
1

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

An Overview of OpenMP 3.0

Ruud van der Pas

Senior Staff Engineer
Sun Microsystems

Menlo Park, CA, USA

IWOMP 2009
TU Dresden

Dresden, Germany
June 3-5, 2009

2

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Outline
❑ OpenMP Guided Tour

❑ OpenMP In-depth Overview

3

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

http://www.openmp.org

http://www.compunity.org

4

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

http://www.openmp.org

5

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Shameless Plug - “Using OpenMP”

“Using OpenMP”
Portable Shared Memory
Parallel Programming

Chapman, Jost, van der Pas

MIT Press, 2008

ISBN-10: 0-262-53302-2
ISBN-13: 978-0-262-53302-7

List price: 35 $US

6

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

All 41 examples are available NOW!

As well as a forum on http://www.openmp.org

Download the examples and discuss in forum:
http://www.openmp.org/wp/2009/04/
download-book-examples-and-discuss

7

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

What is OpenMP?
❑ De-facto standard API for writing shared memory parallel

applications in C, C++, and Fortran

❑ Consists of:

● Compiler directives
● Run time routines
● Environment variables

❑ Specification maintained by the OpenMP
Architecture Review Board (http://www.openmp.org)

❑ Version 3.0 has been released May 2008

http://www.openmp.org/

8

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

When to consider OpenMP?
❑ The compiler may not be able to do the parallelization in

the way you like to see it:

● It can not find the parallelism
✔ The data dependence analysis is not able to

determine whether it is safe to parallelize or not
● The granularity is not high enough

✔ The compiler lacks information to parallelize at the
highest possible level

❑ This is when explicit parallelization through OpenMP
directives comes into the picture

9

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Advantages of OpenMP
❑ Good performance and scalability

● If you do it right
❑ De-facto and mature standard

❑ An OpenMP program is portable

● Supported by a large number of compilers
❑ Requires little programming effort

❑ Allows the program to be parallelized incrementally

10

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

OpenMP and Multicore

OpenMP is ideally suited for multicore
architectures

Memory and threading model map naturally

Lightweight

Mature

Widely available and used

11

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The OpenMP Memory Model

T
private

T
private

T
private

T
private

T

private

Shared
Memory

✔ All threads have access to the
same, globally shared, memory

✔ Data can be shared or private

✔ Shared data is accessible by all
threads

✔ Private data can only be
accessed by the thread that
owns it

✔ Data transfer is transparent to
the programmer

✔ Synchronization takes place,
but it is mostly implicit

12

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Data-Sharing Attributes
❑ In an OpenMP program, data needs to be “labelled”

❑ Essentially there are two basic types:

● Shared
✔ There is only instance of the data
✔ All threads can read and write the data simultaneously,

unless protected through a specific OpenMP construct
✔ All changes made are visible to all threads

But not necessarily immediately, unless enforced
● Private

✔ Each thread has a copy of the data
✔ No other thread can access this data
✔ Changes only visible to the thread owning the data

13

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The OpenMP Execution Model

Fork and Join Model
Master
Thread

Worker
ThreadsParallel region

Synchronization

Parallel region Worker
Threads

Synchronization

14

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

An OpenMP example

 for (int i=0; i<n; i++)
 c[i] = a[i] + b[i];

For-loop with independent
iterations

% cc -xopenmp source.c
% setenv OMP_NUM_THREADS 5
% a.out

#pragma omp parallel for
for (int i=0; i<n; i++)
 c[i] = a[i] + b[i];

For-loop parallelized using
an OpenMP pragma

15

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Example parallel execution

Thread 0

i=0-199

+

=

Thread 1

i=200-399

Thread 2

i=400-599

Thread 3

i=600-799

Thread 4

i=800-999

a[i]

b[i]

c[i]

+

=

a[i]

b[i]

c[i]

+

=

a[i]

b[i]

c[i]

+

=

a[i]

b[i]

c[i]

+

=

a[i]

b[i]

c[i]

16

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Components of OpenMP 2.5
Directives Runtime

environment
Environment

variables
 Number of threads

 Scheduling type

 Dynamic thread
adjustment

 Nested parallelism

 Parallel region

 Worksharing

 Synchronization

 Data-sharing
attributes

☞ private

☞ firstprivate

☞ lastprivate

☞ shared

☞ reduction

 Orphaning

 Number of threads

 Thread ID

 Dynamic thread
adjustment

 Nested parallelism

 Wallclock timer

 Locking

17

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Added with OpenMP

 Tasking

Directives

 Schedule

 Active levels

 Thread limit

 Nesting level

 Ancestor thread

 Team size

Runtime
environment

3.0

 Stacksize

 Idle threads

 Active levels

 Thread limit

Environment
variables

18

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

TID = 0
for (i=0,1,2,3,4)

TID = 1
for (i=5,6,7,8,9)

Example - Matrix times vector

i = 0 i = 5

a[0] = sum a[5] = sum

sum = Σ b[i=0][j]*c[j] sum = Σ b[i=5][j]*c[j]

i = 1 i = 6

a[1] = sum a[6] = sum

sum = Σ b[i=1][j]*c[j] sum = Σ b[i=6][j]*c[j]

... etc ...

