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Very High-speed Computing Systems 
MICHAEL J. FLYNN; MEMBER, IEEE 

Abstract-Very high-speed computers  may be clnssified as follows: 
1) Single Jktmction Strdingle  Data Stream (SISD) 
2) S i l e  Imbnctioa Stream-Multiple Data Stream (SIMD) 
3) Multiple hstmcth StrePntSingle Data Stream (MSD) 
4) Mnltiple Instroctioo Stream-Multiple Data Stream (”D). 

“Stream,” as nsed here, refers to the sequence of data or irstructiom as seen 
by the machine daring tbe execution of a program. 

m e  coastitaeats of a  system :storage, exeation, and htrudon bandhg  
(braoching) are dkcussd witb regard to recent  developmen6 and/or systems 
Limitatim. The COlsMnents are dkcuwd m term of  coocarrent SED 
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systems (CDC 6600 series and, io particnlar, IBM Modd 90 series), since 
mnltiple stream organizations usually do not quire any  more  elaborate compooents. 

Representative organizations are s e l e c t e d  from each class and the 
arrangement of the comtitwnts is shown. 

INTRODUCTION 

M ANY SIGNIFICANT scientific problems require 
the use of prodigious amounts of computing time. 
In  order  to  handle these problems adequately, the 

large-scale  scientific computer  has been developed. This 
computer addresses itself to  a class of problems character- 
ized  by having a high ratio of computing  requirement to 
input/output  requirements (a partially de facto situation 
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caused by the unavailability of matching  input/output 
equipment).  The complexity of these processors, coupled 
with the advancement of the state of the computing art 
they represent, has focused attention  on scientific com- 
puters. Insight thus  gained is frequently a predictor of com- 
puter developments on  a more universal  basis. This  paper 
is an  attempt  to explore large scientific computing equip- 
ment, reviewing possible organizations starting with the 
“concurrent” organizations which are presently  in opera- 
tion and then examining  the  other theoretical organiza- 
tional possibilities. 

ORGANIZATION 
The  computing process, in its essential form, is the per- 

formance of a  sequence of instructions on  a set of data. 
Each instruction performs  a  combinatorial  manipulation 

(although, for economy,.  subsequencing is also involved) 
on one or two elements of the  data set. If the element  were a 
single bit and  only onemchbit could be manipulated at any 
unit of time, we would  have a variation of the Turing  ma- 
chine-the strictly serial sequmtial  machine. 

The  natural extension of this is to introduce a  data set 
whose elements  more closely correspond to a  “natural” 
data  quantum (character, integer, floating point number, 
etc.). Since the size  of datum has increased, so too  has the 
number  of  combinatorial  manipulations  that can  be per- 
formed  (manipulations on two n bit arguments have 22” 
possible outcomes).  Of course, attention is restricted to 
those operations which  have arithmetic or  logical. sig- 
nificance. 

A program consists of an  ordered set  of instructions. The 
program has considerably fewer written (or stored) in- 
structions  than  the  number of machine instructions to be 
performed.  The difference  is  in the recursions or “loops” 
which are inherent in the  program.  It is  highly advantageous 
if the algorithm being implemented is  highly  recursive. The 
basic  mechanism for setting up the loops is the conditional 
branch instructions. 

For convenience we adopt two working definitions: Zn- 
struction Stream is the sequence  of instructions as performed 
by the  machine; Data  Stream is the sequence of data called 
for by the instruction stream (including input and  partial  or 
temporary results). These  two  concepts are quite useful  in 
categorizing computer organizations in an  attempt to avoid 
the ubiquitous and  ambiguous term “parallelism.” Orga- 
nizations will  be characterized by the multiplicity of the 
hardware  provided to service the Instruction .and Data 
Streams. The mutiplicity is taken  as the maximum possible 
number  of simultaneous operations (instructions) or oper- 
ands  (data) being in the  same  phase of execution at the most 
constrained component  of.the organization. 

Several questions are  immediately evident: what is an 
instruction;  what is an  operand; how  is the “constraining 
component’’  found?  These  problems  can be answered 
better by establishment of a reference.  If the IBM 704.were 
compared to the Turing  machine,  the 704 would appear 
highly parallel. On  the  other  hand, if a definition were made 
in terms of the  “natural”  data unit called for by a  problem, 

the situation would  be equally untenable, since  in  many 
problems  one would consider a large matrix of data a unit. 
Thus we arbitrarily select a reference organization : the IBM 
704-70927090. This organization is then regarded as the 
prototype of the class  of machines which we label : 

1) Single Instruction Stream-Single Data  Stream (SISD). 

