
An Overview of Ca
he Optimization Te
hniquesand Ca
he{Aware Numeri
al Algorithms?Markus Kowars
hik1 and Christian Wei�21 Lehrstuhl f�ur Systemsimulation (Informatik 10)Institut f�ur InformatikFriedri
h{Alexander{Universit�at Erlangen{N�urnberg, GermanyMarkus.Kowars
hik�
s.fau.de2 Lehrstuhl f�ur Re
hnerte
hnik und Re
hnerorganisation (LRR{TUM)Fakult�at f�ur InformatikTe
hnis
he Universit�at M�un
hen, GermanyChristian.Weiss�
s.tum.edu1 Introdu
tionIn order to mitigate the impa
t of the growing gap between CPU speed andmain memory performan
e, today's
omputer ar
hite
tures implement hierar-
hi
al memory stru
tures. The idea behind this approa
h is to hide both thelow main memory bandwidth and the laten
y of main memory a

esses whi
h isslow in
ontrast to the
oating{point performan
e of the CPUs. Usually, thereis a small and expensive high speed memory sitting on top of the hierar
hywhi
h is usually integrated within the pro
essor
hip to provide data with lowlaten
y and high bandwidth; i.e., the CPU registers. Moving further away fromthe CPU, the layers of memory su

essively be
ome larger and slower. The mem-ory
omponents whi
h are lo
ated between the pro
essor
ore and main memoryare
alled
a
he memories or
a
hes. They are intended to
ontain
opies ofmain memory blo
ks to speed up a

esses to frequently needed data [31, 33℄.The next lower level of the memory hierar
hy is the main memory whi
h is largebut also
omparatively slow. While external memory su
h as hard disk drives orremote memory
omponents in a distributed
omputing environment representthe lower end of any
ommon hierar
hi
al memory design, this paper fo
uses onoptimization te
hniques for enhan
ing
a
he performan
e.The levels of the memory hierar
hy usually subset one another so that dataresiding within a smaller memory are also stored within the larger memories. Atypi
al memory hierar
hy is shown in Fig. 1.EÆ
ient program exe
ution
an only be expe
ted if the
odes respe
t theunderlying hierar
hi
al memory design. Unfortunately, today's
ompilers
annotintrodu
e highly sophisti
ated
a
he{based transformations and,
onsequently,mu
h of this optimization e�ort is left to the programmer [26, 41℄.? This resear
h is being supported in part by the Deuts
he Fors
hungsgemeins
haft(German S
ien
e Foundation), proje
ts Ru 422/7{1,2,3.

CPU

L1 Data Cache L1 Inst Cache

L2 Cache

Registers

L3
 C

ac
he

M
ai

n
M

em
or

y

Fig. 1. A typi
al memory hierar
hy
ontaining two on{
hip L1
a
hes, one on{
hipL2
a
he, and a third level of o�{
hip
a
he. The thi
kness of the inter
onne
tionsillustrates the bandwidths between the memory hierar
hy levels.This is parti
ularly true for numeri
ally intensive
odes, whi
h our paper
on-
entrates on. Su
h
odes o

ur in almost all s
ien
e and engineering dis
iplines;e.g.,
omputational
uid dynami
s,
omputational physi
s, and me
hani
al en-gineering. They are
hara
terized both by a large portion of
oating{point (FP)operations as well as by the fa
t that most of their exe
ution time is spent insmall
omputational kernels based on loop nests. Thus, instru
tion
a
he misseshave no signi�
ant impa
t on exe
ution performan
e. However, the underlyingdata sets are typi
ally by far too large to be kept in a higher level of the memoryhierar
hy; i.e., in
a
he.Due to data a

ess laten
ies and memory bandwidth issues, the number ofarithmeti
 operations alone is no longer an adequate means of des
ribing the
omputational
omplexity of numeri
al
omputations. EÆ
ient
odes in s
ienti�

omputing must ne
essarily
ombine both
omputationally optimal algorithmsand memory hierar
hy optimizations. Multigrid methods [58℄, for example, areamong the most eÆ
ient algorithms for the solution of large systems of linearequations. The performan
e of su
h
odes on
a
he{based
omputer systems,however, is only a

