media is consider-
ably slower than decoding. This makes the use of inter-
leaving techniques necessary to achieve the required
memory bandwidth (see Fig. 3). In the interleaving scheme,
n memories are used. Words are distributed in each of the
memories sequentially (modulo n). In memory i is stored
word i, n + i, and 2n + i, etc. However, the accessing mecha-
nism does not alter the latency situation for the system, and
t h s must be included in the design. Memory bandwidth
must be sufficient to handle the accessing of instructions and
operands, the storage of results and input-output traffic [9].
The amount of input-output bandwidth is problem-depen-
dent. Large memory requirements will necessitate transfer
of blocks of data to and from memory. The resulting traffic
will be inversely proportional to the overall size of the
memory. However, an increase in the size of the memory
to minimize this interference also acts to increase the bulk of
the memory, and usually the interconnection distance. The
result, then, may be an increase in the latency caused by
these communications problems.

Figure 3 was generated after the work of Flores [9] and
assumes completely random address requests. The “waiting
time” is the average additional amount of time (over the
access time) required to retrieve an item due to conflicting

ACCESS REGENERATION
LATENCY -

- t a t r I

I. 1
. I

n UNITS BUSY

n . a t
(MEMORY CYCLE)

\
ASSUME DEMAND RATE OF n WORDS
PER MEMORY CYCLE

\
WAITING TIME AS A
FRACTION OF 1.0
MEMORY CYCLE I RANDOM ADDRESS REQUESTS

I .o I .5 2:o
NUMBER OF MEMORY UNITS

DEMAND RATE

Fig. 3. Interleaving memory units.

1904 PROCEEDINGS OF THE IEEE DECEMBER

requests. Since memory requests are usually sequential for
instructions and at least regular for data, the result is overly
pessimistic for all but heavily branch-dependent problems.
Typical programs will experience about half the waiting
time shown.

This latency in the system greatly increases the complexity
of the control mechanism for the storage system. The
storage unit must now include queuing mechanisms to
organize, fetch, and store requests which are in process or
could not be honored due to conflicts. These queuing
registers, containing outstanding service requests, must be
continually compared against new requests for service.
Extensive control interlocks must be made available to
serve at least the following functions [2] , [3]:

3)

4)

~~ .~

direct the fetched word to the appropriate requestor;
prevent out-of-sequence fetch-store or store-fetch in
the same memory location;
eliminate duplicate requests of the same memory loca-
tion (especially where the memory location contains
more than one instruction or data unit);
analyze “keys” or “boundaries” where fetch or store
memory protection are used.

In addition, confluent computing systems frequently em-
ploy buffers to minimize traffic requirements on the memory
[2]. An instruction buffer mightcontain the next n instruc-
tions in the sequence as well as a history of m instructions
together with several levels of alternate paths of branch.

The presence of a historical picture of instructions (in the
instruction buffer) allows for the opportunity to store small
loops, thus avoiding the penalty of reaccessing instructions.
An operand buffer is used by the execution unit as its in-
trinsic storage medium. The instruction unit would re-
structure instructions that called for operands from memory
into instructions which call for the contents of these
registers. The instruction unit would, after decoding the
instruction, initiate the requests for the appropriate
operands and direct their placement into the operand buffer.
Thus the execution unit would act as an independent com-
puter, whose storage would be limited to the contents of
this buffer, and whose instructions would bein a shortened
format.

B. Execution
We center our discussion on the floating-point instruc-

tions since they are the most widely used in large scientific
computing, and require the most sophisticated execution.
In order to achieve the appropriate bandwidth levels, we can
repeat the deployment scheme that was used for memory,
only here the independent units will be dedicated to servic-
ing one class of instructions. In addition to directly increas-
ing the bandwidth by providing a number of units, the
specialization of the unit aids in execution efficiency in
several other ways. In particular, each unit might act as a
small insular unit of logic, hence minimizing intra-unit wire
communication problems. Secondly, the dedicated unit
has fewer logical decisions to make than a universal unit.

Thirdly, the unit may be implemented in a more efficient
fashion.

