An Overview of Cache Optimization Techniques
and Cache-Aware Numerical Algorithms*

Markus Kowarschik! and Christian Weif?

! Lehrstuhl fiir Systemsimulation (Informatik 10)
Institut fiir Informatik
Friedrich—-Alexander—Universitdt Erlangen—Niirnberg, Germany
Markus. Kowarschik@cs.fau.de

2 Lehrstuhl fiir Rechnertechnik und Rechnerorganisation (LRR-TUM)
Fakultat fiir Informatik
Technische Universitat Miinchen, Germany
Christian. Weiss@cs.tum. edu

1 Introduction

In order to mitigate the impact of the growing gap between CPU speed and
main memory performance, today’s computer architectures implement hierar-
chical memory structures. The idea behind this approach is to hide both the
low main memory bandwidth and the latency of main memory accesses which is
slow in contrast to the floating—point performance of the CPUs. Usually, there
is a small and expensive high speed memory sitting on top of the hierarchy
which is usually integrated within the processor chip to provide data with low
latency and high bandwidth; i.e., the CPU registers. Moving further away from
the CPU, the layers of memory successively become larger and slower. The mem-
ory components which are located between the processor core and main memory
are called cache memories or caches. They are intended to contain copies of
main memory blocks to speed up accesses to frequently needed data [31,33].
The next lower level of the memory hierarchy is the main memory which is large
but also comparatively slow. While external memory such as hard disk drives or
remote memory components in a distributed computing environment represent
the lower end of any common hierarchical memory design, this paper focuses on
optimization techniques for enhancing cache performance.

The levels of the memory hierarchy usually subset one another so that data
residing within a smaller memory are also stored within the larger memories. A
typical memory hierarchy is shown in Fig. 1.

Efficient program execution can only be expected if the codes respect the
underlying hierarchical memory design. Unfortunately, today’s compilers cannot
introduce highly sophisticated cache-based transformations and, consequently,
much of this optimization effort is left to the programmer [26, 41].

* This research is being supported in part by the Deutsche Forschungsgemeinschaft
(German Science Foundation), projects Ru 422/7-1,23.



L3 Cache
Main Memory

‘ L2 Cache ‘

Fig. 1. A typical memory hierarchy containing two on—chip L1 caches, one on—chip
L2 cache, and a third level of off-chip cache. The thickness of the interconnections
illustrates the bandwidths between the memory hierarchy levels.

This is particularly true for numerically intensive codes, which our paper con-
centrates on. Such codes occur in almost all science and engineering disciplines;
e.g., computational fluid dynamics, computational physics, and mechanical en-
gineering. They are characterized both by a large portion of floating—point (FP)
operations as well as by the fact that most of their execution time is spent in
small computational kernels based on loop nests. Thus, instruction cache misses
have no significant impact on execution performance. However, the underlying
data sets are typically by far too large to be kept in a higher level of the memory
hierarchy; i.e., in cache.

Due to data access latencies and memory bandwidth issues, the number of
arithmetic operations alone is no longer an adequate means of describing the
computational complexity of numerical computations. Efficient codes in scientific
computing must necessarily combine both computationally optimal algorithms
and memory hierarchy optimizations. Multigrid methods [58], for example, are
among the most efficient algorithms for the solution of large systems of linear
equations. The performance of such codes on cache-based computer systems,
however, is only acceptable if memory hierarchy optimizations are applied [61].

This paper is structured as follows. In Section 2, we will introduce some fun-
damental cache characteristics, including a brief discussion of cache performance
analysis tools. Section 3 contains a general description of elementary cache op-
timization techniques. In Section 4, we will illustrate how such techniques can
be employed to develop cache—aware algorithms. We will particularly focus on
algorithms of numerical linear algebra. Section 5 concludes the paper.

2 Architecture and Performance Evaluation of Caches

2.1 Organization of Cache Memories

Typically, a memory hierarchy contains a rather small number of registers on the
chip which are accessible without delay. Furthermore, a small cache — usually



called level one (L1) cache — is placed on the chip to ensure low latency and
high bandwidth. The L1 cache is often split into two separate parts; one only
keeps data, the other instructions. The latency of on—chip caches is commonly
one or two cycles. The chip designers, however, already face the problem that
large on—chip caches of new microprocessors running at high clock rates cannot
deliver data within one cycle since the signal delays are too long. Therefore,
the size of on—chip L1 caches is limited to 64 Kbyte or even less for many chip
designs. However, larger cache sizes with accordingly higher access latencies start
to appear.

The L1 caches are usually backed up by a level two (L2) cache. A few years
ago, architectures typically implemented the L2 cache on the motherboard, using
SRAM chip technology. Currently, L2 cache memories are typically located on—
chip as well; e.g., in the case of Intel’s Itanium CPU. Off-chip caches are much
bigger, but also provide data with lower bandwidth and higher access latency.
On—chip L2 caches are usually smaller than 512 Kbyte and deliver data with a
latency of approximately 5 to 10 cycles. If the L2 caches are implemented on—
chip, an off—chip level three (L3) cache may be added to the hierarchy. Off-chip
cache sizes vary from 1 Mbyte to 16 Mbyte. They provide data with a latency
of about 10 to 20 CPU cycles.

2.2 Locality of References

Because of their limited size, caches can only hold copies of recently used data or
code. Typically, when new data are loaded into the cache, other data have to be
replaced. Caches improve performance only if cache blocks which have already
been loaded are reused before being replaced by others. The reason why caches
can substantially reduce program execution time is the principle of locality of
references [33] which states that recently used data are very likely to be reused
in the near future. Locality can be subdivided into temporal locality and spatial
locality. A sequence of references exhibits temporal locality if recently accessed
data are likely to be accessed again in the near future. A sequence of references
exposes spatial locality if data located close together in address space tend to
be referenced close together in time.

2.3 Aspects of Cache Architectures

In this section, we briefly review the basic aspects of cache architectures. We
refer to Chapter 8 for a more detailed presentation of hardware issues concerning
cache memories as well as translation lookaside buffers (TLBs).

Data within the cache are stored in cache lines. A cache line holds the con-
tents of a contiguous block of main memory. If data requested by the processor
are found in a cache line, it is called a cache hit. Otherwise, a cache miss oc-
curs. The contents of the memory block containing the requested word are then
fetched from a lower memory layer and copied into a cache line. For this purpose,
another data item must typically be replaced. Therefore, in order to guarantee



low access latency, the question into which cache line the data should be loaded
and how to retrieve them henceforth must be handled efficiently.

In respect of hardware complexity, the cheapest approach to implement block
placement is direct mapping; the contents of a memory block can be placed into
exactly one cache line. Direct mapped caches have been among the most popular
cache architectures in the past and are still very common for off—chip caches.