for (i=0; i<m; i++)
{
 sum = 0.0;
 for (j=0; j<n; j++)
 sum += b[i][j]*c[j];
 a[i] = sum;

 }

 #pragma omp parallel for default(none) \
 private(i,j,sum) shared(m,n,a,b,c)

= *

j

i

19

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

1 10 100 1000 10000 100000 1000000
0

500

1000

1500

2000

2500
1 Thread
2 Threads
4 Threads

OpenMP Performance Example

Memory Footprint (KByte)

P
er

fo
rm

an
ce

 (
M

fl
o

p
/s

)

Matrix too
small *

*) With the IF-clause in OpenMP this performance degradation can be avoided

scales

20

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

A more elaborate example

for (i=0; i<n; i++)
 z[i] = x[i] + y[i];

scale = sum(a,0,n) + sum(z,0,n) + f;

#pragma omp barrier synchronization

#pragma omp for nowait

parallel loop
(work is distributed)

Statement is executed
by all threads

f = 1.0; Statement is executed
by all threads

#pragma omp for nowait

parallel loop
(work is distributed)

#pragma omp parallel if (n>limit) default(none) \
 shared(n,a,b,c,x,y,z) private(f,i,scale)
{

} /*-- End of parallel region --*/

p
arallel reg

io
n

for (i=0; i<n; i++)
 a[i] = b[i] + c[i];

21

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

OpenMP Overview

22

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Terminology and behavior
❑ OpenMP Team := Master + Workers

❑ A Parallel Region is a block of code executed by all
threads simultaneously

☞ The master thread always has thread ID 0

☞ Thread adjustment (if enabled) is only done before entering a
parallel region

☞ Parallel regions can be nested, but support for this is
implementation dependent

☞ An "if" clause can be used to guard the parallel region; in case
the condition evaluates to "false", the code is executed serially

❑ A work-sharing construct divides the execution of the
enclosed code region among the members of the team;
in other words: they split the work

23

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

About OpenMP clauses
❑ Many OpenMP directives support clauses

❑ These clauses are used to specify additional information
with the directive

❑ For example, private(a) is a clause to the for directive:

● #pragma omp for private(a)
❑ Before we present an overview of all the directives, we

discuss several of the OpenMP clauses first

❑ The specific clause(s) that can be used, depends on the
directive

24

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Directive format

❑ Fortran: directives are case insensitive
● Syntax: sentinel directive [clause [[,] clause]...]

● The sentinel is one of the following:

✔ !$OMP or C$OMP or *$OMP (fixed format)
✔ !$OMP (free format)

❑ Continuation: follows the language syntax

❑ Conditional compilation: !$ or C$ -> 2 spaces

❑ C: directives are case sensitive

● Syntax: #pragma omp directive [clause [clause] ...]
❑ Continuation: use \ in pragma

❑ Conditional compilation: _OPENMP macro is set

25

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The if/private/shared clauses

✔ Only execute in parallel if
expression evaluates to true

✔ Otherwise, execute serially

if (scalar expression)

✔ No storage association with original object

✔ All references are to the local object

✔ Values are undefined on entry and exit

✔ Data is accessible by all threads in the team

✔ All threads access the same address space

private (list)

shared (list)

#pragma omp parallel if (n > threshold) \
 shared(n,x,y) private(i)
 {
 #pragma omp for
 for (i=0; i<n; i++)
 x[i] += y[i];
 } /*-- End of parallel region --*/

26

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

About storage association
❑ Private variables are undefined on entry and exit of the

parallel region

❑ A private variable within a parallel region has no
storage association with the same variable outside of
the region

❑ Use the first/last private clause to override this
behavior

❑ We illustrate these concepts with an example

27

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Example private variables
main()
{
 A = 10;

 for (i=0; i<n; i++)
 {

 B = A + i;

 }

 C = B;

}

#pragma omp for private(i,A,B) ...

/*-- A undefined, unless declared
 firstprivate --*/

/*-- B undefined, unless declared
 lastprivate --*/

#pragma omp parallel
{

} /*-- End of OpenMP parallel region --*/

#pragma omp for private(i,B) firstprivate(A) ...#pragma omp for private(i) firstprivate(A) lastprivate(B)...

Disclaimer: This code fragment is not very meaningful and only serves to
demonstrate the clauses

28

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The first/last private clauses

firstprivate (list)

✔ All variables in the list are initialized with the
value the original object had before entering
the parallel construct

✔ The thread that executes the sequentially last
iteration or section updates the value of the
objects in the list

lastprivate (list)

29

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The default clause

default (none | shared | private)

✔ No implicit defaults

✔ Have to scope all variables explicitly

none

✔ All variables are shared

✔ The default in absence of an explicit "default" clause

✔ All variables are private to the thread

✔ Includes common block data, unless THREADPRIVATE

Fortran

C/C++
Note: default(private) is
not supported in C/C++

default (none | shared)

shared

private

30

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Additional default clause

default (firstprivate)

✔ All variables are private to the thread

✔ Pre-initialized

Fortran only

firstprivate

3.0

31

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Fortran - Allocatable Arrays
❑ Allow Fortran allocatable arrays whose status is

“currently allocated” to be specified as private,
lastprivate, firstprivate, reduction, or copyprivate

 PARAMETER (n = 200)
 integer, allocatable,dimension (:) :: A
 integer i

 allocate (A(n))