One may also consider “pipelining” techniques [6] to
improve the bandwidth within a particular insular unit,
in addition to optimizing an algorithm to minimize latent
time. “Pipelining” is a process wherein natural points in the
decision-making hardware are sought to latch up inter-
mediate results and resuscitate the use of the unit. The
latching may include extra decision elements for storage,
but these may also be used in aiding the control of time skew
(differences) in the various parallel paths.

I) Floating Add-Subtract Operations: Floating add-sub-
tract operations consist of three basic parts. First, the
justification of the fractional parts of the two operands by
the amount of the difference of the exponents. Second, the
adding of the fractional parts (or appropriate complement).
Third, the postnormalization of the fraction if the result has
a leading zero in a significant position or an overflow occurs.
Because of the decision-making (shifting) problems asso-
ciated with the exponent handling, a normal latch point for
pipelining the two add operations in one unit (duplexing the
unit) is at the interface from the preshift into the adder or
after the first level of the adder structure. The floating add
class of instruction has been reported [5] to operate in the
120 nanosecond range for a duplexed unit with 56-bit frac-
tion (Systems 360 format).

2) Floating Multiply [5], [lo], [12], [13]: The essential
decision process of the multiplication algorithm is the addi-
tion of the multiplicand to itself by as many times as are
indicated by the multiplier. If there are n bits in a multiplier
and multiplicand, then the multiplicand must be added to
itself n times with a one-place shift before each addition.
Standard techniques exist for reducing the number of addi-
tions (e.g., multiplier bits: 11 11. may be treated as+ 1oooO.
- 1 .) required by encoding the multiplier into a lesser num-
ber of signed bits, say 4 2 . Once this is done, Wallace [12]
suggests the direct addition of the 4 2 , n-bit, shifted multi-
plicands.

The basic decision element in adding of each bit of the
n/2 operands is the so-called binary full adder, which
takes three inputs of equal significance and produces two
outputs, one of the same significance, the sum, and one of
higher significance, the carry. By the associative law, the
carry is injected into any available lower level add struc-
ture of the appropriate significance. (The net effect is some-
times referred to as a flush adder.) The final result, of course,
is the reduction of the n/2 multiples into two result segments
-the sums and the carries-which are then assimilated by
a conventional carry-propagate adder with an anticipation
mechanism. The basic problem is the implementation of this
algorithm. For large n, the plane segments that partition
the algorithm are inconsistent with conventional packaging
sizes and interconnection limitations (see below).

Consider a simpler variation [Fig. 4(b)] [SI: here only
n/m multiples of the multiplicand are retired per iteration
(m iterations are required). The n/m multiples are decoded
into n/2m additions of the multiplier. These multiples are

1966 FLYNN: VERY HIGH-SPEED COMPUTING 1905

then inserted into the first level of the adder tree [Fig. 4(b)].
Now the add assimilation of both carries and sums pro-
ceeds as before with the introduction of intermediate stag-
ing points where the results are temporarily latched. The
storage points act as skew (relative timing) control and im-
prove the overall execution bandwidth efficiency of the
algorithm. After the first set of multiples has been inserted
into the first level of the tree and assimilated, it is latched at
the first latch point. The storage point serves to decouple the
first level from subsequent levels of the hardware; there-
fore the first set of multiples may now proceed to be ab-
sorbed in the second level and, simultaneously, a second set
of multiples may be inserted into the first level of the tree.
The process continues and, at the bottom of the tree, the
carries and sums are assimilated in an adder with carry
propagation. Notice that the latencyin this variation may be
twice that of the original algorithm. Also notice that

i + l i i-1 ,,/J /1 /1 REGULAR CUTTING PLANE

REGISTERS
CONTAINING
MULTIPLES
(ASSUME 61

TREE OF
LATCHING
FULL ADDERS

CARRY PRWAGATE

(INCLUDES CARRY
ADDER

ANTICIPATION)

UNIT INTERCONNECTIONS ARE
SHOWN ON CUTTING PLANE

0 0 0 0 0 0
6 ith bit MULTIPLE REGISTERS

PARTIAL SUM
ACCUMUL4TlON

ith R E W ~ R
c u m N PLANE

(b)
Fig. 4. Outline of a multiplier tree.

L

i + l i i - l

ithPL4NE PROFILE

potential bandwidth in this algorithm has not suffered since
a second multiplication may proceed independently as soon
as the last set of multiples is inserted and has passed the
first level of the tree. Implementations of this second scheme
have yielded a performance of 180 nanoseconds for a float-
ing-point multiply including post shifting and exponent
updating (56-bit fraction, Systems 360 format).