However, computer architects have recently focused on increasing the set as-
sociativity of on—chip caches. An a—way set—associative cache is characterized by
a higher hardware complexity, but usually implies higher hit rates. The cache
lines of an a—way set—associative cache are grouped into sets of size a. The con-
tents of any memory block can be placed into any cache line of the corresponding
set.

Finally, a cache is called fully associative if the contents of a memory block
can be placed into any cache line. Usually, fully associative caches are only
implemented as small special-purpose caches; e.g., TLBs [33]. Direct mapped
and fully associative caches can be seen as special cases of a—way set—associative
caches; a direct mapped cache is a 1-way set—associative cache, whereas a fully
associative cache is C—way set—associative, provided that C' is the number of
cache lines.

In a fully associative cache and in a k—way set—associative cache, a memory
block can be placed into several alternative cache lines. The question into which
cache line a memory block is copied and which block thus has to be replaced is
decided by a (block) replacement strategy. The most commonly used strategies
for today’s microprocessor caches are random and least recently used (LRU). The
random replacement strategy chooses a random cache line to be replaced. The
LRU strategy replaces the block which has not been accessed for the longest
time interval. According to the principle of locality, it is more likely that a data
item which has been accessed recently will be accessed again in the near future.

Less common strategies are least frequently used (LFU) and first in, first
out (FIFO). The former replaces the memory block in the cache line which has
least frequently been used, whereas the latter replaces the data which have been
residing in cache for the longest time.

Eventually, the optimal replacement strategy replaces the memory block
which will not be accessed for the longest time. It is impossible to implement
this strategy in a real cache, since it requires information about future cache ref-
erences. Thus, the strategy is only of theoretical value; for any possible sequence
of references, a fully associative cache with optimal replacement strategy will
produce the minimum number of cache misses among all types of caches of the
same size [54].

2.4 Measuring and Simulating Cache Behavior

In general, profiling tools are used in order to determine if a code runs efficiently,
to identify performance bottlenecks, and to guide code optimization [26]. One
fundamental concept of any memory hierarchy, however, is to hide the existence
of caches. This generally complicates data locality optimizations; a speedup in



execution time only indicates an enhancement of locality behavior, but it is no
evidence.

To allow performance profiling regardless of this fact, many microprocessor
manufacturers add dedicated registers to their CPUs in order to count certain
events. These special-purpose registers are called hardware performance coun-
ters. The information which can be gathered by the hardware performance coun-
ters varies from platform to platform. Typical quantities which can be measured
include cache misses and cache hits for various cache levels, pipeline stalls, pro-
cessor cycles, instruction issues, and branch mispredictions. Some prominent
examples of profiling tools based on hardware performance counters are the
Performance Counter Library (PCL) [9], the Performance Application Program-
ming Interface (PAPI) [13], and the Digital Continuous Profiling Infrastructure
(DCPI) (Alpha-based Compaq Tru64 UNIX only) [6].

Another approach towards evaluating code performance is based on instru-
mentation. Profiling tools such as GNU prof [22] and ATOM [21] insert calls
to a monitoring library into the program to gather information for small code
regions. The library routines may either include complex programs themselves
(e.g., simulators) or only modify counters. Instrumentation is used, for example,
to determine the fraction of the CPU time spent in a certain subroutine. Since
the cache is not visible to the instrumented code the information concerning the
memory behavior is limited to address traces and timing information.

Eventually, cache performance information can be obtained by cache mod-
eling and simulation [25,32,53] or by machine simulation [48]. Simulation is
typically very time—consuming compared to regular program execution. Thus,
the cache models and the machine models often need to be simplified in order to
reduce simulation time. Consequently, the results are often not precise enough
to be useful.

3 Basic Techniques for Improving Cache Efficiency

3.1 Data Access Optimizations

Data access optimizations are code transformations which change the order in
which iterations in a loop nest are executed. The goal of these transformations is
mainly to improve temporal locality. Moreover, they can also expose parallelism
and make loop iterations vectorizable. Note that the data access optimizations
we present in this section maintain all data dependencies and do not change the
results of the numerical computations'.

Usually, it is difficult to decide which combination of transformations must be
applied in order to achieve a maximum performance gain. Compilers typically
use heuristics to determine whether a transformation will be effective or not.
Loop transformation theory and algorithms found in the literature typically

! However, these transformations may trigger an aggressively optimizing compiler to
reorder FP operations. Due to the properties of finite precision arithmetic, this may
cause different numerical results.



focus on transformations for perfectly nested loops [1]; i.e., nested loops where
all assignment statements are contained in the innermost loop. However, loop
nests in scientific codes are not perfectly nested in general. Hence, initial enabling
transformations like loop skewing, loop unrolling, and loop peeling are required.
Descriptions of these transformations can be found in the compiler literature [2,
7,44,65].

In the following, a set of loop transformations will be described which focus
on improving data locality for one level of the memory hierarchy; typically a
cache. As we have already mentioned in Section 1, instruction cache misses have
no severe impact on the performance of numerically intensive codes since these
programs typically execute small computational kernels over and over again.
Nevertheless, some of the transformations we present in this section can be used
to improve instruction locality as well.

stride—8 access stride—1 access

loop

interchange

Fig. 2. Access patterns for interchanged loop nests.

Loop Interchange. This transformation reverses the order of two adjacent loops
in a loop nest [2,65]. Generally speaking, loop interchange can be applied if the
order of the loop execution is unimportant. Loop interchange can be generalized
to loop permutation by allowing more than two loops to be moved at once and
by not requiring them to be adjacent.

Loop interchange can improve locality by reducing the stride of an array—
based computation. The stride is the distance of array elements in memory
accessed within consecutive loop iterations. Upon a memory reference, several
words of an array are loaded into a cache line. If the array is larger than the
cache, accesses with large stride only use one word per cache line. The other
words which are loaded into the cache line are evicted before they can be reused.

Loop interchange can also be used to enable and improve vectorization and
parallelism, and to improve register reuse. The different targets may be conflict-
ing. For example, increasing parallelism requires loops with no dependencies to
be moved outward, whereas vectorization requires them to be moved inward.



Algorithm 3.1 Loop interchange
1: double sum;

2: double a[n, n];

. // Original loop nest:

4: for j =1tondo

double sum;

double a[n,n];

// Interchanged loop nest:
for i =1 ton do

w

5: for i=1to ndo for j =1 to n do
6: sum+ = ali, jl; sum+ = ali, j|;
7:  end for end for

8: end for end for

The effect of loop interchange is illustrated in Fig. 2. We assume that the
(6,8) array is stored in memory in row major order; i.e., two array elements
are stored adjacent in memory if their second indices are consecutive numbers.
The code corresponding to the left part of Fig. 2, however, accesses the array
elements in a column—wise manner. Consequently, the preloaded data in the
cache line marked with grey color will not be reused if the array is too large to
fit entirely in cache. However, after interchanging the loop nest as demonstrated
in Algorithm 3.1, the array is no longer accessed using stride-8, but stride—
1. Consequently, all words in the cache line are now used by successive loop
iterations. This is illustrated by the right part of Fig. 2.