!$omp parallel private (A)
 do i = 1, n
 A(i) = i
 end do
 ...
!$omp end parallel

3.0

32

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

C++: Threadprivate
❑ Clarify where/how threadprivate objects are constructed

and destructed
❑ Allow C++ static class members to be threadprivate

class T {
 public:
 static int i;
 #pragma omp threadprivate(i)
 ...
};

3.0

33

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

 sum = 0.0
!$omp parallel default(none) &
!$omp shared(n,x) private(i)
!$omp do reduction (+:sum)
 do i = 1, n
 sum = sum + x(i)
 end do
!$omp end do
!$omp end parallel
 print *,sum

The reduction clause - Example

Variable SUM is a
shared variable

☞ Care needs to be taken when updating shared variable SUM
☞ With the reduction clause, the OpenMP compiler generates

code such that a race condition is avoided

34

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The reduction clause

reduction ([operator | intrinsic]) : list)

✔ Reduction variable(s) must be shared variables

✔ A reduction is defined as:

Fortran

C/C++

x = x operator expr
x = expr operator x
x = intrinsic (x, expr_list)
x = intrinsic (expr_list, x)

x = x operator expr
x = expr operator x
x++, ++x, x--, --x
x <binop> = expr

Fortran C/C++

✔ Note that the value of a reduction variable is undefined
from the moment the first thread reaches the clause till
the operation has completed

✔ The reduction can be hidden in a function call

Check the docs
for details

reduction (operator : list)

35

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Barrier/1

Suppose we run each of these two loops in parallel over i:

This may give us a wrong answer (one day)

Why ?

for (i=0; i < N; i++)
 a[i] = b[i] + c[i];

for (i=0; i < N; i++)
 d[i] = a[i] + b[i];

36

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Barrier/2

We need to have updated all of a[] first, before using a[] *

for (i=0; i < N; i++)
 a[i] = b[i] + c[i];

All threads wait at the barrier point and only continue
when all threads have reached the barrier point

wait !

barrier
for (i=0; i < N; i++)
 d[i] = a[i] + b[i];

*) If there is the guarantee that the mapping of iterations onto threads
is identical for both loops, there will not be a data race in this case

37

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Barrier/3

time

Barrier Region

idle

idle

idle

!$omp barrier#pragma omp barrier

Barrier syntax in OpenMP:

38

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

When to use barriers ?
❑ If data is updated asynchronously and data integrity is

at risk

❑ Examples:

● Between parts in the code that read and write the
same section of memory

● After one timestep/iteration in a solver
❑ Unfortunately, barriers tend to be expensive and also

may not scale to a large number of processors

❑ Therefore, use them with care

39

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The nowait clause
❑ To minimize synchronization, some OpenMP directives/

pragmas support the optional nowait clause

❑ If present, threads do not synchronize/wait at the end
of that particular construct

❑ In Fortran the nowait clause is appended at the closing
part of the construct

❑ In C, it is one of the clauses on the pragma

!$omp do
 :
 :
!$omp end do nowait

#pragma omp for nowait
{
 :
}

40

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The Parallel Region

!$omp parallel [clause[[,] clause] ...]

 "this is executed in parallel"

!$omp end parallel (implied barrier)

#pragma omp parallel [clause[[,] clause] ...]
{
 "this is executed in parallel"

} (implied barrier)

A parallel region is a block of code executed by multiple
threads simultaneously

41

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The Parallel Region - Clauses

if (scalar expression)
private (list)
shared (list)
default (none|shared) (C/C++)
default (none|shared|private/firstprivate) (Fortran)
reduction (operator: list)
copyin (list)
firstprivate (list)
num_threads (scalar_int_expr)

A parallel region supports the following clauses:

3.0

42

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Work-sharing constructs
The OpenMP work-sharing constructs

☞ The work is distributed over the threads
☞ Must be enclosed in a parallel region
☞ Must be encountered by all threads in the team, or none at all
☞ No implied barrier on entry; implied barrier on exit (unless

nowait is specified)
☞ A work-sharing construct does not launch any new threads

#pragma omp for
{

}

!$OMP DO

!$OMP END DO

#pragma omp sections
{

}

!$OMP SECTIONS

!$OMP END SECTIONS

#pragma omp single
{

}

!$OMP SINGLE

!$OMP END SINGLE

43

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The workshare construct

Fortran has a fourth worksharing construct:

!$OMP WORKSHARE

 <array syntax>

!$OMP END WORKSHARE [NOWAIT]

Example:

!$OMP WORKSHARE
 A(1:M) = A(1:M) + B(1:M)
!$OMP END WORKSHARE NOWAIT

44

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The omp for/do directive

!$omp do [clause[[,] clause] ...]
<original do-loop>

!$omp end do [nowait]

The iterations of the loop are distributed over the threads

#pragma omp for [clause[[,] clause] ...]
<original for-loop>

private firstprivate
lastprivate reduction
ordered* schedule
nowait
collapse

Clauses supported:

covered later

*) Required if ordered sections are in the dynamic extent of this construct

3.0

45

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The omp for directive - Example

#pragma omp parallel default(none)\
 shared(n,a,b,c,d) private(i)
 {
 #pragma omp for nowait