Figure 4, parts (a) and (b) are three-dimensional represen-
tations of the second variation of the multiply algorithm.
Figure 4(a) is an isometric projection and Fig. 4(b) is a
cross-section (or “regular cutting plane”) and profile view.
This representation was chosen to illustrate some of the
difficulties of implementing high-speed systems in general.
It is well known [1] that propagation delay and nonuniform
transmission line loading are major factors in the switchmg
speed of a logic stage. One would, therefore, desire a
physical package consistent with the “natural” communica-
tion pattern of the algorithm so that the implementation
could be optimized. The difficulties of a planar package are
obvious. Communications between “regular cutting planes”
[profile view, Fig. 4(b)] must be made axially in the physical
implementation. Indeed, there is no assurance that the
capacity of the physical package-plane will match the re-
quirements of the regular cutting plane-several package-
planes may be required.

Notice that the first variation of the algorithm had much
more extensive requirements per plane, thus its imple-
mentation would very likely be less efficient than the second
variation.

3) Floating Point Divide [5] , [IO], [l I] : Historically,
divide has been limited by the fact that the iterative process
was dependent on previous partial results. Recently, atten-
tion has been given to techniques which do not have this
limitation. These techniques include use of Newton-
Raphson iterations for series approximations to quotients.

Assume

a Quotient = -
b

Let

1 1
b 1 - (- X)
- - - = 1 - x + x 2 - - 3 + . . . f X “ f . . .

which can be rewritten as

1
b
- = (1 - x)(l + x2)(1 + x4) . . . (1 + x2m)

Thus :

Quotient = a . (I - x).(l + x2). (1 + x4) . . . (1 + x2’”).

Recall that in binary the factor (1 + x“) is related to (1 -x“)
by a complementation operation. Thus, the denominator is
rewritten as (1 +x), complemented to form (1 -x), the
product is (1 - x2) which is complemented to form (1 + x2),
which continues the development.

1906 PROCEEDINGS OF THE IEEE DECEMBER

Notice that the speed is substantially enhanced by the
presence of a high-speed multiplier. In fact, as many as two
multiplications might proceed simultaneously. one for the
quotient development and one for the next denominator
term, if the hardware permits. In forcing quick con-
vergence of the series, usually a table lookup arrange-
ment is used to provide the first approximation for the
quotient. Thereafter, subsequent iterations develop double
the precision of the first approximation. Floating-point
divides under 700 nanoseconds have been reported using
this scheme [5] .

4) Algorithms for Achieving Maximum Ejiciency in the
Concurrent Execution of Independent Units: One of the
purposes in having independent units dedicated to in-
dividual instruction types is to improve the execution of each
of the instruction classes. The other advantage is that these
independent units may operate concurrently and serve to
increase the overall bandwidth of the execution unit.
Tomasulo [4] describes an elegant algorithm to allow the
achievement of maximum efficiency in the concurrent execu-
tion of units (Fig. 5, illustration from Amdahl [I]). The
operation of this algorithm takes advantage of the latent
time following the issuing of the request to access the
operands from storage into the memory in the execution
area (either virtual or addressable buffers). When an in-
struction is forwarded to the execution area, a word in the
execution unit memory is reserved for its operand, but the
operand has not yet arrived. For example, if the instruction
to be performed consisted of a multiply, then it could be
immediately forwarded to the multiplication unit. The

LOAD R , , a
MULT RI,p
ADD R , , R 2
STORE R
LOAD R I ,

(b)
Fig. 5. Effect of Tomasulo concurrency algorithm. (a) Sequence with

conventional dependency. (b) Sequence as performed after tag was
forwarded.

multiplier would require a tag representing the operand.
The execution area is provided with a common data bus
and the tag representing the operand is broadcast on the bus
one cycle early, then the execution functional units examine
their queues of required operands and gate in immediately
an appropriate one without waiting for it to go to the buffer
storage. The tag forwarding frees the buffer storage of hav-
ing any responsibility for this particular operand. Of
course, at the same time, a load could then be executed into
that same word. Thus, the second load instruction and the
multiply instruction could proceed concurrently in a
fashion impossible before. Results, as they become avail-
able, might also be forwarded to units (the adder in Fig. 5)
requesting action by a similar mechanism, rather than
proceeding directly to storage, whether virtual or addressed.
This avoids intermediate stops and hence improves overall
efficiency of execution by improving the overlap in the con-
currency system.