Loop Fusion. Loop fusion is a transformation which takes two adjacent loops
that have the same iteration space traversal and combines their bodies into a
single loop [17]. Loop fusion — sometimes also called loop jamming — is the
inverse transformation of loop distribution or loop fission which breaks a single
loop into multiple loops with the same iteration space. Loop fusion is legal as
long as no flow, anti, or output dependencies in the fused loop exist for which
instructions from the first loop depend on instructions from the second loop [2].

Fusing two loops results in a single loop which contains more instructions
in its body and therefore offers increased instruction level parallelism. Further-
more, only one loop is executed, thus reducing the total loop overhead by ap-
proximately a factor of two.

Algorithm 3.2 Loop fusion

1: // Original code: 1: // After loop fusion:
2: for i =1ton do 2: for i =1 ton do
3 b[i] =ali] +1.0; 3 b[i] = ali] + 1.0;

4: end for 4:  c[i] = b[7] x4.0;

5: for i =1 to n do 5: end for

6:  c[i] = b[i] % 4.0;

7: end for

Loop fusion also improves data locality. Assume that two consecutive loops
perform global sweeps through an array as in the code shown in Algorithm 3.2,



and that the data of the array are too large to fit completely in cache. The data
of array b which are loaded into the cache by the first loop will not completely
remain in cache, and the second loop will have to reload the same data from
main memory. If, however, the two loops are combined with loop fusion only one
global sweep through the array b will be performed. Consequently, fewer cache
misses will occur.

Loop Blocking. Loop blocking (also called loop tiling) is a loop transformation
which increases the depth of a loop nest with depth n by adding additional loops
to the loop nest. The depth of the resulting loop nest will be anything from n+ 1
to 2n. Loop blocking is primarily used to improve data locality by enhancing
the reuse of data in cache [2, 52, 64].

Algorithm 3.3 Loop blocking for matrix transposition

1: // Original code: 1: // Loop blocked code:
2: for i =1 to n do 2: for it =1 to n by B do
3: for j=1tondo 3: for jj=1ton byBdo
4: ali, j] = bl4,1); 4: for i = ii to min(ii + B —1,n) do
5:  end for 5 for j = jj to min(jj + B—1,n) do
6: end for 6 ali, j] = b[j, 1];
T end for
8 end for
9 end for
10: end for

The need for loop blocking is illustrated in Algorithm 3.3. Assume that the
code reads an array a with stride—1, whereas the access to array b is of stride—n.
Interchanging the loops will not help in this case since it would cause the array
a to be accessed with stride—n instead.

Tiling a single loop replaces it by a pair of loops. The inner loop of the
new loop nest traverses a block of the original iteration space with the same
increment as the original loop. The outer loop traverses the original iteration
space with an increment equal to the size of the block which is traversed by the
inner loop. Thus, the outer loop feeds blocks of the whole iteration space to the
inner loop which then executes them step by step. The change in the iteration
space traversal of the blocked loop in Algorithm 3.3 is shown in Fig. 3.

A very prominent example for the impact of the loop blocking transformation
on data locality is matrix multiplication [10, 37,40, 63], see also Section 4.2. In
particular, the case of sparse matrices is considered in [45].

Data Prefetching. The loop transformations discussed so far aim at reducing
the capacity misses which occur in the course of a computation. Misses which
are introduced by first—time accesses are not addressed by these optimizations.
Prefetching allows the microprocessor to issue a data request before the compu-
tation actually requires the data [59]. If the data are requested early enough the



a O—=0O—0O ] |@=0] Q=0
5 % oo 7 Q@ P
2 Qim bockng 2| | Q0] |Q0

1 2 3 4 1 2 3 4

i j

Fig. 3. Iteration space traversal for original and blocked code.

penalty of cold (compulsory) misses as well as capacity misses not covered by
loop transformations can be hidden?.

Many modern microprocessors implement a prefetch instruction which is is-
sued as a regular instruction. The prefetch instruction is similar to a load, with
the exception that the data are not forwarded to the CPU after they have been
cached. The prefetch instruction is often handled as a hint for the processor to
load a certain data item, but the actual execution of the prefetch is not guaran-
teed by the CPU.

Prefetch instructions can be inserted into the code manually by the pro-
grammer or automatically by a compiler [43]. In both cases, prefetching involves
overhead. The prefetch instructions themselves have to be executed; i.e., pipeline
slots will be filled with prefetch instructions instead of other instructions ready
to be executed. Furthermore, the memory addresses of the prefetched data must
be calculated and will be calculated again when the load operation is executed
which actually fetches the data from the memory hierarchy into the CPU.

Besides software—based prefetching, hardware schemes have been proposed
and implemented which add prefetching capability to a system without the need
of prefetch instructions. One of the simplest hardware—based prefetching schemes
is sequential prefetching [51]; whenever a memory block is accessed, the next and
possibly some subsequent memory blocks are prefetched. More sophisticated
prefetch schemes have been invented [15], but most microprocessors still only
implement stride-1 stream detection or even no prefetching at all.

In general, prefetching will only be successful if the data stream is predicted
correctly either by the hardware or by the compiler and if there is enough space
left in cache to keep the prefetched data together with memory references that
are still active. If the prefetched data replace data which are still needed this
will increase bus utilization, the overall miss rates, as well as memory latencies
[14].

2 For a classification of cache misses we refer to Chapter 8.



3.2 Data Layout Optimizations

Data access optimizations have proven to be able to improve the data locality of
applications by reordering the computation, as we have shown in the previous
section. However, for many applications, loop transformations alone may not
be sufficient for achieving reasonable data locality. Especially for computations
with a high degree of conflict misses®, loop transformations are not effective in
improving performance [46].

Data layout optimizations modify how data structures and variables are ar-
ranged in memory. These transformations aim at avoiding effects like cache con-
flict misses and false sharing [33], see Chapter 16. They are further intended to
improve the spatial locality of a code.

Data layout optimizations include changing base addresses of variables, mod-
ifying array sizes, transposing array dimensions, and merging arrays. These tech-
niques are usually applied at compile time, although some optimizations can also
be applied at runtime.

Array Padding. Tf two arrays are accessed in an alternating manner as in Algo-
rithm 3.4 and the data structures happen to be mapped to the same cache lines,
a high number of conflict misses are introduced.

In the example, reading the first element of array a will load a cache line
containing this array element and possibly subsequent array elements for further
use. Provided that the first array element of array b is mapped to the same cache
line as the first element of array a, a read of the former element will trigger
the cache to replace the elements of array a which have just been loaded. The
following access to the next element of array a will no longer be satisfied by the
cache, thus force the cache to reload the data and in turn to replace the data
of array b. Hence, the array b elements must be reloaded, and so on. Although
both arrays are referenced sequentially with stride—1, no reuse of data which have
been preloaded into the cache will occur since the data are evicted immediately
by elements of the other array, after they have been loaded. This phenomenon
is called cross interference of array references [40].