 #pragma omp for nowait

 } /*-- End of parallel region --*/
(implied barrier)

for (i=0; i<n; i++)
 d[i] = 1.0/c[i];

for (i=0; i<n-1; i++)
 b[i] = (a[i] + a[i+1])/2;

46

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

C++: Random Access Iterator Loops
❑ Allow parallelization of random access iterator loops

void iterator_example()
{
 std::vector vec(23);
 std::vector::iterator it;

 #pragma omp for default(none)shared(vec)
 for (it = vec.begin(); it < vec.end(); it++)
 {
 // do work with *it //
 }
}

3.0

47

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Loop Collapse
❑ Allows parallelization of perfectly nested loops without

using nested parallelism

❑ collapse clause on for/do loop indicates how many loops
should be collapsed

❑ Compiler should form a single loop and then parallelize
that

 !$omp parallel do collapse(2)
 do i = il, iu, is
 do j = jl, ju, js
 do k = k1, ku, ks
 ...
 end do
 end do
 end do

3.0

48

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The sections directive

!$omp sections [clause(s)]
!$omp section

<code block1>
!$omp section

<code block2>
!$omp section
 :
!$omp end sections [nowait]

The individual code blocks are distributed over the threads

private firstprivate
lastprivate reduction
nowait

Clauses supported:

#pragma omp sections [clause(s)]
{
#pragma omp section

<code block1>
#pragma omp section

<code block2>
#pragma omp section
 :
}

Note: The SECTION directive must be within the lexical extent of
the SECTIONS/END SECTIONS pair

49

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The sections directive - Example
#pragma omp parallel default(none)\
 shared(n,a,b,c,d) private(i)
 {
 #pragma omp sections nowait
 {
 #pragma omp section

 #pragma omp section

 } /*-- End of sections --*/

 } /*-- End of parallel region --*/

for (i=0; i<n; i++)
 d[i] = 1.0/c[i];

for (i=0; i<n-1; i++)
 b[i] = (a[i] + a[i+1])/2;

50

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Overlap I/O and Processing/1

Input Thread Output Thread

0
1 0
2 1 0
3 2 1
4 3 2
5 4 3

5 4
5

Processing Thread(s)
Ti

m
e

A complete example program, implementing this idea, can be found on
http://www.openmp.org as part of the “Using OpenMP” example set

51

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Overlap I/O and Processing/2
#pragma omp parallel sections
{
 #pragma omp section
 {
 for (int i=0; i<N; i++) {
 (void) read_input(i);
 (void) signal_read(i);
 }
 }
 #pragma omp section
 {
 for (int i=0; i<N; i++) {
 (void) wait_read(i);
 (void) process_data(i);
 (void) signal_processed(i);
 }
 }
 #pragma omp section
 {
 for (int i=0; i<N; i++) {
 (void) wait_processed(i);
 (void) write_output(i);
 }
 }
} /*-- End of parallel sections --*/

Processing Thread(s)

Input Thread

Output Thread

52

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

#pragma omp parallel
{

 "read a[0..N-1]";

}

 "read a[0..N-1]";

Single processor region/1

This construct is ideally suited for I/O or initializations

Original Code

one volunteer requested

thanks, we're done

"declare A to be be shared"

Parallel Version

May have to insert a
barrier here

53

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Single processor region/2
❑ Usually, there is a barrier at the end of the region

❑ Might therefore be a scalability bottleneck (Amdahl's
law)

time

single processor
region

Threads wait
in the barrier

54

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

SINGLE and MASTER construct

!$omp single [private][firstprivate]
<code-block>

!$omp end single [copyprivate][nowait]

Only one thread in the team executes the code enclosed
#pragma omp single [private][firstprivate] \
 [copyprivate][nowait]
{

<code-block>
}

!$omp master
<code-block>

!$omp end master

Only the master thread executes the code block:

#pragma omp master
{<code-block>} There is no implied

barrier on entry or
exit !

55

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Combined work-sharing constructs
#pragma omp parallel
#pragma omp for
 for (...)

!$omp parallel do
 ...
!$omp end parallel do

#pragma omp parallel for
for (....)

!$omp parallel
!$omp sections
 ...
!$omp end sections
!$omp end parallel

#pragma omp parallel
#pragma omp sections
{ ...}

!$omp parallel sections
 ...
!$omp end parallel sections

#pragma omp parallel sections
{ ... }

Single PARALLEL sections

!$omp parallel
!$omp workshare
 ...
!$omp end workshare
!$omp end parallel

!$omp parallel workshare
 ...
!$omp end parallel workshare

Single WORKSHARE loop

!$omp parallel
!$omp do
 ...
!$omp end do
!$omp end parallel

Single PARALLEL loop

56

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Orphaning

♦ The OpenMP specification does not restrict worksharing
and synchronization directives (omp for, omp single,
critical, barrier, etc.) to be within the lexical extent of a
parallel region. These directives can be orphaned

♦ That is, they can appear outside the lexical extent of a
parallel region

 :
#pragma omp parallel
{
 :
 (void) dowork();
 :
}
 :

void dowork()
{
 :
 #pragma omp for
 for (int i=0;i<n;i++)
 {
 :
 }
 :
}

orphaned
work-sharing

directive

57

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

More on orphaning

♦ When an orphaned worksharing or synchronization directive is
encountered in the sequential part of the program (outside the
dynamic extent of any parallel region), it is executed by the
master thread only. In effect, the directive will be ignored