C. Branching
Assume for the moment that memory bandwidth and

execution bandwidth have now been arranged so that they
more than satisfy the requirement of one instruction pro-
cessed per decode cycle. What then would limit the per-
formance of a SISD system? If it is assumed that there are a
fixed number of data-dependent branch points in a given
program, then, by operating in a confluent or other high-
speed mode, we essentially bring the branch points closer
together. However, the resolution time of the data-depen-
dent branch point is basically fixed for a system with a
given execution and/or accessing latency.

The basic retrogressive factor is the presence of branch
dependencies in the instruction stream. Among the many
types of branch instructions, we have [2], [7] :

1) Execute: The operand which is fetched is to be treated
as an instruction (or an instruction counter). This
presents some problems since the access latency is in-
serted into the instruction stream. It is essentially the
same problem as indirect addressing or a double
operand fetch. One could anticipate some of this
difficulty by keeping ahead in the instruction stream.
However, this particular instruction does not pose a
series degradation problem because its use is normally
restricted to linkages.

2) Branch Unconditional: The effective address so gen-
erated becomes the contents of the instruction counter.
This subclass of instruction presents the same problem
as execute.

3) Branch on Index: The contents of an index register is
decremented by one on each iteration until the reg-
ister is zero, upon which the alternate path is taken.
Only the access latency is a factor since zero can be
anticipated.

4) Data-Dependent Branch: The paths of the branch are
determined by the condition (sign, bit, status, etc.) of
some data cell. Invariably, this condition is dependent
on the execution of a previously issued instruction.

1966 FLYNN: VERY HIGH-SPEED COMPUTING 1907

Here the degradation is serious and unavoidable.
First the execution of the condition-generating data
must be completed. Then, the test is made and the
path is selected. Now, the operands can be fetched and
confluency can be restored. It is presumed that both
instruction paths were previously fetched-but note
that this is done only at the expense of greater memory
bandwidth requirements. Another slight improvement
can be made if the operands are.fetched for one alterna-
tive path so long as the unresolved branch path is not
executed (to avoid serious recovery and reconstruction
problems if the guess proves wrong).

Of the two “loop closing” or conditional branch instruc-
tions, Branch on Index has less degradation due to resolu-
tion of latency than Data-Dependent Branch. When an
option exists (as in the performance of a known number of
iterations) the programmer should select the former.

Assuming that the Data-Dependent Branch-resolving
latency is a constant for any particular machine, we may
show its relationship (Fig. 6) to performance by assuming
various percentages (of occurrence in executed code) of this
type instruction. The latency represents the sum of average
execution time plus operand access time from memory.

Figure 6 assumes that the organization under considcra-
tion has enough confluency to perform one instruction/
cycle on the average without branch-resolution interrup-
tions. To resolve the branch, it is generally necessary to fully
execute and test the result of the preceding instruction.
During this time, fetching of instructions and data may
proceed for one branch path and possibly a few instructions
may be fetched for the alternate. Fetching of both paths
doubles the bandwidth required and increases the waiting
time (Fig. 3). Thus the latency includes an average execution
time, test time, and. a . percentage (wrong path guesses)
of the operand-access time.

Notice that while we have studied degradation .due to

n= NUMBER OF CYCLES OF EXECFTION
AND ACCESS LATENCY

“ = I
I .o

-
W

W J v u
Z t
U V E 0.5
U = +
W u) = z

0

Fig. 6 .

10 20
~~ ~~

%
PIIXNTASE OF OCEURREEYGE ff CONDlTlOUL BRANUI INSTRUCTIOIS

IN ImmnowsTRum
Degradation due to datadependent branch instructions.

latency for the SJSD organization, multiple stream organi-
zations may exhibit branch induced degradation due to
either t h s same phenomenon or an analog spatial in-
efficiency in which only one path activates or determines the
outcome of a dependency.