Algorithm 3.4 Inter—array padding.

// Original code: 1: // Code after applying inter—array padding:
double a[1024]; double a[1024];
double b[1024]; double pad[z];
for i =1 to 1023 do double b[1024];
sum~+ = ali] * b[i]; for i =1 to 1023 do
end for sum+ = ali] * b[d];
end for

% See again Chapter 8.

10



A similar problem — called self interference — can occur if several rows of a
multidimensional array are mapped to the same set of cache lines and the rows
are accessed in an alternating fashion.

For both cases of interference, array padding [57,46] provides a means to re-
duce the number of conflict misses. Inter—array padding inserts unused variables
(pads) between two arrays in order to avoid cross interference. Introducing pads
modifies the offset of the second array such that both arrays are then mapped
to different parts of the cache.

Intra—array padding, on the other hand, inserts unused array elements be-
tween rows of a multidimensional array by increasing the leading dimension of
the array; i.e., the dimension running fastest in memory is increased by a small
number of extra elements. Which dimension runs fastest in memory depends on
the programming language. For example, in Fortran77 the leftmost dimension is
the leading dimension, whereas in C/C++ the rightmost dimension runs fastest.

The sizes of the pads depend on the mapping scheme of the cache, the cache
size, the cache line size, its set associativity, and the data access pattern of the
code. Typical padding sizes are multiples of the cache line size, but different sizes
may be used as well. Array padding is usually applied at compile time. Intra—
array padding can, in principle, be introduced at runtime. However, knowledge of
the cache architecture is indispensable, and information about the access pattern
of the program will improve the quality of the selected padding size [46,47]. The
disadvantage of array padding is that extra memory is required for pads.

Array Merging. This layout optimization technique can be used to improve the
spatial locality between elements of different arrays or other data structures.
Furthermore, array merging can reduce the number of cross interference misses
for scenarios with large arrays and alternating access patterns, as we have intro-
duced in the previous paragraph. The array merging technique is also known as
group—and—transpose [36].

Algorithm 3.5 Array merging.
1: // Original data structure:

2. double a[1024];

3: double b[1024];

—_

// array merging using multidimensional arrays:
double ab[1024][2];

N

// array merging using structures:
struct{

double a;

double b;
} ab[1024];

11



Array merging is best applied if elements of different arrays are located far
apart in memory but usually accessed together. Transforming the data structures
as shown in Algorithm 3.5 will change the data layout such that the elements
become contiguous in memory.

Array Transpose. This technique permutes the dimensions within multidimen-
sional arrays and eventually reorders the array as shown in Algorithm 3.6 [16].
This transformation has a similar effect as loop interchange, see Section 3.1.

Algorithm 3.6 Array transpose.

1: // Original data structure: 1: // Data structure after transposing:
2: double a[N][M]; 2: double a[M][N];

Data Copying. In Section 3.1, loop blocking has been introduced as a technique
to reduce the number of capacity misses. Research has shown [23, 64] that blocked
codes suffer from a high degree of conflict misses introduced by self interference.
This effect is demonstrated by means of Fig. 4. The figure shows a part (block)
of a big array which is to be reused by a blocked algorithm. Suppose that a direct
mapped cache is used, and that the two words marked with x are mapped to
the same cache location. Due to the regularity of the cache mapping, the shaded
words in the upper part of the block will be mapped to the same cache lines as
the shaded words in the lower part of the block. Consequently, if the block is
accessed repeatedly, the data in the upper left corner will replace the data in the
lower right corner and vice versa, thus reducing the reusable part of the block.

Fig. 4. Self interference in blocked code.

12



Therefore, researchers have proposed a data copying technique to guarantee
high cache utilization for blocked algorithms [64]. With this approach, non—
contiguous data from a block are copied into a contiguous area of memory. Hence,
each word of the block will be mapped to its own cache location, effectively
avoiding self interference within the block.

The technique, however, involves a copy operation which increases the total
cost of the algorithm. In many cases the additional cost will outweigh the benefits
from copying the data. Hence a compile time strategy has been introduced in
order to determine when to copy data [55]. This technique is based on an analysis
of cache conflicts.

4 Cache-Aware Algorithms of Numerical Linear Algebra

4.1 Overview: the Software Libraries BLAS and LAPACK

The optimization of numerical algorithms is a large and multifaceted field of on-
going research. In this survey, we focus on algorithms of numerical linear algebra
which play an essential role in numerical mathematics as well as in computa-
tional science. Partial differential equations (PDEs) which arise in almost all
scientific and engineering applications, for example, are typically discretized us-
ing finite differences, finite elements, or finite volumes. This step usually yields
large systems of linear equations the solution of which is only one fundamental
issue of algorithms of numerical linear algebra.

These algorithms are often based on elementary kernel routines which are
provided by highly optimized underlying software libraries; e.g. BLAS* and LA-
PACK?>.

BLAS provides building blocks for performing elementary vector and matrix
operations [18]. In the following, we use a and 8 to represent scalar values,
whereas = and y denote vectors, and A, B, and C represent matrices. The BLAS
library is divided into three levels. Level 1 BLAS do vector—vector operations;
e.g., so—called AXPY computations such as y < ax +y and dot products such as
a < B+xTy. Level 2 BLAS do matrix-vector operations; e.g., y < aop(A4)z+ Sy,
where op(A) = A, AT, or A", Eventually, Level 3 BLAS do matrix-matrix
operations such as C' <+ aop(A)op(B) + SC. Dedicated routines are provided
for special cases such as symmetric and Hermitian matrices. BLAS provides
similar functionality for real and complex data types, in both single and double
precision.

LAPACK is another software library which is often used by numerical appli-
cations [5]. LAPACK is based on the BLAS and implements routines for solving
systems of linear equations, computing least—squares solutions of linear systems,
and solving eigenvalue as well as singular value problems. The associated routines
for factorizing matrices are also provided; e.g., LU, Cholesky, and QR decom-
position. LAPACK handles dense and banded matrices, see Section 4.4 below

* BLAS: Basic Linear Algebra Subprograms, see http://www.netlib.org/blas.
® LAPACK: Linear Algebra PACKage, see http://wuw.netlib.org/lapack.

13



for a discussion of iterative solvers for sparse linear systems. In analogy to the
BLAS library, LAPACK implements similar functionality for real and complex
matrices, in both single and double precision.

4.2 Enhancing the Cache Performance of the BLAS Library

Our presentation closely follows the research efforts of the ATLASS project [63].
This project concentrates on the automatic application of empirical code op-
timization techniques for the generation of highly optimized platform—specific
BLAS libraries. The basic idea is to successively introduce source-to—source
transformations and evaluate the resulting performance, thus generating the
most efficient implementation of BLAS. It is important to note that ATLAS still
depends on an optimizing compiler for applying architecture—dependent opti-
mizations and generating efficient machine code. A similar tuning approach has
guided the research in the FFTW project [24].