eptable if memory hierar
hy optimizations are applied [61℄.This paper is stru
tured as follows. In Se
tion 2, we will introdu
e some fun-damental
a
he
hara
teristi
s, in
luding a brief dis
ussion of
a
he performan
eanalysis tools. Se
tion 3
ontains a general des
ription of elementary
a
he op-timization te
hniques. In Se
tion 4, we will illustrate how su
h te
hniques
anbe employed to develop
a
he{aware algorithms. We will parti
ularly fo
us onalgorithms of numeri
al linear algebra. Se
tion 5
on
ludes the paper.2 Ar
hite
ture and Performan
e Evaluation of Ca
hes2.1 Organization of Ca
he MemoriesTypi
ally, a memory hierar
hy
ontains a rather small number of registers on the
hip whi
h are a

essible without delay. Furthermore, a small
a
he | usually2

alled level one (L1)
a
he | is pla
ed on the
hip to ensure low laten
y andhigh bandwidth. The L1
a
he is often split into two separate parts; one onlykeeps data, the other instru
tions. The laten
y of on{
hip
a
hes is
ommonlyone or two
y
les. The
hip designers, however, already fa
e the problem thatlarge on{
hip
a
hes of new mi
ropro
essors running at high
lo
k rates
annotdeliver data within one
y
le sin
e the signal delays are too long. Therefore,the size of on{
hip L1
a
hes is limited to 64 Kbyte or even less for many
hipdesigns. However, larger
a
he sizes with a

ordingly higher a

ess laten
ies startto appear.The L1
a
hes are usually ba
ked up by a level two (L2)
a
he. A few yearsago, ar
hite
tures typi
ally implemented the L2
a
he on the motherboard, usingSRAM
hip te
hnology. Currently, L2
a
he memories are typi
ally lo
ated on{
hip as well; e.g., in the
ase of Intel's Itanium CPU. O�{
hip
a
hes are mu
hbigger, but also provide data with lower bandwidth and higher a

ess laten
y.On{
hip L2
a
hes are usually smaller than 512 Kbyte and deliver data with alaten
y of approximately 5 to 10
y
les. If the L2
a
hes are implemented on{
hip, an o�{
hip level three (L3)
a
he may be added to the hierar
hy. O�{
hip
a
he sizes vary from 1 Mbyte to 16 Mbyte. They provide data with a laten
yof about 10 to 20 CPU
y
les.2.2 Lo
ality of Referen
esBe
ause of their limited size,
a
hes
an only hold
opies of re
ently used data or
ode. Typi
ally, when new data are loaded into the
a
he, other data have to berepla
ed. Ca
hes improve performan
e only if
a
he blo
ks whi
h have alreadybeen loaded are reused before being repla
ed by others. The reason why
a
hes
an substantially redu
e program exe
ution time is the prin
iple of lo
ality ofreferen
es [33℄ whi
h states that re
ently used data are very likely to be reusedin the near future. Lo
ality
an be subdivided into temporal lo
ality and spatiallo
ality. A sequen
e of referen
es exhibits temporal lo
ality if re
ently a

esseddata are likely to be a

essed again in the near future. A sequen
e of referen
esexposes spatial lo
ality if data lo
ated
lose together in address spa
e tend tobe referen
ed
lose together in time.2.3 Aspe
ts of Ca
he Ar
hite
turesIn this se
tion, we brie
y review the basi
 aspe
ts of
a
he ar
hite
tures. Werefer to Chapter 8 for a more detailed presentation of hardware issues
on
erning
a
he memories as well as translation lookaside bu�ers (TLBs).Data within the
a
he are stored in
a
he lines. A
a
he line holds the
on-tents of a
ontiguous blo
k of main memory. If data requested by the pro
essorare found in a
a
he line, it is
alled a
a
he hit. Otherwise, a
a
he miss o
-
urs. The
ontents of the memory blo
k
ontaining the requested word are thenfet
hed from a lower memory layer and
opied into a
a
he line. For this purpose,another data item must typi
ally be repla
ed. Therefore, in order to guarantee3