CLASSES OF ORGANIZATION
In tlus section we shall consider each of the organizational

classes listed in the first section of the paper. We will re-
mark on or illustrate representative systems that fall into
each class. The various configurations are by no means
exhaustive.

A . ConJluent SISD
The confluent SISD processor (IBM STRETCH [7],

CDC 6600 series [8], IBM 360/90 series [2l-[5]) achieves its
power by overlapping the various sequential decision pro-
cesses which- make up the execution of the instruction
(Figs. 1 and 2). In spite of the various schemes for achieving
arbitrarily high memory bandwidth and execution band-
width, there remains an essential constraint in this type of
organization. As we implied before, this bottleneck is the
decoding of one instruction in a unit time, thus, no more
than one instruction can he retired in the same time quan-
tum, .on the average. If one were to try to extend.this organ-
ization by taking two, three, or n different instructions in
the same decode cycle, and-no limitations were placed on
instruction interdependence, the number of instruction
types to be classified would be increased by the combina-
torial amount (M different instructions taken n at a time
represents M” different outcomes) and the decoding
mechanism would be correspondingly increased in com-
plexity. On the other hand, one could place restrictions on
the occurrence of either specified types of instructions or in-
struction dependencies. This, in turn, narrows the class of
problems for which the machine is suitable and/or demands
restrictive programming practices. Indeed, this is a char-
acteristic of multiple stream organizations since the multi-
plicity (or “parallelism”) implies independent simultaneous
action.
B. SIMD [14]-[18]

SIMD-type structures have been proposed by Unger
[14], Slotnik [I51 (SOLOMON, ILLIAC IV), Crane and
Githens [16], and, more recently, by Hellerman [17].

SOLOMON is the classic SIMD. There are n universal
execution units each with its own access to operand storage.
The single instruction stream acts simultaneously on the n
operands without using confluence techniques. Increased
performance is gained strictly by using more units. Com-
munication between units is restricted to a predetermined
neighborhood pattern and must also proceed in a universal,
uniform fashion [Fig. 7(a)]. (Note: SOLOMON has been
superseded by ILLIAC IV as a system being actively de-
veloped, which is no longer completely SIMD.)

The difficulties with SIMD are:

1) Latency in the instructionstream for SIMD branches
is now replaced by latency in the data stream caused by

PROCEEDINGS OF THE IEEE DECEMBER 1908

2)
operand communication (forwarding) problems.
Presently, the number of classes of problems whose
operand streams have the required communication
regularity is not well established. SIMD organizations
are inconsistent with standard algorithmic tech-
niques (including, and especially, compiler tech-
niClUeS).

3) The universality of the execution units deprive them of
- I

maximum efficiency.

C. MISD
These structures have received much less attention [18],

[19]. An example of such a structure is shown in Fig. 7(b).
It basically employs the high bandwidth dedicated execu-
tion unit as described in the confluent SISD section. This
unit is then shared by n yirtual machines operating on
program sequences independent of one another. Each
virtual machine has access to the execution hardware once
per cycle. Each virtual machine, of course, has its own

EXECUTION

1
UNITS

U
INSTRUCTION

UNIT
-LIMITED WMMUNICATION

(4

BUSES ARE TIME SHARED

MULTIPLY BUS

I

UNIT

9 INSTRUCTION

I I I

I D A l A d * H * l STORAGE EXECUTION UNIT EXECUTION UNIT EXECUTION

SOURCE
DATA

STREAY

DERIVED
D A T I

STREAY

(c)
Fig. 7. (a) SIMD. (b) MISD. Converts to MIMD if instructions

and data are privately maintained (together). (c) MISD.

private instruction memory and interaction between in-
struction streams occurs only via the common data memory.
Presumably, if there are N instruction units then the band-
width of the common data storage must be N times greater
than the individual instruction storage. This requirement
could be substantially reduced by use of a modified version
of Tomasulo’s tag-forwarding algorithm and a separate
common forwarding bus.

Another version of this [Fig. 7(c)] would force forward-
ing of operands. Thus the data stream presented to Execu-
tion Unit 2 is the resultant of Execution Unit 1 operating its
instruction on the source data stream. The instruction that
any unit performs may be fixed (specialized such that the
interconnection (or setup) of units must be flexible), semi-
fixed (such that the function of any unit is fixed for one
pass of a data file) or variable (so that the stream of instruc-
tions operates at any point on the single data stream). Under
such an arrangement, only the first execution unit sees the
source data stream and while it is processing the ith operand
the ith execution unit is processing the ith derivation of the
first operand of the source stream.