Three additional organizational classes are evident. 

2) Single Instruction  Stream-Multiple  Data  Stream 

3) Multiple Instruction Stream-Single Data  Stream 

4) Multiple Instruction  Stream-Multiple Data Stream 

(SIMD) 

(MISD) 

(MIMD). 

Before continuing, we define  two additional useful 
notions. 

Bandwidth is an expression of time-rate of occurrence. In 
particular,  computational  or execution bandwidth is the 
number of instructions processed  per  second  and storage 
bandwidth is the retrieval rate of operand  and operation 
memory  words (words/second). 

Latency or latent period is the total time associated with 
the processing (from excitation to response) of a particular 
data unit at  a phase in the  computing process. 

Thus  far, categorization has  depended  on the multiplicity 
of  simultaneous events at the system’s component which 
imposes the most constraints. The  ratio of the  number  of 
simultaneous instructions being  processed to this con- 
strained multiplicity is  called the confluence (or concurrence) 
of the system. 

Confluence is illustrated in Fig. 1 for  an  SISD organiza- 
tion.  Its effect  is to increase the computational  bandwidth 
(instructions processed/second) by maximizing the utility 

GENERATE AOORESS OF INSTRUCTION 

-FETCH  INSTRUCTION 

DECOOE NSTRUCTION 

GENERATE AOORESS OF OPERANO 1 1 1 FETCH OPERfD 

EXECUTE  INSTRUCTION 

INST.#2 

I N S T . # I  

L 

. . . 

4- INSTRUCTION #I  STARTS 

INSTRUCTION #2  STARTS 

INSTRUCTION #3 STARTS 

Fig. 1 .  Concurrency and instruction  processing. 
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of the  constraining  component  (or “bottleneck”). The  pro- 
cessing  of the first instruction proceeds in the phases shown. 
In order to increase the  computational speed, we begin 
processing instruction 2 as soon  as  instruction 1 completes 
its first phase. Clearly, it is desirable to minimize the time in 
each phase, but there is no  advantage in minimizing below 
the time required by a  particular phase or mechanism. 
Suppose, for  a given organization,  that  the instruction de- 
coder is an absolute serial mechanism with resolution time, 
At .  If the average instruction  preparation  and execution time 
is t,, then  the  computational  bandwidth may  be improved by 
t ,/At. Thus if only one  instruction can be handled at  a 
time at the bottleneck, then the maximum achevable per- 
formance is l/Ar. (1 being the multiplicity of the constraint.) 

In  order  to process a given number of instructions in a 
particular  unit of time, a  certain bandwidth of memory 
must be achieved to insure an ample supply of operands  and 
operations in the  form of instructions. Similarly, the data 
must be operated  on (executed) at a  rate consistent with the 
desired computational  rate. 

CONSTITUENTS OF THE SYSTEM 

We  will treat  storage, execution, and  instruction handling 
(branching) as the  major  constituents of a system.  Since 
multiple stream  organizations usually represent multiple 
attachments of one  or more of the  above constituents, we 
lose no generality in discussing the constituents of a sys- 
tem as they have  evolved  in SISD organizations. Indeed, 
confluent SISD organizations-by their nature-must 
allow arbitrary  interaction between elements of the data 
stream or instruction  stream. Multiple stream organiza- 
tion may limit this interaction,  thus simplifying some of the 
considerations in an  area. Therefore, for now, we shall be 
mainly concerned with techniques to extend computational 
performance  in  a  context of a confluent SISD system. We 
will further assume that the serial mechanism which con- 
strains  the  organization is the decoding of instructions. 
Thus, on the average, the processing of one  instruction per 
decode cycle  will be an upper limit on performance. 

The relationship between the  constituents is shown in 
Fig. 2 for  the  SISD  organization. 

I\ /I [ 7 1  STORAGE j n- 
EXECUTION  BANDWIDTH 

INSTRUCTION  STREAY 

INSTRUCTION 
HANDLING 

UNIT 
> 

OPERAUO STREAY 

n... 
0 
(I 

Fig. 2. SISD Organization. 

A .  Storage 
The  instruction  and data streams are assumed sequential. 