low a

ess laten
y, the question into whi
h
a
he line the data should be loadedand how to retrieve them hen
eforth must be handled eÆ
iently.In respe
t of hardware
omplexity, the
heapest approa
h to implement blo
kpla
ement is dire
t mapping; the
ontents of a memory blo
k
an be pla
ed intoexa
tly one
a
he line. Dire
t mapped
a
hes have been among the most popular
a
he ar
hite
tures in the past and are still very
ommon for o�{
hip
a
hes.However,
omputer ar
hite
ts have re
ently fo
used on in
reasing the set as-so
iativity of on{
hip
a
hes. An a{way set{asso
iative
a
he is
hara
terized bya higher hardware
omplexity, but usually implies higher hit rates. The
a
helines of an a{way set{asso
iative
a
he are grouped into sets of size a. The
on-tents of any memory blo
k
an be pla
ed into any
a
he line of the
orrespondingset.Finally, a
a
he is
alled fully asso
iative if the
ontents of a memory blo
k
an be pla
ed into any
a
he line. Usually, fully asso
iative
a
hes are onlyimplemented as small spe
ial{purpose
a
hes; e.g., TLBs [33℄. Dire
t mappedand fully asso
iative
a
hes
an be seen as spe
ial
ases of a{way set{asso
iative
a
hes; a dire
t mapped
a
he is a 1{way set{asso
iative
a
he, whereas a fullyasso
iative
a
he is C{way set{asso
iative, provided that C is the number of
a
he lines.In a fully asso
iative
a
he and in a k{way set{asso
iative
a
he, a memoryblo
k
an be pla
ed into several alternative
a
he lines. The question into whi
h
a
he line a memory blo
k is
opied and whi
h blo
k thus has to be repla
ed isde
ided by a (blo
k) repla
ement strategy. The most
ommonly used strategiesfor today's mi
ropro
essor
a
hes are random and least re
ently used (LRU). Therandom repla
ement strategy
hooses a random
a
he line to be repla
ed. TheLRU strategy repla
es the blo
k whi
h has not been a

essed for the longesttime interval. A

ording to the prin
iple of lo
ality, it is more likely that a dataitem whi
h has been a

essed re
ently will be a

essed again in the near future.Less
ommon strategies are least frequently used (LFU) and �rst in, �rstout (FIFO). The former repla
es the memory blo
k in the
a
he line whi
h hasleast frequently been used, whereas the latter repla
es the data whi
h have beenresiding in
a
he for the longest time.Eventually, the optimal repla
ement strategy repla
es the memory blo
kwhi
h will not be a

essed for the longest time. It is impossible to implementthis strategy in a real
a
he, sin
e it requires information about future
a
he ref-eren
es. Thus, the strategy is only of theoreti
al value; for any possible sequen
eof referen
es, a fully asso
iative
a
he with optimal repla
ement strategy willprodu
e the minimum number of
a
he misses among all types of
a
hes of thesame size [54℄.2.4 Measuring and Simulating Ca
he BehaviorIn general, pro�ling tools are used in order to determine if a
ode runs eÆ
iently,to identify performan
e bottlene
ks, and to guide
ode optimization [26℄. Onefundamental
on
ept of any memory hierar
hy, however, is to hide the existen
eof
a
hes. This generally
ompli
ates data lo
ality optimizations; a speedup in4

exe
ution time only indi
ates an enhan
ement of lo
ality behavior, but it is noeviden
e.To allow performan
e pro�ling regardless of this fa
t, many mi
ropro
essormanufa
turers add dedi
ated registers to their CPUs in order to
ount
ertainevents. These spe
ial{purpose registers are
alled hardware performan
e
oun-ters. The information whi
h
an be gathered by the hardware performan
e
oun-ters varies from platform to platform. Typi
al quantities whi
h
an be measuredin
lude
a
he misses and
a
he hits for various
a
he levels, pipeline stalls, pro-
essor
y
les, instru
tion issues, and bran
h mispredi
tions. Some prominentexamples of pro�ling tools based on hardware performan
e
ounters are thePerforman
e Counter Library (PCL) [9℄, the Performan
e Appli
ation Program-ming Interfa
e (PAPI) [13℄, and the Digital Continuous Pro�ling Infrastru
ture(DCPI) (Alpha{based Compaq Tru64 UNIX only) [6℄.Another approa
h towards evaluating
ode performan
e is based on instru-mentation. Pro�ling tools su
h as GNU prof [22℄ and ATOM [21℄ insert
allsto a monitoring library into the program to gather information for small
oderegions. The library routines may either in
lude
omplex programs themselves(e.g., simulators) or only modify
ounters. Instrumentation is used, for example,to determine the fra
tion of the CPU time spent in a
ertain subroutine. Sin
ethe
a
he is not visible to the instrumented
ode the information
on
erning thememory behavior is limited to address tra
es and timing information.Eventually,
a
he performan
e information
an be obtained by
a
he mod-eling and simulation [25, 32, 53℄ or by ma
hine simulation [48℄. Simulation istypi
ally very time{
onsuming
ompared to regular program exe
ution. Thus,the
a
he models and the ma
hine models often need to be simpli�ed in order toredu
e simulation time. Consequently, the results are often not pre
ise enoughto be useful.3 Basi
 Te
hniques for Improving Ca
he EÆ
ien
y3.1 Data A