ATLAS mainly targets the optimizations of Level 2 and Level 3 BLAS while
relying on the underlying compiler to generate efficient Level 1 BLAS. This is
due to the fact that Level 1 BLAS basically contains no memory reuse and high
level source code transformations only yield marginal speedups.

On the contrary, the potential for data reuse is high in Level 2 and even
higher in Level 3 BLAS due to the occurrence of at least one matrix operand.
Concerning the optimization of Level 2 BLAS, ATLAS implements both regis-
ter blocking™ and loop blocking. In order to illustrate the application of these
techniques it is sufficient to consider the update operation y < Az + y, where A
is an n X n matrix and z,y are vectors of length n. This operation can also be
written as

n
i< Yy aijzi+yi, 1<i<n,
j=1

see [63]. By keeping the current value y; in a CPU register (i.e., by applying
register blocking), the number of read/write accesses to y can be reduced from
O(n?) to O(n). Furthermore, unrolling the outermost loop and hence updating
k components of the vector y simultaneously can reduce the number of accesses
to x by a factor of 1/k to n?/k. This is due to the fact that each z; contributes
to each y;. In addition, loop blocking can be introduced in order to reduce the
number of main memory accesses to the components of the vector x from O(n?)
to O(n) [63], see Section 3 for details. This means that loop blocking can be
applied in order to load x only once into the cache.

While Level 2 BLAS routines require O(n?) data accesses in order to per-
form O(n?) FP operations, Level 3 BLAS routines need O(n?) data accesses
to execute O(n3) FP operations, thus containing a higher potential for data

6 ATLAS: Automatically Tuned Linear Algebra Software. More details are provided
on http://math-atlas.sourceforge.net.

" The developers of ATLAS refer to the term register blocking as a technique to
explicitly enforce the reuse of CPU registers by introducing temporary variables.

14



reuse. Consequently, the most significant speedups are obtained by tuning the
cache performance of Level 3 BLAS; particularly the matriz multiply. This is
achieved by implementing an L1 cache—contained matrix multiply and parti-
tioning the original problem into subproblems which can be computed in cache
[63]. In other words, the optimized code results from blocking each of the three
loops of a standard matrix multiply algorithm, see again Section 3, and calling
the L1 cache—contained matrix multiply code from within the innermost loop.
Fig. 5 illustrates the blocked algorithm. In order to compute the shaded block
of the product C, the corresponding blocks of its factors A and B have to be
multiplied and added.

N K N
M | M Kl
************* Ll b
,,,,,,,,,,,,, L] [
Matrix C Matrix A
‘ :
Matrix B

Fig. 5. Blocked matrix multiply algorithm.

In order to further enhance the cache performance of the matrix multiply
routine, ATLAS introduces additional blocking for either L2 or L3 cache. This
is achieved by tiling the loop which moves the current matrix blocks horizon-
tally through the first factor A and vertically through the second factor B, re-
spectively. The resulting performance gains depend on various parameters; e.g.,
hardware characteristics, operating system features, and compiler capabilities
[63].

It is important to note that fast matriz multiply algorithms which require
O(n¥),w < 3, FP operations have been developed; e.g., Winograd’s method
and Strassen’s method. These algorithms are based on the idea of recursively
partitioning the factors into blocks and reusing intermediate results. However,
error analysis reveals that these fast algorithms have different properties in terms
of numerical stability, see [34] for a detailed analysis.

4.3 Block Algorithms in LAPACK
In order to leverage the speedups which are obtained by optimizing the cache

utilization of Level 3 BLAS, LAPACK provides implementations of block algo-
rithms in addition to the standard versions of various routines only based on

15



Level 1 and Level 2 BLAS. For example, LAPACK implements block LU, block
Cholesky, and block QR factorizations [5]. The idea behind these algorithms is
to split the original matrices into submatrices (blocks) and process them using
highly efficient Level 3 BLAS, see Section 4.2.

In order to illustrate the design of block algorithms in LAPACK we com-
pare the standard LU factorization of a non—singular n x n matrix A to the
corresponding block LU factorization. In order to simplify the presentation, we
initially leave pivoting issues aside. Each of these algorithms determines a lower
unit triangular n x n matrix® L and an upper triangular n x n matrix U such
that A = LU. The idea of this (unique) factorization is that any linear system
Ax = b can then be solved easily by first solving Ly = b using a forward sub-
stitution step, and subsequently solving Uz = y using a backward substitution
step [27, 34].

Computing the triangular matrices L and U essentially corresponds to per-
forming Gaussian elimination on A in order to obtain an upper triangular matrix.
In the course of this computation, all elimination factors ; ; are stored. These
factors [; ; become the subdiagonal entries of the unit triangular matrix L, while
the resulting upper triangular matrix defines the factor U. This elimination pro-
cess is mainly based on Level 2 BLAS; it repeatedly requires rows of A to be
added to multiples of different rows of A.

The block LU algorithm works as follows. The matrix A is partitioned into
four submatrices Aj 1, A1 2, 421, and Ay 5. The factorization A = LU can then
be written as

Ajq A
Arq Az

L171 0
Loy Lao

UigUip
0 Usp

; (1)

where the corresponding blocks are equally sized, and A;,1,L; 1, and Uy are
square submatrices. Hence, we obtain the following equations:

A1 =L11U, (2)
Ao =L11U» (3)
A1 =Lo1Uiy (4)
Aso =Lo1Ui o+ LaoUsp» . (5)

According to Equation (2), Ly, and Uy are computed using the standard LU
factorization routine. Afterwards, Ui 2 and La; are determined from Equations
(3) and (4), respectively, using Level 3 BLAS solvers for triangular systems.
Eventually, Ly» and Uy are computed as the result of recursively applying
the block LU decomposition routine to /12,2 = Ay — Ly U 2. This final step
follows immediately from Equation (5). The computation of A can again be
accomplished by leveraging Level 3 BLAS.

It is important to point out that the block algorithm can yield different nu-
merical results than the standard version as soon as pivoting is introduced; i.e.,

8 A unit triangular matrix is characterized by having only 1’s on its main diagonal.

16



as soon as a decomposition PA = LU is computed, where P denotes a suitable
permutation matriz [27]. While the search for appropriate pivots may cover the
whole matrix A in the case of the standard algorithm, the block algorithm re-
stricts this search to the current block A;; to be decomposed into triangular
factors. The choice of different pivots during the decomposition process may lead
to different round—off behavior due to finite precision arithmetic.

Further cache performance optimizations for LAPACK have been developed.
The application of recursively packed matrix storage formats is an example of
how to combine both data layout as well as data access optimizations [4]. A
memory—efficient LU decomposition algorithm with partial pivoting is presented
in [56]. It is based on recursively partitioning the input matrix.