Thus, accessing to storage will also be sequential. If there 
were available storage whose access mechanism could be 
operated in one decode cycle and this accessing could be 
repeated every  cycle, the system would be relatively simple. 
The only interference would develop when operands had to 
be fetched in a  pattern conflicting with the instructions. 
Unfortunately, accessing in most storage media is consider- 
ably slower than decoding. This makes the use of inter- 
leaving techniques necessary to achieve the required 
memory bandwidth (see Fig. 3). In the interleaving scheme, 
n memories are used. Words  are  distributed in each of the 
memories sequentially (modulo n). In memory i is stored 
word i, n + i, and 2n + i, etc. However, the accessing mecha- 
nism does not  alter  the latency situation  for the system, and 
t h s  must be included in the design. Memory bandwidth 
must be  sufficient to handle the accessing of instructions and 
operands,  the  storage of results and  input-output traffic [9]. 
The  amount of input-output bandwidth is problem-depen- 
dent. Large memory requirements will necessitate transfer 
of blocks of data to and  from memory. The resulting traffic 
will be inversely proportional to the overall size  of the 
memory. However, an increase in the size of the memory 
to minimize this interference also acts to increase the bulk of 
the memory, and usually the interconnection distance. The 
result, then, may be an increase in the latency caused by 
these communications problems. 

Figure 3 was generated after the work of Flores [9] and 
assumes completely random address requests. The “waiting 
time” is the average additional  amount of time (over the 
access time) required to retrieve an item due  to conflicting 

ACCESS REGENERATION 
LATENCY - 

- t a t  r I 

I. 1 
. I  

n UNITS BUSY 

n . a t  
(MEMORY  CYCLE) 

\ 
ASSUME DEMAND RATE OF n WORDS 
PER MEMORY CYCLE 

\ 
WAITING TIME AS A 
FRACTION OF 1.0 
MEMORY CYCLE I RANDOM ADDRESS REQUESTS 

I .o I .5 2:o 
NUMBER OF MEMORY UNITS 

DEMAND  RATE 

Fig. 3. Interleaving memory units. 
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requests. Since memory requests are usually sequential for 
instructions and at least regular for  data, the result is overly 
pessimistic for all but heavily branch-dependent problems. 
Typical programs will experience about half the waiting 
time shown. 

This latency in the system greatly increases the complexity 
of the control mechanism for the storage system. The 
storage  unit must now include queuing mechanisms to 
organize, fetch, and  store requests which are in process or 
could not be honored due  to conflicts. These queuing 
registers, containing  outstanding service requests, must be 
continually compared against new requests for service. 
Extensive control interlocks must be made available to 
serve at least the following functions [ 2 ] ,  [3]: 

3) 

4) 

~~ .~ 

direct the fetched word to the  appropriate  requestor; 
prevent out-of-sequence fetch-store or store-fetch in 
the same memory location; 
eliminate duplicate requests of the same memory loca- 
tion (especially where the memory location contains 
more than  one  instruction or  data  unit); 
analyze “keys” or “boundaries” where fetch or store 
memory protection  are used. 

In addition, confluent computing systems frequently em- 
ploy buffers to minimize traffic requirements on the memory 
[2]. An  instruction buffer mightcontain  the next n instruc- 
tions  in  the sequence as well as a history of m instructions 
together with several levels of alternate  paths of branch. 

The presence of a historical picture of instructions (in the 
instruction buffer) allows for the opportunity to store small 
loops, thus avoiding the penalty of reaccessing instructions. 
An operand buffer  is  used  by the execution unit  as  its in- 
trinsic storage medium. The  instruction unit would re- 
structure  instructions  that called for  operands from memory 
into  instructions which call for  the  contents of these 
registers. The  instruction  unit would, after decoding the 
instruction, initiate the requests for the appropriate 
operands  and direct their placement into the operand buffer. 
Thus  the execution unit would act  as an independent com- 
puter, whose storage would be limited to the contents of 
this buffer, and whose instructions would bein a shortened 
format. 

B. Execution 
We center our discussion on the floating-point instruc- 

tions since they are the most widely  used in large scientific 
computing,  and require the most sophisticated execution. 
In order to achieve the  appropriate bandwidth levels, we can 
repeat the deployment scheme that was  used for memory, 
only here the independent units will be dedicated to servic- 
ing one class of instructions. In addition to directly increas- 
ing the bandwidth by providing a number of units, the 
specialization of the  unit aids in execution efficiency in 
several other ways. In  particular, each unit might act as  a 
small insular unit of logic, hence minimizing intra-unit wire 
communication problems. Secondly, the dedicated unit 
has fewer logical decisions to make than  a universal unit. 