D. MIMD
If we reconstruct the organization of Fig. 7(b) so that the

data and instruction streams are maintained together in
private memories, we have an example of MIMD. There is
no interaction or minimum interaction allowed between
these virtual machines. So long as the latent time for execu-
tion of any operation is less than the memory cycle, no
problems arise due to branching. Thus, such an arrange-
ment allows maximum advantage of the allowable band-
widths of execution unit and memory unit. Of course, such
an approach might well be criticized on the basis that the re-
quirement of independence of the instruction sequences
does not address itself to the requirements of large scientific
problems. It would be better suited to the needs of the time-
sharing and/or utility environment.

This restricted MIMD points up the shortcoming of our
organizational definitions. The specifications fail to include
a classdication of how the streams may interact, thus a re-
stricted MIMD may be organizationally much simpler than
a confluent SISD.

General MIMD structures have been more widely de-
scribed [20E[23] with large-scale multiplicity being en-
visioned by Holland [21] and more restricted implementa-
tions being undertaken by Burroughs and Univac [23].

In his original proposal, Holland considers an array of
processors each with a one-word storage. The modules are
independent and are capable of concurrent execution. The
processors have arithmetic ability but communication is
limited by their need to “build a path” to the appropriate
operand. In path building, the displacement and direction
of the operand is specified and the intervening module
processors form a vinculum.

Such an arrangement might solve some of the essential
blockage problems of S E D and SIMD, since independent
program segments proceed simultaneously. Also, memory
bandwidth is always adequate.

1966 FLYNN: VERY HIGH-SPEED COMPUTING 1909

The difficulties with such an arrangement of MIMD time, and this may be further degraded by the occurrence of
generally include r201: “conditional branch” instructions.

1) interconnections between units, which pose serious

2) the universal nature of the individual module, which

3) the class of problems which could utilize MIMD

interference problems

limits its efficiency

organization, whch is presently small.

SYSTEMS REQUIREMENTS
The effectiveness of the overall computing processes must

be measured on a basis much larger than performance
(nanoseconds per instruction) alone. Even on this primi-
tive basis, it is obvious that different instruction repertoire
may imply substantially different effectiveness with the same
average nanosecond per instruction ratio.

Despite our original assumption that the very large prob-
lem does not employ significant input/output, it is .soon
realized that this .requirement is unduly .restrictive. Pres-
ently, high-speed systems remain so limited. It may be
some time before broader effective utilization may be
realized through new developments in input/output equip-
ment.

Of course, the overall measure of efficiency of the pro-
cessor is the number of correctly completed computations
and programs done over an extended period of time. In-
cluded in this measure is the reliability. and the maintain-
ability of the system. Complex systems with very large num-
bers of components are naturally very difficult to maintain,
unless features which provide fault location are included.
A major component of such features would be checking
(or fault detection) .of all operations and data transfers.
On detection of error, hardware-aided diagnostics should be
provided so that servicing and maintenance might be readily
and easily accomplished. If checking is not included in the
hardware, then it is, of course, incumbent on the user to
program a thorough check of his results. This, of course,
represents an overhead which penalizes the effective perfor-
mance and utilization of the equipment.

Notice that some of the suggested organizations cater.to
restrictive problem sets-particularly the SIMD, where
multiple operands are executed by the same instruction
stream. Such organizations are clearly limited for general-
purpose processing where there may be many interactions
between operand elements. Similarly, with the MISD
organizations, in the organization shown on Fig. 7(b), a
number of independent instruction streams are involved and
their very independence precludes MISD use on one large
problem composed of essential dependencies; this, of
course, is typical of large scale scientific programming.

CONCLUSIONS
Conventional Single Instruction Stream-Single Data

Stream (SISD) processors may be enhanced by concurrency
(confluence) of instruction handling, operand acquisition,
and execution. There is, however, a limitation of the order
of the execution of one instruction per instruction decoding

By multiplexing the instruction stream or the data stream
or both, new classes of processors which do not necessarily
share this limit are developed. Their effectiveness depends
on the nature of the problem and it is an open question as to
whether new algorithms which will serve to extend their
usefulness can be developed.