4.4 Cache—Aware Iterative Algorithms

Iterative algorithms form another class of numerical solution methods for systems
of linear equations [27, 30,60]. LAPACK does not provide implementations of it-
erative methods. A typical example of the use of these methods is the solution of
large sparse systems which arise from the discretization of PDEs. Iterative meth-
ods covers basic techniques such as Jacobi’s method, Jacobi overrelazation (JOR),
the method of Gauss—Seidel, and the method of successive overrelaxation (SOR)
[27,30,60] as well as advanced techniques such as multigrid algorithms. Gener-
ally speaking, the idea behind multigrid algorithms is to accelerate convergence
by uniformly eliminating error components over the entire frequency domain.
This is accomplished by solving a recursive sequence of several instances of the
original problem simultaneously, each of them on a different scale, and combining
the results to form the required solution [11,29, 58]. Typically, Krylov subspace
methods such as the method of conjugate gradients (CG) and the method of
generalized minimal residuals (GMRES) are considered iterative, too. Although
their maximum number of computational steps is theoretically limited by the
dimension of the linear system to be solved, this is of no practical relevance in
the case of systems with millions of unknowns [27, 30].

In this paper, we focus on the discussion of cache—aware variants of basic
iterative schemes; particularly the method of Gauss—Seidel. On the one hand,
such methods are used as linear solvers themselves. On the other hand, they
are commonly employed as smoothers to eliminate the highly oscillating Fourier
components of the error in multigrid settings [11,29, 58] and as preconditioners
in the context of Krylov subspace methods [27, 30].

Given an initial approximation z(9) to the exact solution z of the linear
system Az = b of order n, the method of Gauss—Seidel successively computes a
new approximation z(**1) from the previous approximation z(*) as follows:

$(,k+1) = a_1 bl — Z ai,j,’I;k—i—l) — Z ai,jm;.k) s 1<i<n. (6)

i IR

Jj<i j>i

17



If used as a linear solver by itself, the iteration typically runs until some con-
vergence criterion is fulfilled; e.g., until the Euclidean norm of the residual
r¥) = b — Az(®) falls below some given tolerance.

For the discussion of optimization techniques we concentrate on the case of a
block tridiagonal matrix which typically results from the 5—point discretization
of a PDE on a two-dimensional rectangular grid using finite differences. We
further assume a grid-based implementation? of the method of Gauss—Seidel
using a red/black ordering of the unknowns.

For the sake of optimizing the cache performance of such algorithms, both
data layout optimizations as well as data access optimizations have been pro-
posed. Data layout optimizations comprise the application of array padding in
order to minimize the numbers of conflict misses caused by the stencil-based
computation [46] as well as array merging techniques to enhance the spatial
locality of the code [19,39]. These array merging techniques are based on the
observation that, for each update, all entries a; ; of any matrix row ¢ as well as the
corresponding right—hand side b; are always needed simultaneously, see Equation
(6). Data access optimizations for red/black Gauss—Seidel comprise loop fusion
as well as loop blocking techniques. As we have mentioned in Section 3, these
optimizations aim at reusing data as long as they reside in cache, thus enhanc-
ing temporal locality. Loop fusion merges two successive passes through the grid
into a single one, integrating the update steps for the red and the black nodes.
On top of loop fusion, loop blocking can be applied. For instance, blocking the
outermost loop means beginning with the computation of z(*+2) from z(**1) be-
fore the computation of z(*+1) from 2(*) has been completed, reusing the matrix
entries a; ;, the values b; of the right-hand side, and the approximations xﬁkﬂ)
which are still in cache.

Again, the performance of the optimized codes depends on a variety of ma-
chine, operating system, and compiler parameters. Depending on the problem
size, speedups of up to 500% can be obtained, see [50, 61, 62] for details. It is im-
portant to point out that these optimizing data access transformations maintain
all data dependencies of the original algorithm and therefore do not influence
the numerical results of the computation.

Similar research has been done for Jacobi’s method [8], which successively
computes a new approximation z(**1) from the previous approximation z(*) as
follows:

[L‘Ek+1) = a,i.l bz — Z az7]$§k) s 1 < Z S n . (7)

It is obvious that this method requires the handling of an extra array since the
updates cannot be done in place; in order to compute the (k + 1)-th iterate
for unknown z;, the k—th iterates of all neighboring unknowns are required, see

¥ Instead of using data structures to store the computational grids which cover the

geometric domains, these methods can also be implemented by employing matrix
and vector data structures.

18



Equation (7), although there may already be more recent values for some of
them from the current (k + 1)-th update step.

Moreover, the optimization of iterative methods on unstructured grids has
also been addressed [20]. These techniques are based on partitioning the com-
putational domain into blocks which are adapted to the size of the cache. The
iteration then performs as much work as possible on the current cache block and
revisits previous cache blocks in order to complete the update process. The in-
vestigation of corresponding cache optimizations for three-dimensional problems
has revealed that TLB misses become more relevant than in the two-dimensional
case [38,47].

More advanced research on hierarchical memory optimization addresses the
design of new iterative numerical algorithms. Such methods cover domain decom-
position approaches with domain sizes which are adapted to the cache capacity
[3,28] as well as approaches based on runtime—controlled adaptivity which con-
centrates the computational work on those parts of the domain where the errors
are still large and need to be further reduced by smoothing and coarse grid cor-
rection in a multigrid context [49,42]. Other research address the development
of grid structures for PDE solvers based on highly regular building blocks, see
[12,35] for example. On the one hand these meshes can be used to approximate
complex geometries, on the other hand they permit the application of a variety
of optimization techniques to enhance cache utilization, see Section 3 for details.

5 Conclusions

Cache performance optimizations can yield significant execution speedups, par-
ticularly when applied to numerically intensive codes. The investigation of such
techniques has led to a variety of new numerical algorithms, some of which have
been outlined in this paper. While several of the basic optimization techniques
can automatically be introduced by optimizing compilers, most of the tuning
effort is left to the programmer. This is especially true, if the resulting algo-
rithms have different numerical properties; e.g., concerning stability, robustness,
or convergence behavior. In order to simplify the development of portable (cache—
Jefficient numerical applications in science and engineering, optimized routines
are often provided by machine—specific software libraries.

Future computer architecture trends further motivate research efforts focus-
ing on memory hierarchy optimizations. Forecasts predict the number of transis-
tors on chip increasing beyond one billion. Computer architects have announced
that most of the transistors will be used for larger on—chip caches and on—chip
memory. Most of the forecast systems will be equipped with memory structures
similar to the memory hierarchies currently in use.

While those future caches will be bigger and smarter, the data structures
presently used in real-world scientific codes already exceed the maximum capac-
ity of forecast cache memories by several orders of magnitude. Today’s applica-
tions in scientific computing typically require several Megabytes up to hundreds
of Gigabytes of memory.