Thirdly,  the unit may be implemented in a  more efficient 
fashion. 

One may also consider “pipelining” techniques [6] to 
improve the  bandwidth within a particular insular unit, 
in addition to optimizing an algorithm to minimize latent 
time. “Pipelining” is a process wherein natural points in the 
decision-making hardware  are sought to latch up inter- 
mediate results and resuscitate the use  of the unit. The 
latching may include extra decision elements for  storage, 
but these may also be  used  in aiding the  control of time skew 
(differences) in the various parallel paths. 

I )  Floating  Add-Subtract  Operations: Floating add-sub- 
tract  operations consist of three basic parts.  First, the 
justification of the fractional parts of the two operands by 
the amount of the difference of the exponents. Second, the 
adding of the fractional parts  (or  appropriate complement). 
Third,  the  postnormalization of the fraction if the result has 
a leading zero in a significant position  or  an overflow occurs. 
Because  of the decision-making (shifting) problems asso- 
ciated with the exponent handling,  a  normal  latch  point  for 
pipelining the two add  operations in one unit (duplexing the 
unit) is at the interface from  the preshift into the adder or 
after the first level  of the adder  structure.  The floating add 
class of instruction has been reported [5] to operate in the 
120 nanosecond range for  a duplexed unit with 56-bit frac- 
tion (Systems 360 format). 

2) Floating Multiply [5], [lo], [12], [13]: The essential 
decision process of the multiplication algorithm is the addi- 
tion of the multiplicand to itself by as many times as  are 
indicated by the multiplier. If there  are n bits in a multiplier 
and multiplicand, then the multiplicand must be added to 
itself n times with a one-place shift before each addition. 
Standard techniques exist for reducing the number of addi- 
tions (e.g., multiplier bits: 11 11. may be treated as+ 1oooO. 
- 1 .) required by encoding the multiplier into  a lesser num- 
ber of signed bits, say 4 2 .  Once this is done, Wallace [12] 
suggests the direct addition of the 4 2 ,  n-bit, shifted multi- 
plicands. 

The basic decision element in  adding of each bit of the 
n/2 operands is the so-called binary full adder, which 
takes three inputs of equal significance and  produces two 
outputs,  one of the same significance, the sum, and  one of 
higher significance, the  carry. By the associative law, the 
carry is injected into  any available lower level add  struc- 
ture of the  appropriate significance. (The net effect  is some- 
times referred to as  a flush adder.)  The final result, of course, 
is the reduction of the n/2 multiples into two result segments 
-the sums  and  the carries-which are then assimilated by 
a conventional carry-propagate  adder with an anticipation 
mechanism. The basic problem is the implementation of this 
algorithm. For large n, the  plane segments that  partition 
the algorithm are inconsistent with conventional packaging 
sizes and interconnection limitations (see  below). 

Consider a simpler variation [Fig. 4(b)] [SI: here only 
n/m multiples of the multiplicand are retired per iteration 
(m iterations are required). The n/m multiples are decoded 
into n/2m additions of the multiplier. These multiples are 
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then inserted into  the first  level  of the  adder tree [Fig. 4(b)]. 
Now  the  add assimilation of both carries and  sums  pro- 
ceeds as before with the  introduction of intermediate stag- 
ing points where the results are temporarily latched. The 
storage points  act as skew (relative timing) control  and im- 
prove the overall execution bandwidth efficiency  of the 
algorithm. After the first  set  of multiples has been  inserted 
into  the first  level  of the tree and assimilated, it is latched at 
the first latch point. The storage point serves to decouple the 
first  level from subsequent levels  of the hardware; there- 
fore the first  set  of multiples may now  proceed to be ab- 
sorbed in the second  level and, simultaneously, a second  set 
of multiples may be  inserted into the first  level  of the tree. 
The process continues and,  at the  bottom of the tree, the 
carries and  sums are assimilated in  an adder with carry 
propagation. Notice that  the latencyin this variation may be 
twice that of the original algorithm. Also  notice that 
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Fig. 4. Outline of a multiplier  tree. 
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potential bandwidth in  this algorithm has not suffered  since 
a second multiplication may proceed independently as  soon 
as the last  set  of multiples is  inserted and has  passed the 
first  level  of the tree. Implementations of  this  second  scheme 
have  yielded a performance of  180 nanoseconds for a float- 
ing-point multiply including post  shifting and exponent 
updating (56-bit fraction, Systems 360 format). 