 (void) dowork(); !- Sequential FOR

 #pragma omp parallel
 {
 (void) dowork(); !- Parallel FOR
 }

void dowork()
{
#pragma omp for
 for (i=0;....)
 {
 :
 }
}

58

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Parallelizing bulky loops

for (i=0; i<n; i++) /* Parallel loop */
{
 a = ...
 b = ... a ..
 c[i] =

 for (j=0; j<m; j++)
 {
 <a lot more code in this loop>
 }

}

59

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Step 1: “Outlining”

for (i=0; i<n; i++) /* Parallel loop */
{
 (void) FuncPar(i,m,c,...)
}

void FuncPar(i,m,c,....)
{
 float a, b; /* Private data */
 int j;
 a = ...
 b = ... a ..
 c[i] =

 for (j=0; j<m; j++)
 {
 <a lot more code in this loop>
 }

}

Still a sequential program

Should behave identically

Easy to test for correctness

But, parallel by design

60

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Step 2: Parallelize

for (i=0; i<n; i++) /* Parallel loop */
{
 (void) FuncPar(i,m,c,...)
} /*-- End of parallel for --*/

Minimal scoping required

Less error prone

#pragma omp parallel for private(i) shared(m,c,..)

void FuncPar(i,m,c,....)
{
 float a, b; /* Private data */
 int j;
 a = ...
 b = ... a ..
 c[i] =

 for (j=0; j<m; j++)
 {
 <a lot more code in this loop>
 }

}

61

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

for (i=0; i < N; i++){

 sum += a[i];

}

Critical Region/1

If sum is a shared variable, this loop can not run in parallel

We can use a critical region for this:

one at a time can proceed

next in line, please

for (i=0; i < N; i++){

 sum += a[i];

}

62

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Critical Region/2
❑ Useful to avoid a race condition, or to perform I/O (but

that still has random order)

❑ Be aware that there is a cost associated with a critical
region

time

critical region

63

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Critical and Atomic constructs

!$omp critical [(name)]
<code-block>

!$omp end critical [(name)]

Critical: All threads execute the code, but only one at a time:

#pragma omp critical [(name)]
{<code-block>} There is no implied

barrier on entry or
exit !

!$omp atomic
<statement>

#pragma omp atomic
<statement>

Atomic: only the loads and store are atomic

This is a lightweight, special
form of a critical section

#pragma omp atomic
 a[indx[i]] += b[i];

64

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

More synchronization constructs
The enclosed block of code is executed in the order in
which iterations would be executed sequentially:

May introduce
serialization

(could be expensive)
!$omp ordered

<code-block>
!$omp end ordered

#pragma omp ordered
{<code-block>}

Ensure that all threads in a team have a consistent view
of certain objects in memory:

In the absence of a list,
all visible variables are

flushed
!$omp flush [(list)]

#pragma omp flush [(list)]

65

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The schedule clause/1

schedule (static | dynamic | guided | auto [, chunk])
schedule (runtime)

✔ Distribute iterations in blocks of size "chunk" over the
threads in a round-robin fashion

✔ In absence of "chunk", each thread executes approx. N/P
chunks for a loop of length N and P threads

● Details are implementation defined

✔ Under certain conditions, the assignment of iterations to
threads is the same across multiple loops in the same
parallel region

static [, chunk]

3.0

66

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The schedule clause/2

Thread 0 1 2 3
no chunk* 1-4 5-8 9-12 13-16

chunk = 2 1-2 3-4 5-6 7-8
9-10 11-12 13-14 15-16

Example static schedule
Loop of length 16, 4 threads:

*) The precise distribution is implementation defined

67

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The schedule clause/3

✔ Fixed portions of work; size is controlled by the value of
chunk

✔ When a thread finishes, it starts on the next portion of
work

✔ Same dynamic behavior as "dynamic", but size of the
portion of work decreases exponentially

✔ Iteration scheduling scheme is set at runtime through
environment variable OMP_SCHEDULE

dynamic [, chunk]

guided [, chunk]

runtime

68

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The experiment

0 100 200 300 400 500 600

3

2

1

0

3

2

1

0

3

2

1

0

static

dynamic, 5

guided, 5

Iteration Number

T
h

re
ad

 ID
500 iterations on 4 threads

69

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Additional schedule clause

✔ The compiler (or runtime system) decides what is best
to use

✔ Choice could be implementation dependent

auto

3.0

70

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Schedule Kinds
❑ Made schedule(runtime) more useful

● Can set/get it with library routines

omp_set_schedule()
omp_get_schedule()

● Allow implementations to add their own schedule
kinds

❑ Added a new schedule kind auto which gives full
freedom to the implementation to determine the
scheduling of iterations to threads

 #pragma omp parallel for schedule(auto)
 for (.....)