19



Consequently, due to the similar structure of present and future memory
architectures, data locality optimizations for numerically intensive codes will
further on be essential for all computer architectures which employ the concept
of hierarchical memory.

References

1. N. Ahmed, N. Mateev, and K. Pingali. Tiling Imperfectly-Nested Loop Nests. In
Proc. of the ACM/IEEE Supercomputing Conference, Dallas, Texas, USA, 2000.

2. R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan
Kaufmann Publishers, San Francisco, California, USA, 2001.

3. M. Altieri, C. Becker, and S. Turek. On the Realistic Performance of Linear
Algebra Components in Iterative Solvers. In H.-J. Bungartz, F. Durst, and C.
Zenger, editors, High Performance Scientific and Engineering Computing, Proc.
of the Int. FORTWIHR Conference on HPSEC, volume 8 of LNCSE, pages 3-12.
Springer, 1998.

4. B.S. Andersen, J.A. Gunnels, F. Gustavson, and J. Wasniewski. A Recursive
Formulation of the Inversion of Symmetric Positive Definite Matrices in Packed
Storage Data Format. In Proc. of the 6th Int. Conference on Applied Parallel
Computing, volume 2367 of LNCS, pages 287-296, Espoo, Finland, 2002. Springer.

5. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’
Guide. STAM, 3rd edition, 1999. http://www.netlib.org/lapack/lug.

6. J.M. Anderson, L.M. Berc, J. Dean, S. Ghemawat, M.R. Henzinger, S.A. Leung,
R.L. Sites, M.T. Vandevoorde, C.A. Waldspurger, and W.E. Weihl. Continuous
Profiling: Where Have All the Cycles Gone? In Proc. of the 16th ACM Symposium
on Operating System Principles, pages 1-14, St. Malo, France, 1997.

7. D.F. Bacon, S.L. Graham, and O.J. Sharp. Compiler Transformations for High—
Performance Computing. ACM Computing Surveys, 26(4):345-420, 1994.

8. F. Bassetti, K. Davis, and D. Quinlan. Temporal Locality Optimizations for Sten-
cil Operations within Parallel Object—Oriented Scientific Frameworks on Cache—
Based Architectures. In Proc. of the Int. Conference on Parallel and Distributed
Computing and Systems, pages 145-153, Las Vegas, Nevada, USA, 1998.

9. R. Berrendorf and B. Mohr. PCL — The Performance Counter Library: A
Common Interface to Access Hardware Performance Counters on Microproces-
sors. Technical report, Research Center Juelich GmbH, Juelich, Germany, 2000.
http://www.fz-juelich.de/zam/PCL.

10. J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Optimizing Matrix Multiply
using PHiPAC: A Portable, High-Performance, ANSI C Coding Methodology. In
Proc. of the Int. Conference on Supercomputing, Vienna, Austria, 1997.

11. W.L. Briggs, V.E. Henson, and S.F. McCormick. A Multigrid Tutorial. STAM,
second edition, 2000.

12. D. Brown, W. Henshaw, and D. Quinlan. Overture: An Object—Oriented Frame-
work for Solving Partial Differential Equations on Overlapping Grids. In Proc. of
the SIAM Workshop on Object Oriented Methods for Inter—operable Scientific and
Engineering Computing, Yorktown Heights, New York, USA, 1998. STAM.

13. S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A Portable Programming
Interface for Performance Evaluation on Modern Processors. Int. Journal of High
Performance Computing Applications, 14(3):189-204, 2000.

20



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.
32.

33.

34.

D.C. Burger, J.R. Goodman, and A. Kégi. The Declining Effectiveness of Dy-
namic Caching for General-Purpose Microprocessors. Technical Report CS TR-
95-1261, Computer Science Department, University of Wisconsin, Madison, Wis-
consin, USA, 1995.

T.-F. Chen and J.-L. Baer. Effective Hardware Based Data Prefetching for High—
Performance Processors. IEEE Transactions on Computers, 44(5):609-623, 1995.
M. Cierniak and W. Li. Unifying Data and Control Transformations for Distributed
Shared-Memory Machines. In Proc. of the Conference on Programming Language
Design and Implementation, pages 205-217, La Jolla, California, USA, 1995.

A. Darte. On the Complexity of Loop Fusion. In Proc. of the Int. Conference
on Parallel Architectures and Compilation Techniques, pages 149-157, Newport
Beach, California, USA, 1999.

J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff. A Set of Level 3 Basic Linear
Algebra Subprograms. ACM Transactions on Mathematical Software, 16(1):1-17,
1990.

C.C. Douglas. Caching in With Multigrid Algorithms: Problems in Two Dimen-
sions. Parallel Algorithms and Applications, 9:195-204, 1996.

C.C. Douglas, J. Hu, M. Kowarschik, U. Riide, and C. Wei}. Cache Optimiza-
tion for Structured and Unstructured Grid Multigrid. FElectronic Transactions on
Numerical Analysis, 10:21-40, 2000.

A. Eustace and A. Srivastava. ATOM: A Flexible Interface for Building High Per-
formance Program Analysis Tools. In Proc. of the USENIX Technical Conference
on UNIX and Advanced Computing Systems, pages 303-314, 1995.

J. Fenlason and R. Stallman. GNU gprof. Free Software Foundation, Inc., Boston,
Massachusetts, USA, 1998. http://www.gnu.org.

J. Ferrante, V. Sarkar, and W. Trash. On Estimating and Enhancing Cache Effec-
tiveness. In U. Banerjee, editor, Proc. of the Fourth Int. Workshop on Languages
and Compilers for Parallel Computing. Springer, 1991.

M. Frigo and S.G. Johnson. FFTW: An Adaptive Software Architecture for the
FFT. In Proc. of the Int. Conference on Acoustics, Speech, and Signal Processing,
volume 3, pages 1381-1384, Seattle, Washington, USA, 1998.

S. Ghosh, M. Martonosi, and S. Malik. Cache Miss Equations: An Analytical
Representation of Cache Misses. In Proc. of the Int. Conference on Supercomputing,
pages 317-324, Vienna, Austria, 1997.

S. Goedecker and A. Hoisie. Performance Optimization of Numerically Intensive
Codes. STAM, 2001.

G.H. Golub and C.F. Van Loan. Matriz Computations. John Hopkins University
Press, third edition, 1998.

W.D. Gropp, D.K. Kaushik, D.E. Keyes, and B.F. Smith. High Performance Par-
allel Implicit CFD. Parallel Computing, 27(4):337-362, 2001.

W. Hackbusch. Multigrid Methods and Applications. Springer, 1985.

W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations, volume 95
of Applied Mathematical Sciences. Springer, 1993.

J. Handy. The Cache Memory Book. Academic Press, second edition, 1998.

J. Harper, D. Kerbyson, and G. Nudd. Analytical Modeling of Set—Associative
Cache Behavior. IEEE Transactions on Computers, 48(10):1009-1024, 1999.