Figure 4, parts (a)  and  (b)  are three-dimensional represen- 
tations  of  the second variation of the multiply algorithm. 
Figure 4(a)  is an isometric projection and Fig.  4(b) is a 
cross-section (or “regular cutting plane”) and profile  view. 
This representation was chosen to illustrate some of the 
difficulties  of implementing high-speed  systems  in  general. 
It is  well known [ 1 ] that propagation delay and nonuniform 
transmission line loading are major factors  in  the switchmg 
speed  of a logic stage. One would, therefore, desire a 
physical package consistent with the “natural” communica- 
tion pattern of the algorithm so that  the implementation 
could be optimized. The difficulties  of a planar package are 
obvious. Communications between “regular cutting planes” 
[profile  view,  Fig. 4(b)] must be made axially in  the physical 
implementation. Indeed, there is no assurance that the 
capacity of the physical package-plane will match the re- 
quirements of the regular cutting plane-several package- 
planes may be required. 

Notice that  the first variation of the algorithm had much 
more extensive requirements per plane, thus its imple- 
mentation would  very  likely  be  less  efficient than  the second 
variation. 

3)  Floating Point Divide [ 5 ] ,  [IO], [l  I ] :  Historically, 
divide has been  limited  by the fact that  the iterative process 
was dependent on previous partial results.  Recently, atten- 
tion has been  given to techniques which do not have this 
limitation. These techniques include use  of Newton- 
Raphson  iterations  for series approximations  to quotients. 

Assume 

a Quotient = - 
b 

Let 

1 1 
b 1 - ( - X )  
- - - = 1 - x + x 2 - - 3 + . . . f X “ f . . .  

which can be rewritten as 

1 
b 
- = (1 - x)(l + x2)(1 + x4) . . . (1 + x2m) 

Thus : 

Quotient = a . ( I  - x).(l + x2). (1 + x4) . . . (1 + x2’”). 

Recall that  in binary the factor (1 + x“) is  related to (1 -x“) 
by a complementation  operation.  Thus, the denominator is 
rewritten as (1 +x), complemented to form (1 -x), the 
product is (1 - x2) which is complemented to form (1 + x2), 
which continues the development. 
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Notice that  the speed is substantially enhanced by the 
presence  of a high-speed multiplier. In fact, as many as two 
multiplications might  proceed simultaneously. one for the 
quotient  development  and  one  for the next denominator 
term, if the hardware permits. In forcing quick  con- 
vergence of the series, usually a table lookup arrange- 
ment is  used to provide the first approximation for the 
quotient. Thereafter, subsequent iterations develop  double 
the precision of the first approximation. Floating-point 
divides under 700 nanoseconds have  been reported using 
this scheme [ 5 ] .  

4 )  Algorithms for  Achieving Maximum  Ejiciency in the 
Concurrent  Execution of Independent Units: One of the 
purposes in having  independent units dedicated to in- 
dividual instruction types  is to improve  the execution of each 
of the instruction classes. The  other  advantage is that these 
independent units may  operate concurrently and serve to 
increase the overall bandwidth of the execution unit. 
Tomasulo [4] describes an elegant algorithm to allow the 
achievement of maximum efficiency in the concurrent execu- 
tion of units (Fig. 5, illustration from  Amdahl [I]). The 
operation  of this algorithm takes advantage of the latent 
time following the issuing  of the request to access the 
operands  from  storage  into  the  memory in the execution 
area (either virtual or addressable buffers). When an in- 
struction is forwarded to  the execution area,  a word in the 
execution unit  memory is  reserved for its operand, but the 
operand  has  not yet arrived. For example, if the instruction 
to be performed consisted of a multiply, then it could be 
immediately  forwarded to  the multiplication unit. The 

LOAD R ,  , a 
MULT RI,p 
ADD R , ,  R 2  
STORE R 
LOAD R I ,  

(b) 
Fig. 5. Effect of Tomasulo concurrency  algorithm. (a) Sequence  with 

conventional dependency. (b) Sequence  as performed after  tag was 
forwarded. 

multiplier would require a tag representing the  operand. 
The execution area is provided with a  common data bus 
and the tag representing the operand is broadcast  on the bus 
one cycle early, then the execution functional units examine 
their queues of required operands  and gate in immediately 
an  appropriate  one  without waiting for it to go to the buffer 
storage. The  tag  forwarding frees the buffer storage of hav- 
ing any responsibility for this particular  operand. Of 
course, at  the same time, a  load  could then be  executed into 
that same  word.  Thus,  the  second  load instruction and the 
multiply instruction could  proceed concurrently in a 
fashion impossible before. Results, as they  become avail- 
able, might also be forwarded to units (the adder in Fig. 5) 
requesting action by a similar mechanism,  rather  than 
proceeding directly to storage, whether virtual or addressed. 
This avoids intermediate stops and hence improves overall 
efficiency of execution by improving  the overlap in the con- 
currency system. 