 {.....}

3.0

71

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Nested Parallelism
Master
Thread

Outer parallel region

Nested parallel region

Note: nesting level can
be arbitrarily deep

3-way parallel

9-way parallel

3-way parallel
Outer parallel region

72

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Improved Nesting Support
❑ Better support for nested parallelism
❑ Per-task internal control variables

● Allow, for example, calling
omp_set_num_threads() inside a parallel region to
control the team size for next level of parallelism

❑ Library routines to determine
● Depth of nesting

omp_get_level()
omp_get_active_level()

● IDs of parent/grandparent etc. threads
omp_get_ancestor_thread_num(level)

● Team sizes of parent/grandparent etc. teams
omp_get_team_size(level)

3.0

73

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Improved Nesting Support
❑ Added environment variable and runtime routines to

set/get the maximum number of nested active parallel
regions

OMP_MAX_ACTIVE_LEVELS
omp_set_max_active_levels()
omp_get_max_active_levels()

❑ Added environment variable and runtime routine to set/
get the maximum number of OpenMP threads available
to the program

OMP_THREAD_LIMIT
omp_get_thread_limit()

3.0

74

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

OpenMP Environment Variables

75

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

OpenMP Environment Variables

Note: The names are in uppercase, the values are case insensitive

(1) The chunk size approximately equals the number of iterations (N) divided
by the number of threads (P)

(2) The number of threads is limited to the number of on-line processors in the
system. This can be changed by setting OMP_DYNAMIC to FALSE.

(3) Multi-threaded execution of inner parallel regions in nested parallel regions
is supported as of Sun Studio 10

OpenMP environment variable Default for Sun OpenMP

1

static, “N/P” (1)

OMP_DYNAMIC { TRUE | FALSE } TRUE (2)

OMP_NESTED { TRUE | FALSE } FALSE (3)

OMP_NUM_THREADS n

OMP_SCHEDULE “schedule,[chunk]”

76

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Additional Environment Variables

Note: The names are in uppercase, the values are case insensitive

OpenMP environment variable Default for Sun OpenMP

OMP_STACKSIZE size [B|K|M|G] 4 MB (32 bit) / 8 MB (64-bit)

OMP_WAIT_POLICY [ACTIVE | PASSIVE] PASSIVE

OMP_MAX_ACTIVE_LEVELS 4

OMP_THREAD_LIMIT 1024

3.0

(1) The default unit for the stack size is KBytes

(2) With Sun's OpenMP implementation, idle threads may spin-wait for a short
while first, before switching to sleep mode

77

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

OpenMP Run-time Environment

78

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

OpenMP run-time environment
❑ OpenMP provides several user-callable functions

▶ To control and query the parallel environment
▶ General purpose semaphore/lock routines

✔ OpenMP 2.0: supports nested locks
✔ Nested locks are not covered in detail here

❑ The run-time functions take precedence over the
corresponding environment variables

❑ Recommended to use under control of an #ifdef for
_OPENMP (C/C++) or conditional compilation (Fortran)

❑ C/C++ programs need to include <omp.h>

❑ Fortran: may want to use “USE omp_lib”

79

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Run-time library overview
Name Functionality
omp_set_num_threads Set number of threads
omp_get_num_threads Number of threads in team
omp_get_max_threads Max num of threads for parallel region
omp_get_thread_num Get thread ID
omp_get_num_procs Maximum number of processors
omp_in_parallel Check whether in parallel region
omp_set_dynamic Activate dynamic thread adjustment

(but implementation is free to ignore this)
omp_get_dynamic Check for dynamic thread adjustment
omp_set_nested Activate nested parallelism

(but implementation is free to ignore this)
omp_get_nested Check for nested parallelism
omp_get_wtime Returns wall clock time
omp_get_wtick Number of seconds between clock ticks

C/C++ : Need to include file <omp.h>
Fortran : Add “use omp_lib” or include file “omp_lib.h”

80

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Additional run-time functions
Name Functionality
omp_set_schedule Set schedule (if “runtime” is used)
omp_get_schedule Returns the schedule in use
omp_get_thread_limit Max number of threads for program
omp_set_max_active_levels Set number of active parallel regions
omp_get_max_active_levels Number of active parallel regions
omp_get_level Number of nested parallel regions
omp_get_active_level Number of nested active par. regions
omp_get_ancestor_thread_num Thread id of ancestor thread
omp_get_team_size (level) Size of the thread team at this level

C/C++ : Need to include file <omp.h>
Fortran : Add “use omp_lib” or include file “omp_lib.h”

3.0

81

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

OpenMP locking routines
❑ Locks provide greater flexibility over critical sections and

atomic updates:

● Possible to implement asynchronous behavior

● Not block structured

❑ The so-called lock variable, is a special variable:

● Fortran: type INTEGER and of a KIND large enough to
hold an address

● C/C++: type omp_lock_t and omp_nest_lock_t for nested
locks

❑ Lock variables should be manipulated through the API only

❑ It is illegal, and behavior is undefined, in case a lock
variable is used without the appropriate initialization

82

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

OpenMP locking example

Other Work

parallel region - begin

TID = 0 TID = 1

Protected
Region

acquire lock

release lock

Protected
Region

acquire lock

release lock

Other Work

parallel region - end

♦ The protected region
contains the update of a
shared variable

♦ One thread acquires the
lock and performs the
update

♦ Meanwhile, the other
thread performs some
other work

♦ When the lock is released
again, the other thread
performs the update

83

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Locking example - The code

 Program Locks

 Call omp_init_lock (LCK)

!$omp parallel shared(LCK)