ess OptimizationsData a

ess optimizations are
ode transformations whi
h
hange the order inwhi
h iterations in a loop nest are exe
uted. The goal of these transformations ismainly to improve temporal lo
ality. Moreover, they
an also expose parallelismand make loop iterations ve
torizable. Note that the data a

ess optimizationswe present in this se
tion maintain all data dependen
ies and do not
hange theresults of the numeri
al
omputations1.Usually, it is diÆ
ult to de
ide whi
h
ombination of transformations must beapplied in order to a
hieve a maximum performan
e gain. Compilers typi
allyuse heuristi
s to determine whether a transformation will be e�e
tive or not.Loop transformation theory and algorithms found in the literature typi
ally1 However, these transformations may trigger an aggressively optimizing
ompiler toreorder FP operations. Due to the properties of �nite pre
ision arithmeti
, this may
ause di�erent numeri
al results. 5

fo
us on transformations for perfe
tly nested loops [1℄; i.e., nested loops whereall assignment statements are
ontained in the innermost loop. However, loopnests in s
ienti�

odes are not perfe
tly nested in general. Hen
e, initial enablingtransformations like loop skewing, loop unrolling, and loop peeling are required.Des
riptions of these transformations
an be found in the
ompiler literature [2,7, 44, 65℄.In the following, a set of loop transformations will be des
ribed whi
h fo
uson improving data lo
ality for one level of the memory hierar
hy; typi
ally a
a
he. As we have already mentioned in Se
tion 1, instru
tion
a
he misses haveno severe impa
t on the performan
e of numeri
ally intensive
odes sin
e theseprograms typi
ally exe
ute small
omputational kernels over and over again.Nevertheless, some of the transformations we present in this se
tion
an be usedto improve instru
tion lo
ality as well.
loop

interchange

stride−8 access stride−1 access

Fig. 2. A

ess patterns for inter
hanged loop nests.
Loop Inter
hange. This transformation reverses the order of two adja
ent loopsin a loop nest [2, 65℄. Generally speaking, loop inter
hange
an be applied if theorder of the loop exe
ution is unimportant. Loop inter
hange
an be generalizedto loop permutation by allowing more than two loops to be moved at on
e andby not requiring them to be adja
ent.Loop inter
hange
an improve lo
ality by redu
ing the stride of an array{based
omputation. The stride is the distan
e of array elements in memorya

essed within
onse
utive loop iterations. Upon a memory referen
e, severalwords of an array are loaded into a
a
he line. If the array is larger than the
a
he, a

esses with large stride only use one word per
a
he line. The otherwords whi
h are loaded into the
a
he line are evi
ted before they
an be reused.Loop inter
hange
an also be used to enable and improve ve
torization andparallelism, and to improve register reuse. The di�erent targets may be
on
i
t-ing. For example, in
reasing parallelism requires loops with no dependen
ies tobe moved outward, whereas ve
torization requires them to be moved inward.6

Algorithm 3.1 Loop inter
hange1: double sum;2: double a[n; n℄;3: // Original loop nest:4: for j = 1 to n do5: for i = 1 to n do6: sum+ = a[i; j℄;7: end for8: end for
1: double sum;2: double a[n; n℄;3: // Inter
hanged loop nest:4: for i = 1 to n do5: for j = 1 to n do6: sum+ = a[i; j℄;7: end for8: end forThe e�e
t of loop inter
hange is illustrated in Fig. 2. We assume that the(6; 8) array is stored in memory in row major order; i.e., two array elementsare stored adja
ent in memory if their se
ond indi
es are
onse
utive numbers.The
ode
orresponding to the left part of Fig. 2, however, a

esses the arrayelements in a
olumn{wise manner. Consequently, the preloaded data in the
a
he line marked with grey
olor will not be reused if the array is too large to�t entirely in
a
he. However, after inter
hanging the loop nest as demonstratedin Algorithm 3.1, the array is no longer a

essed using stride{8, but stride{1. Consequently, all words in the
a
he line are now used by su