ACKNOWLEDGMENT
The author is indebted to D. Jacobsohn and R. Aschen-

brenner of the Argonne National Laboratory for several
valuable discussions on some of the material.

REFERENCES
[I] G. M. Amdahl and M. J. Flynn, “Engineering aspects of large hgh

speed computer design,” Proc. Symp. on Microelectronics and Large
Systems. Washington, D. C. : Spartan, 1965, pp. 77-95.

[2] D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, “The Model
91 : machine philosophy and instruction handling,” IBM J. Res. and
Dev., November 1966.

[3] L. J. Boland, G. D. Granito, A. U. Marcotte, B. M. Messina, and
J. W. Smith, “The Model 91 storage system,” ibid.

[4] R. M. Tomasulo, “An efficient algorithm for automatic exploitation
of multiple execution units,” ibid.

[5] S. F. Anderson, J. Earle, R. E. Goldschmidt, and D. M. Powers, “The
Model 91 execution unit,” ibid.

[6] L. W. Cotton, “Circuit implementation of high-speed pipeline sys-
tems,” 1965 Proc. AFIPS FJCC, p. 489.

[7] W. Buchholz,.Ed., Planning a Computer System. New York: Mc-
Craw-Hill, 1962.

[8] J. E. Thomton,,‘‘Parallel operation in the Control Data 6600,” Proc.
AFIPS 1964 FJCC, pt. 11, pp. 3 3 4 .

191 I. Flores, “Derivation of a waiting-time factor for a multiple bank
memory,” J . ACM, vol. 1 I , pp. 265282, July 1964.

[lo] M. Lehman, D. Senzig, and J. Lee, “Serial arithmetic techniques,”
Proc. AFIPS I965 FJCC, pp. 715-725.

[l l] R. E. Goldschmidt, “An algorithm for high-speed division,” M.S.
thesis, Mass. Inst. Tech., Cambridge, June 1965.

[12] C. S. Wallace, “A suggestion for 4 fast multiplier,” IEEE Trans. on
Electronic Computers, vol. EC-13, pp. 14-17, February 1964.

[13] D. Jacobsohn, “A suggestion for a fast multiplier,” IEEE Tlans. on
Electronic Computers (Correspondence), vol. EC-13, p. 754, Decem-
ber 1964.

[14] S . H. Unger, “A computer oriented toward spatial problems,” Proc.
IRE, pp. 1 7 4 , October 1958.

[I51 D. L. Slotnick, W. C. Borch, and R. C. McReynolds, “The Solomon
Computer-a preliminary report,” Proc. I962 Workshop on Com-
puter Organization. Washington, D. C . : Spartan, 1963, pp. 6 9 2 .

(161 B. A. Crane and J. A. Githens, “Bulk processing in distributed logic
Memory,” IEEE Trans. on Electronic Computers, vol. EC-14, pp.
186196, April 1965.

[17] H. Hellerman, “Parallel processing of algebraic expressions,” IEEE
Trans. on Electronic Computers, vol. EC-15, pp. 82-91, February
1966.

[I81 D. N. Senzig and R. V. Smith, “Computer organization for array
processing” Proc. AFIPS I965 FJCC, p p . 117-129.

[I91 R. Aschenbrenner and G. Robinson, “Intrinsic multi-processing,”
Argonne National Laboratory, Argonne, Ill., ANL Tech. Memo.
121, June 1964.

[20] W. Comfort, “Highly pamllel machines,’? Proc. I962 Workshop on
Computer Organization. Washington, D. C.: Spartan, 1963, pp. 1 2 6
155.

[21] J. H. Holland, “A universal computer capable of executing an
arbitrary number of sub-programs simultaneously,” I959 Proc.
EJCC, pp. 108-1 13.

[22] R. Reiter, “A study of a model for parallel computation,” University
of Michigan. Ann Arbor, Tech. Rept., ISL-654, July 1965.

[23] D. R. Lewis and G. E. Mellen, “Stretching LARC‘s capability by
1-a new multiprocessor system,” presented at the 1964 Symp. on
Microelectronics and Large Systems, Washington, D. C.