 Do While (omp_test_lock (LCK) .EQV. .FALSE.)
 Call Do_Something_Else()
 End Do

 Call Do_Work()

 Call omp_unset_lock (LCK)

!$omp end parallel

 Call omp_destroy_lock (LCK)

 Stop
 End

Initialize lock variable

Check availability of lock
(also sets the lock)

Release lock again

Remove lock association

84

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Example output for 2 threads

 TID: 1 at 09:07:27 => entered parallel region
 TID: 1 at 09:07:27 => done with WAIT loop and has the lock
 TID: 1 at 09:07:27 => ready to do the parallel work
 TID: 1 at 09:07:27 => this will take about 18 seconds
 TID: 0 at 09:07:27 => entered parallel region
 TID: 0 at 09:07:27 => WAIT for lock - will do something else for 5 seconds
 TID: 0 at 09:07:32 => WAIT for lock - will do something else for 5 seconds
 TID: 0 at 09:07:37 => WAIT for lock - will do something else for 5 seconds
 TID: 0 at 09:07:42 => WAIT for lock - will do something else for 5 seconds
 TID: 1 at 09:07:45 => done with my work
 TID: 1 at 09:07:45 => done with work loop - released the lock
 TID: 1 at 09:07:45 => ready to leave the parallel region
 TID: 0 at 09:07:47 => done with WAIT loop and has the lock
 TID: 0 at 09:07:47 => ready to do the parallel work
 TID: 0 at 09:07:47 => this will take about 18 seconds
 TID: 0 at 09:08:05 => done with my work
 TID: 0 at 09:08:05 => done with work loop - released the lock
 TID: 0 at 09:08:05 => ready to leave the parallel region
Done at 09:08:05 - value of SUM is 1100

Note: program has been instrumented to get this information

Used to check the answer

85

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Global Data

86

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

 program global_data

 include "global.h"

!$omp parallel do private(j)
 do j = 1, n
 call suba(j)
 end do
!$omp end parallel do

Global data - An example

subroutine suba(j)

include "global.h"

do i = 1, m
 b(i) = j
end do

do i = 1, m
 a(i,j) = func_call(b(i))
end do

return
end

Data Race !

common /work/a(m,n),b(m)

file global.h

87

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Global data - A Data Race!

call suba(1)

Thread 1

call suba(2)

Thread 2
S

h
ar

ed

subroutine suba(j=1)

do i = 1, m
 a(i,1)=func_call(b(i))
end do

do i = 1, m
 b(i) = 1
end do

subroutine suba(j=2)

do i = 1, m
 a(i,2)=func_call(b(i))
end do

do i = 1, m
 b(i) = 2
end do

88

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

integer, parameter:: nthreads=4
common /work/a(m,n)
common /tprivate/b(m,nthreads)

Example - Solution

subroutine suba(j)

include "global_ok.h"

TID = omp_get_thread_num()+1
do i = 1, m
 b(i,TID) = j
end do

do i = 1, m
 a(i,j)=func_call(b(i,TID))
end do

return
end

file global_ok.h

☞ By expanding array B, we can
give each thread unique access
to it's storage area

☞ Note that this can also be done
using dynamic memory
(allocatable, malloc,)

 program global_data

 include "global_ok.h"

!$omp parallel do private(j)
 do j = 1, n
 call suba(j)
 end do
!$omp end parallel do

89

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

About global data
❑ Global data is shared and requires special care

❑ A problem may arise in case multiple threads access the
same memory section simultaneously:

● Read-only data is no problem

● Updates have to be checked for race conditions

❑ It is your responsibility to deal with this situation

❑ In general one can do the following:
● Split the global data into a part that is accessed in serial parts

only and a part that is accessed in parallel

● Manually create thread private copies of the latter

● Use the thread ID to access these private copies

❑ Alternative: Use OpenMP's threadprivate directive

90

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The threadprivate directive

❑ Thread private copies of the designated global
variables and common blocks are created

❑ Several restrictions and rules apply when doing this:

● The number of threads has to remain the same for all the
parallel regions (i.e. no dynamic threads)

✔ Sun implementation supports changing the number of threads

● Initial data is undefined, unless copyin is used

●

❑ Check the documentation when using threadprivate !

❑ OpenMP's threadprivate directive

!$omp threadprivate (/cb/ [,/cb/] ...)

#pragma omp threadprivate (list)

91

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

common /work/a(m,n)
common /tprivate/b(m)
!$omp threadprivate(/tprivate/)

Example - Solution 2

subroutine suba(j)

include "global_ok2.h"

do i = 1, m
 b(i) = j
end do

do i = 1, m
 a(i,j) = func_call(b(i))
end do

return
end

file global_ok2.h

☞ The compiler creates thread private
copies of array B, to give each thread
unique access to it's storage area

☞ Note that the number of copies is
automatically adjusted to the number
of threads

 program global_data

 include "global_ok2.h"

!$omp parallel do private(j)
 do j = 1, n
 call suba(j)
 end do
!$omp end parallel do

 stop
 end

92

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The copyin clause

copyin (list)

✔ Applies to THREADPRIVATE common blocks only

✔ At the start of the parallel region, data of the master
thread is copied to the thread private copies

 common /cblock/velocity
 common /fields/xfield, yfield, zfield

! create thread private common blocks

!$omp threadprivate (/cblock/, /fields/)

!$omp parallel &
!$omp default (private) &
!$omp copyin (/cblock/, zfield)

Example:

93

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

A First Glimpse Into Tasking

94

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Why The Excitement About OpenMP 3.0 ?