essive loopiterations. This is illustrated by the right part of Fig. 2.Loop Fusion. Loop fusion is a transformation whi
h takes two adja
ent loopsthat have the same iteration spa
e traversal and
ombines their bodies into asingle loop [17℄. Loop fusion | sometimes also
alled loop jamming | is theinverse transformation of loop distribution or loop �ssion whi
h breaks a singleloop into multiple loops with the same iteration spa
e. Loop fusion is legal aslong as no
ow, anti, or output dependen
ies in the fused loop exist for whi
hinstru
tions from the �rst loop depend on instru
tions from the se
ond loop [2℄.Fusing two loops results in a single loop whi
h
ontains more instru
tionsin its body and therefore o�ers in
reased instru
tion level parallelism. Further-more, only one loop is exe
uted, thus redu
ing the total loop overhead by ap-proximately a fa
tor of two.Algorithm 3.2 Loop fusion1: // Original
ode:2: for i = 1 to n do3: b[i℄ = a[i℄ + 1:0;4: end for5: for i = 1 to n do6:
[i℄ = b[i℄ � 4:0;7: end for
1: // After loop fusion:2: for i = 1 to n do3: b[i℄ = a[i℄ + 1:0;4:
[i℄ = b[i℄ � 4:0;5: end forLoop fusion also improves data lo
ality. Assume that two
onse
utive loopsperform global sweeps through an array as in the
ode shown in Algorithm 3.2,7

and that the data of the array are too large to �t
ompletely in
a
he. The dataof array b whi
h are loaded into the
a
he by the �rst loop will not
ompletelyremain in
a
he, and the se
ond loop will have to reload the same data frommain memory. If, however, the two loops are
ombined with loop fusion only oneglobal sweep through the array b will be performed. Consequently, fewer
a
hemisses will o

ur.Loop Blo
king. Loop blo
king (also
alled loop tiling) is a loop transformationwhi
h in
reases the depth of a loop nest with depth n by adding additional loopsto the loop nest. The depth of the resulting loop nest will be anything from n+1to 2n. Loop blo
king is primarily used to improve data lo
ality by enhan
ingthe reuse of data in
a
he [2, 52, 64℄.Algorithm 3.3 Loop blo
king for matrix transposition1: // Original
ode:2: for i = 1 to n do3: for j = 1 to n do4: a[i; j℄ = b[j; i℄;5: end for6: end for 1: // Loop blo
ked
ode:2: for ii = 1 to n by B do3: for jj = 1 to n by B do4: for i = ii to min(ii+B � 1; n) do5: for j = jj to min(jj +B � 1; n) do6: a[i; j℄ = b[j; i℄;7: end for8: end for9: end for10: end forThe need for loop blo
king is illustrated in Algorithm 3.3. Assume that the
ode reads an array a with stride{1, whereas the a

ess to array b is of stride{n.Inter
hanging the loops will not help in this
ase sin
e it would
ause the arraya to be a

essed with stride{n instead.Tiling a single loop repla
es it by a pair of loops. The inner loop of thenew loop nest traverses a blo
k of the original iteration spa
e with the samein
rement as the original loop. The outer loop traverses the original iterationspa
e with an in
rement equal to the size of the blo
k whi
h is traversed by theinner loop. Thus, the outer loop feeds blo
ks of the whole iteration spa
e to theinner loop whi
h then exe
utes them step by step. The
hange in the iterationspa
e traversal of the blo
ked loop in Algorithm 3.3 is shown in Fig. 3.A very prominent example for the impa
t of the loop blo
king transformationon data lo
ality is matrix multipli
ation [10, 37, 40, 63℄, see also Se
tion 4.2. Inparti
ular, the
ase of sparse matri
es is
onsidered in [45℄.Data Prefet
hing. The loop transformations dis
ussed so far aim at redu
ingthe
apa
ity misses whi
h o

ur in the
ourse of a
omputation. Misses whi
hare introdu
ed by �rst{time a

esses are not addressed by these optimizations.Prefet
hing allows the mi
ropro
essor to issue a data request before the
ompu-tation a
tually requires the data [59℄. If the data are requested early enough the8