C.  Branching 
Assume for the  moment that memory  bandwidth  and 

execution bandwidth  have now  been arranged so that they 
more  than satisfy the  requirement of one instruction pro- 
cessed  per decode cycle. What  then would  limit the per- 
formance of a  SISD  system? If  it  is assumed that there are  a 
fixed number of data-dependent  branch points in a given 
program, then, by operating in a confluent or other high- 
speed mode, we essentially bring the  branch points closer 
together. However, the resolution time of the data-depen- 
dent branch point is  basically  fixed for  a system  with a 
given execution and/or accessing latency. 

The basic retrogressive factor is the presence of branch 
dependencies  in  the instruction stream. Among  the  many 
types  of branch instructions, we have [2], [7] : 

1) Execute: The  operand which  is fetched is to be treated 
as  an instruction (or an instruction counter). This 
presents some  problems since the access latency is in- 
serted into  the instruction stream.  It is  essentially the 
same  problem as indirect addressing or  a double 
operand fetch. One  could anticipate some of this 
difficulty by keeping ahead in the instruction stream. 
However, this particular instruction does not pose a 
series degradation  problem because its use  is normally 
restricted to linkages. 

2) Branch  Unconditional: The effective address so gen- 
erated becomes the  contents of the instruction counter. 
This subclass of instruction presents the same  problem 
as execute. 

3) Branch  on Index: The  contents of an index  register  is 
decremented by one  on  each iteration until the reg- 
ister is zero, upon  which the alternate path is taken. 
Only  the access latency is a factor since zero can be 
anticipated. 

4) Data-Dependent  Branch: The  paths of the branch  are 
determined by the condition (sign, bit, status, etc.) of 
some data cell. Invariably, this condition is dependent 
on  the execution of  a previously issued instruction. 
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Here  the  degradation is serious and unavoidable. 
First  the execution of the condition-generating data 
must be completed. Then,  the test is made and the 
path is selected. Now,  the  operands  can be fetched and 
confluency can be restored. It is presumed that  both 
instruction  paths were previously fetched-but note 
that this is done only at the expense of greater memory 
bandwidth requirements. Another slight improvement 
can be made if the  operands are.fetched for  one  alterna- 
tive path so long as the unresolved branch  path is not 
executed (to avoid serious recovery and reconstruction 
problems if the guess proves wrong). 

Of the two “loop closing” or conditional  branch instruc- 
tions, Branch on Index has less degradation  due to resolu- 
tion of latency than  Data-Dependent Branch. When an 
option exists (as in the performance of a known number of 
iterations) the programmer should select the former. 

Assuming that the Data-Dependent Branch-resolving 
latency is a  constant  for  any  particular machine, we may 
show its relationship (Fig. 6) to performance by assuming 
various percentages (of occurrence in executed code) of this 
type instruction.  The latency represents the sum of average 
execution time plus operand access time from memory. 

Figure 6 assumes that  the  organization under considcra- 
tion has enough confluency to perform one  instruction/ 
cycle on the average without branch-resolution interrup- 
tions. To resolve the  branch, it is generally necessary to fully 
execute and test the result of the preceding instruction. 
During this time, fetching of instructions  and  data may 
proceed for  one  branch  path  and possibly a few instructions 
may be fetched for  the  alternate. Fetching of both  paths 
doubles the bandwidth required and increases the waiting 
time (Fig. 3). Thus  the latency includes an average execution 
time, test time, and. a .  percentage (wrong path guesses) 
of the operand-access time. 

Notice that while we have studied degradation .due to 
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latency for the SJSD organization, multiple stream organi- 
zations may exhibit branch induced degradation  due to 
either t h s  same phenomenon or  an analog spatial in- 
efficiency  in  which only one  path activates or determines the 
outcome of a dependency. 

CLASSES OF ORGANIZATION 
In tlus section we shall consider each of the organizational 

classes listed in the first section of the paper. We  will re- 
mark  on or illustrate representative systems that fall into 
each class. The various configurations are by no means 
exhaustive. 