J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann Publisher, Inc., San Francisco, California, USA, second
edition, 1996.

N.J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, second
edition, 2002.

21



35.

36.

37.

38.

39.

40.

41.
42.

43.

44.

45.

46.

47.

48.

49.

50.

51.
52.

F. Hilsemann, P. Kipfer, U. Riide, and G. Greiner. gridisb: Flexible and Efficient
Grid Management for Simulation and Visualization. In Proc. of the Int. Confer-
ence on Computational Science, Part III, volume 2331 of LNCS, pages 652—-661,
Amsterdam, The Netherlands, 2002. Springer.

T. Jeremiassen and S. Eggers. Reducing False Sharing on Shared Memory Mul-
tiprocessors through Compile Time Data Transformations. In Proc. of the Fifth
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pages 179-188, Santa Barbara, California, USA, 1995.

I. Kodukula, N. Ahmed, and K. Pingali. Data—Centric Multi-Level Blocking. In
Proc. of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 346-357, Las Vegas, Nevada, USA, 1997.

M. Kowarschik, U. Riide, N. Thiirey, and C. Weif}. Performance Optimization
of 3D Multigrid on Hierarchical Memory Architectures. In Proc. of the 6th Int.
Conference on Applied Parallel Computing, volume 2367 of LNCS, pages 307-316,
Espoo, Finland, 2002. Springer.

M. Kowarschik, C. Weif}; and U. Riide. Data Layout Optimizations for Variable
Coefficient Multigrid. In Proc. of the Int. Conference on Computational Science,
Part III, volume 2331 of LNCS, pages 642—651, Amsterdam, The Netherlands,
2002. Springer.

M.S. Lam, E.E. Rothberg, and M.E. Wolf. The Cache Performance and Optimiza-
tions of Blocked Algorithms. In Proc. of the Fourth Int. Conference on Architec-
tural Support for Programming Languages and Operating Systems, pages 63-74,
Palo Alto, California, USA, 1991.

D. Loshin. Efficient Memory Programming. McGraw—Hill, 1998.

H. Lotzbeyer and U. Riide. Patch-Adaptive Multilevel Iteration. BIT, 37(3):739-
758, 1997.

T.C. Mowry. Tolerating Latency Through Software—Controlled Data Prefetching.
PhD thesis, Computer Systems Laboratory, Stanford University, 1994.

S.S. Muchnick. Advanced Compiler Design € Implementation. Morgan Kaufmann
Publishers, San Francisco, California, USA, 1997.

J.J. Navarro, E. Garcia-Diego, J.-L. Larriba-Pey, and T. Juan. Block Algorithms
for Sparse Matrix Computations on High Performance Workstations. In Proc. of
the Int. Conference on Supercomputing, pages 301-308, Philadelphia, Pennsylvania,
USA, 1996.

G. Rivera and C.-W. Tseng. Data Transformations for Eliminating Conflict Misses.
In Proc. of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, Montreal, Canada, 1998.

G. Rivera and C.-W. Tseng. Tiling Optimizations for 3D Scientific Computations.
In Proc. of the ACM/IEEE Supercomputing Conference, Dallas, Texas, USA, 2000.
M. Rosenblum, S.A. Herrod, E. Witchel, and A. Gupta. Complete Computer Sys-
tem Simulation: The SimOS Approach. IEEE Parallel and Distributed Technology:
Systems € Applications, 4(3):34-43, 1995.

U. Riide. Fully Adaptive Multigrid Methods. SIAM Journal on Numerical Anal-
ysis, 30(1):230-248, 1993.

S. Sellappa and S. Chatterjee. Cache-Efficient Multigrid Algorithms. In Proc.
of the Int. Conference on Computational Science, Part I, volume 2073 of LNCS,
pages 107-116, San Francisco, California, USA, 2001. Springer.

A.J. Smith. Cache Memories. ACM Computing Surveys, 14(3):473-530, 1982.

Y. Song and Z. Li. New Tiling Techniques to Improve Cache Temporal Locality.
In Proc. of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 215-228, Atlanta, Georgia, USA, 1999.

22



53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

R.A. Sugumar and S.G. Abraham. Efficient Simulation of Caches under Optimal
Replacement with Applications to Miss Characterization. In Proc. of the ACM
SIGMETRICS Conference on Measurements and Modeling of Computer Systems,
pages 24-35, Santa Clara, California, USA, 1993.

O. Temam. Investigating Optimal Local Memory Performance. In Proc. ACM Int.
Conference on Architectural Support for Programming Languages and Operating
Systems, San Diego, California, USA, 1998.

0. Temam, E. Granston, and W. Jalby. To Copy or Not to Copy: A Compile-
Time Technique for Assessing When Data Copying Should be Used to Eliminate
Cache Conflicts. In Proc. of the ACM/IEEE Supercomputing Conference, Portland,
Oregon, USA, 1993.

S. Toledo. Locality of Reference in LU Decomposition with Partial Pivoting. SIAM
Journal on Matriz Analysis and Applications, 18(4):1065-1081, 1997.

J. Torrellas, M. Lam, and J. Hennessy. Shared Data Placement Optimizations
to Reduce Multiprocessor Cache Miss Rates. In Proc. of the Int. Conference on
Parallel Processing, volume 2, pages 266-270, Pennsylvania, USA, 1990.

U. Trottenberg, C. Oosterlee, and A. Schiiller. Multigrid. Academic Press, 2001.
S.P. Vanderwiel and D.J. Lilja. Data Prefetching Mechanisms. ACM Computing
Surveys, 32(2):174-199, 2000.

R.S. Varga. Matriz Iterative Analysis. Prentice-Hall, 1962.

C. Weil. Data Locality Optimizations for Multigrid Methods on Structured Grids.
PhD thesis, Lehrstuhl fiir Rechnertechnik und Rechnerorganisation, Institut fiir
Informatik, Technische Universitat Miinchen, Munich, Germany, 2001.

C. Weif},; W. Karl, M. Kowarschik, and U. Riide. Memory Characteristics of Iter-
ative Methods. In Proc. of the ACM/IEEE Supercomputing Conference, Portland,
Oregon, USA, 1999.

R.C. Whaley and J. Dongarra. Automatically Tuned Linear Algebra Software.
In Proc. of the ACM/IEEE Supercomputing Conference, Orlando, Florida, USA,
1998.

M.E. Wolf and M.S. Lam. A Data Locality Optimizing Algorithm. In Proc. of the
SIGPLAN’91 Symposium on Programming Language Design and Implementation,
volume 26 of SIGPLAN Notices, pages 33—44, Toronto, Canada, 1991.

M.J. Wolfe. High-Perfomance Compilers for Parallel Computing. Addison—Wesley,
Redwood City, California, USA, 1996.

23