Support for TASKS !

With this new feature, a wider range of
applications can now be parallelized

3.0

95

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Task Construct Syntax

C/C++:

#pragma omp task [clause [[,]clause] ...]
 structured-block

Fortran:

!$omp task[clause [[,]clause] ...]
 structured-block

!$omp end task

96

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Task Synchronization
❑ Syntax:

● C/C++: #pragma omp taskwait

● Fortran: !$omp taskwait

❑ Current task suspends execution until all children
tasks, generated within the current task up to this
point, are complete

97

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

When are Tasks Complete?
❑ At implicit thread barrier

❑ At explicit thread barrier

● C/C++: #pragma omp barrier

● Fortran: !$omp barrier

❑ At task barrier

● C/C++: #pragma omp taskwait

● Fortran: !$omp taskwait

98

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Example - A Linked List

 while(my_pointer) {

 (void) do_independent_work (my_pointer);

 my_pointer = my_pointer->next ;
 } // End of while loop

Hard to do before OpenMP 3.0:
First count number of iterations, then
convert while loop to for loop

3.0

99

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

The Tasking Example

Developer specifies tasks in application
Run-time system executes tasks

Encountering
thread adds
task to pool

Threads execute
tasks in the pool

3.0

100

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Example - A Linked List With Tasking

 my_pointer = listhead;

 #pragma omp parallel
 {
 #pragma omp single nowait
 {
 while(my_pointer) {
 #pragma omp task firstprivate(my_pointer)
 {
 (void) do_independent_work (my_pointer);
 }
 my_pointer = my_pointer->next ;
 }
 } // End of single - no implied barrier (nowait)
 } // End of parallel region - implied barrier

OpenMP Task is specified here
(executed in parallel)

3.0

101

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Example 2 – Fibonacci Numbers

F(0) = 1
F(1) = 1

F(n) = F(n-1) + F(n-2) (n=2,3,4,.....)

Sequence:
1, 1, 2, 3, 5, 8, 13, 21, 34,

The Fibonacci Numbers are defined as follows:

Credit goes to Christian Terboven (RWTH Aachen) for his work on the
OpenMP tasking version of this algorithm

102

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Recursive Algorithm*
long comp_fib_numbers(int n){

 // Basic algorithm: f(n) = f(n-1) + f(n-2)

 long fnm1, fnm2, fn;

 if (n == 0 || n == 1) return(n);

 fnm1 = comp_fib_numbers(n-1);

 fnm2 = comp_fib_numbers(n-2);

 fn = fnm1 + fnm2;

 return(fn);
}

*) Not very efficient, used for demo purposes only

103

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Parallel Recursive Algorithm
long comp_fib_numbers(int n){

 // Basic algorithm: f(n) = f(n-1) + f(n-2)

 long fnm1, fnm2, fn;

 if (n == 0 || n == 1) return(n);

#pragma omp task shared(fnm1)
 {fnm1 = comp_fib_numbers(n-1);}

#pragma omp task shared(fnm2)
 {fnm2 = comp_fib_numbers(n-2);}

#pragma omp taskwait
 fn = fnm1 + fnm2;

 return(fn);
}

104

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Driver Program

 #pragma omp parallel shared(nthreads)
 {
 #pragma omp single nowait
 {

 result = comp_fib_numbers(n);

 } // End of single
 } // End of parallel region

105

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Parallel Recursive Algorithm - V2
long comp_fib_numbers(int n){

 // Basic algorithm: f(n) = f(n-1) + f(n-2)

 long fnm1, fnm2, fn;

 if (n == 0 || n == 1) return(n);
 if (n < 20) return(comp_fib_numbers(n-1) +
 comp_fib_numbers(n-2));

#pragma omp task shared(fnm1)
 {fnm1 = comp_fib_numbers(n-1);}

#pragma omp task shared(fnm2)
 {fnm2 = comp_fib_numbers(n-2);}

#pragma omp taskwait
 fn = fnm1 + fnm2;

 return(fn);
}

106

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Performance Example*
$ export OMP_NUM_THREADS=1
$./fibonacci-omp.exe 40
Parallel result for n = 40: 102334155 (1 threads
 needed 5.63 seconds)
$ export OMP_NUM_THREADS=2
$./fibonacci-omp.exe 40
Parallel result for n = 40: 102334155 (2 threads
 needed 3.03 seconds)
$

*) MacBook Pro Core 2 Duo

107

IWOMP 2009
TU Dresden

June 3-5, 2009

An Overview of OpenMP 3.0RvdP/V1 Tutorial IWOMP 2009 – TU Dresden, June 3, 2009

Summary OpenMP
❑ OpenMP provides for a small, but yet powerful,

programming model

❑ It can be used on a shared memory system of any size

● This includes a single socket multicore system
❑ Compilers with OpenMP support are widely available

● Support for OpenMP 3.0 is on the rise
❑ The Tasking feature in OpenMP 3.0 opens up

opportunities to parallelize a wider range of applications

❑ Sun Studio has extensive support for OpenMP
developers

● And there is more to come

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107