A .  ConJluent SISD 
The confluent SISD processor (IBM STRETCH [7], 

CDC 6600 series [8], IBM 360/90 series [2l-[5]) achieves its 
power by overlapping the various sequential decision pro- 
cesses which- make up  the execution of the instruction 
(Figs. 1 and 2). In spite of the various schemes for achieving 
arbitrarily high memory bandwidth and execution band- 
width, there remains an essential constraint in this type of 
organization. As we implied before, this bottleneck is the 
decoding of one  instruction in a unit time, thus, no more 
than  one instruction can he retired in the same time quan- 
tum, .on the average. If one were to try to extend.this organ- 
ization by taking two, three, or n different instructions in 
the same decode cycle, and-no limitations were placed on 
instruction interdependence, the number of instruction 
types to be  classified would be increased by the combina- 
torial amount (M different instructions  taken n at a time 
represents M” different outcomes) and the decoding 
mechanism would be correspondingly increased in com- 
plexity. On the other  hand,  one could place restrictions on 
the occurrence of either specified types of instructions or in- 
struction dependencies. This, in turn,  narrows the class of 
problems for which the machine is suitable and/or  demands 
restrictive programming practices. Indeed, this is a  char- 
acteristic of multiple stream organizations since the multi- 
plicity (or “parallelism”) implies independent simultaneous 
action. 
B. SIMD [14]-[18] 

SIMD-type  structures have been proposed by Unger 
[14], Slotnik [I51 (SOLOMON,  ILLIAC IV), Crane  and 
Githens [16], and, more recently, by Hellerman [17]. 

SOLOMON is the classic SIMD. There  are n universal 
execution units each with its own access to operand storage. 
The single instruction  stream  acts simultaneously on the n 
operands without using confluence techniques. Increased 
performance is gained strictly by using more units. Com- 
munication between units is restricted to a predetermined 
neighborhood pattern  and must also proceed in a universal, 
uniform fashion [Fig. 7(a)].  (Note:  SOLOMON has been 
superseded by ILLIAC IV as a system  being  actively de- 
veloped, which  is no longer completely SIMD.) 

The difficulties with SIMD  are: 

1) Latency in the  instructionstream  for  SIMD branches 
is now replaced by latency in the  data stream caused by 
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2) 
operand  communication (forwarding) problems. 
Presently, the  number of classes of problems whose 
operand streams have the required communication 
regularity is not well established. SIMD organizations 
are inconsistent with  standard algorithmic tech- 
niques (including, and especially, compiler tech- 
niClUeS). 

3) The universality of the execution units deprive them of 
- I  

maximum efficiency. 

C.  MISD 
These structures have received  much  less attention [18], 

[19]. An  example of such  a  structure is  shown  in  Fig.  7(b). 
It basically employs  the high bandwidth dedicated execu- 
tion unit as described in  the confluent SISD section. This 
unit is then shared by n yirtual machines operating on 
program sequences independent of one  another.  Each 
virtual machine  has access to  the execution hardware once 
per cycle. Each virtual machine, of course, has its own 
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Fig. 7. (a) SIMD. (b) MISD. Converts to  MIMD if instructions 

and data are  privately maintained (together). (c) MISD. 

private instruction memory and interaction between in- 
struction streams occurs only  via the common data memory. 
Presumably, if there are N instruction units then the band- 
width of the  common data  storage  must be N times greater 
than  the individual instruction storage. This  requirement 
could be substantially reduced by  use  of a modified version 
of Tomasulo’s tag-forwarding algorithm  and  a separate 
common  forwarding bus. 

Another version of this [Fig. 7(c)] would force forward- 
ing of operands.  Thus the data stream presented to Execu- 
tion Unit 2 is the resultant of Execution  Unit 1 operating its 
instruction on  the source data stream. The instruction that 
any unit performs may  be  fixed  (specialized such  that  the 
interconnection (or setup) of units must  be  flexible),  semi- 
fixed (such that  the function of any unit is  fixed for one 
pass of a data file) or variable (so that  the  stream of instruc- 
tions operates at any point on  the single data stream). Under 
such an  arrangement, only the first execution unit sees the 
source data stream and while it is processing the ith operand 
the ith execution unit is processing the ith derivation of the 
first operand  of  the source stream. 

D. MIMD 
If we reconstruct the organization of Fig.  7(b) so that the 

data  and instruction streams are maintained together in 
private memories, we have an example of MIMD. There is 
no interaction or minimum interaction allowed  between 
these virtual machines. So long as  the  latent time for execu- 
tion of  any  operation is  less than  the memory  cycle, no 
problems arise due  to branching. Thus,  such  an  arrange- 
ment allows maximum  advantage of the allowable band- 
widths of execution unit and  memory unit. Of course, such 
an  approach  might well be criticized on  the basis that the re- 
quirement  of  independence of the instruction sequences 
does not address itself to  the requirements of large scientific 
problems.  It would  be better suited to the needs of the time- 
sharing and/or utility environment. 

This restricted MIMD points up the shortcoming of our 
organizational definitions. The specifications  fail to include 
a classdication of  how the streams may interact, thus  a re- 
stricted MIMD may  be organizationally much  simpler than 
a confluent SISD. 

General MIMD structures have been more widely de- 
scribed [20E[23] with large-scale multiplicity being  en- 
visioned by Holland [21] and  more restricted implementa- 
tions being undertaken by Burroughs  and  Univac [23]. 

In his original proposal,  Holland considers an  array of 
processors each  with  a  one-word storage. The  modules  are 
independent and  are  capable of concurrent execution. The 
processors have arithmetic ability but  communication is 
limited by their need to “build a  path”  to  the  appropriate 
operand.  In  path building, the  displacement  and direction 
of the operand is  specified and the intervening module 
processors form  a  vinculum. 

Such an arrangement  might solve some of the essential 
blockage  problems of S E D  and  SIMD, since independent 
program  segments  proceed simultaneously. Also, memory 
bandwidth is always  adequate. 
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The difficulties with such an  arrangement of MIMD time, and this may be further degraded by the occurrence of 
generally include r201: “conditional branch”  instructions. 

1) interconnections between units, which pose serious 

2) the universal nature of the individual module, which 

3) the class of problems which could utilize MIMD 

interference problems 

limits its efficiency 

organization, whch is presently small. 

SYSTEMS REQUIREMENTS 
The effectiveness of the overall computing processes must 

be measured on a basis much larger than performance 
(nanoseconds per instruction)  alone. Even on this primi- 
tive basis, it is obvious that different instruction repertoire 
may imply substantially different effectiveness  with the same 
average nanosecond per instruction  ratio. 

Despite our original assumption  that the very large prob- 
lem does not employ significant input/output, it is .soon 
realized that this .requirement is unduly .restrictive. Pres- 
ently, high-speed systems remain so limited. It may be 
some time before broader effective utilization may be 
realized through new developments in input/output equip- 
ment. 

Of course,  the overall measure of  efficiency  of the  pro- 
cessor is the number of correctly completed computations 
and  programs  done over an extended period of time. In- 
cluded in this measure is the reliability. and the maintain- 
ability of the system. Complex systems with very large num- 
bers  of components  are  naturally very  difficult to maintain, 
unless features which provide fault location are included. 
A major component of such features would be checking 
(or fault detection) .of all operations  and  data  transfers. 
On detection of error, hardware-aided diagnostics should be 
provided so that servicing and maintenance might be readily 
and easily accomplished. If checking is not included in the 
hardware,  then it is,  of course, incumbent on the user to 
program  a  thorough check of his results. This, of course, 
represents an overhead which penalizes the effective perfor- 
mance and utilization of the equipment. 

Notice that some of the suggested organizations cater.to 
restrictive problem sets-particularly the SIMD, where 
multiple operands  are executed by the same instruction 
stream. Such organizations  are clearly limited for general- 
purpose processing where there may be many interactions 
between operand elements. Similarly, with the MISD 
organizations, in the  organization shown on Fig. 7(b), a 
number of independent instruction streams are involved and 
their very independence precludes MISD use on  one large 
problem composed of essential dependencies; this, of 
course, is typical of large scale scientific programming. 

CONCLUSIONS 
Conventional Single Instruction Stream-Single Data 

Stream (SISD) processors may be enhanced by concurrency 
(confluence) of instruction handling, operand acquisition, 
and execution. There is, however, a limitation of the  order 
of the execution of one  instruction per instruction decoding 

By multiplexing the  instruction stream or the data stream 
or both, new classes  of processors which do not necessarily 
share this limit are developed. Their effectiveness depends 
on the  nature of the problem and it is an open question as to 
whether new algorithms which will serve to extend their 
usefulness can be developed. 
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