1

2

3

4

i

1

2

3

4

i

4321
j

4321
j

loop

blocking

Fig. 3. Iteration spa
e traversal for original and blo
ked
ode.penalty of
old (
ompulsory) misses as well as
apa
ity misses not
overed byloop transformations
an be hidden2.Many modern mi
ropro
essors implement a prefet
h instru
tion whi
h is is-sued as a regular instru
tion. The prefet
h instru
tion is similar to a load, withthe ex
eption that the data are not forwarded to the CPU after they have been
a
hed. The prefet
h instru
tion is often handled as a hint for the pro
essor toload a
ertain data item, but the a
tual exe
ution of the prefet
h is not guaran-teed by the CPU.Prefet
h instru
tions
an be inserted into the
ode manually by the pro-grammer or automati
ally by a
ompiler [43℄. In both
ases, prefet
hing involvesoverhead. The prefet
h instru
tions themselves have to be exe
uted; i.e., pipelineslots will be �lled with prefet
h instru
tions instead of other instru
tions readyto be exe
uted. Furthermore, the memory addresses of the prefet
hed data mustbe
al
ulated and will be
al
ulated again when the load operation is exe
utedwhi
h a
tually fet
hes the data from the memory hierar
hy into the CPU.Besides software{based prefet
hing, hardware s
hemes have been proposedand implemented whi
h add prefet
hing
apability to a system without the needof prefet
h instru
tions. One of the simplest hardware{based prefet
hing s
hemesis sequential prefet
hing [51℄; whenever a memory blo
k is a

essed, the next andpossibly some subsequent memory blo
ks are prefet
hed. More sophisti
atedprefet
h s
hemes have been invented [15℄, but most mi
ropro
essors still onlyimplement stride{1 stream dete
tion or even no prefet
hing at all.In general, prefet
hing will only be su

essful if the data stream is predi
ted
orre
tly either by the hardware or by the
ompiler and if there is enough spa
eleft in
a
he to keep the prefet
hed data together with memory referen
es thatare still a
tive. If the prefet
hed data repla
e data whi
h are still needed thiswill in
rease bus utilization, the overall miss rates, as well as memory laten
ies[14℄.2 For a
lassi�
ation of
a
he misses we refer to Chapter 8.9

3.2 Data Layout OptimizationsData a

ess optimizations have proven to be able to improve the data lo
ality ofappli
ations by reordering the
omputation, as we have shown in the previousse
tion. However, for many appli
ations, loop transformations alone may notbe suÆ
ient for a
hieving reasonable data lo
ality. Espe
ially for
omputationswith a high degree of
on
i
t misses3, loop transformations are not e�e
tive inimproving performan
e [46℄.Data layout optimizations modify how data stru
tures and variables are ar-ranged in memory. These transformations aim at avoiding e�e
ts like
a
he
on-
i
t misses and false sharing [33℄, see Chapter 16. They are further intended toimprove the spatial lo
ality of a
ode.Data layout optimizations in
lude
hanging base addresses of variables, mod-ifying array sizes, transposing array dimensions, and merging arrays. These te
h-niques are usually applied at
ompile time, although some optimizations
an alsobe applied at runtime.Array Padding. If two arrays are a

essed in an alternating manner as in Algo-rithm 3.4 and the data stru
tures happen to be mapped to the same
a
he lines,a high number of
on
i
t misses are introdu
ed.In the example, reading the �rst element of array a will load a
a
he line
ontaining this array element and possibly subsequent array elements for furtheruse. Provided that the �rst array element of array b is mapped to the same
a
heline as the �rst element of array a, a read of the former element will triggerthe
a
he to repla
e the elements of array a whi
h have just been loaded. Thefollowing a

ess to the next element of array a will no longer be satis�ed by the
a
he, thus for
e the
a
he to reload the data and in turn to repla
e the dataof array b. Hen
e, the array b elements must be reloaded, and so on. Althoughboth arrays are referen
ed sequentially with stride{1, no reuse of data whi
h havebeen preloaded into the
a
he will o

ur sin
e the data are evi
ted immediatelyby elements of the other array, after they have been loaded. This phenomenonis
alled
ross interferen
e of array referen
es [40℄.Algorithm 3.4 Inter{array padding.1: // Original
ode:2: double a[1024℄;3: double b[1024℄;4: for i = 1 to 1023 do5: sum+ = a[i℄ � b[i℄;6: end for 1: // Code after applying inter{array padding:2: double a[1024℄;3: double pad[x℄;4: double b[1024℄;5: for i = 1 to 1023 do6: sum+ = a[i℄ � b[i℄;7: end for3 See again Chapter 8. 10

A similar problem |
alled self interferen
e |
an o

ur if several rows of amultidimensional array are mapped to the same set of
a
he lines and the rowsare a

essed in an alternating fashion.For both
ases of interferen
e, array padding [57, 46℄ provides a means to re-du
e the number of
on
i
t misses. Inter{array padding inserts unused variables(pads) between two arrays in order to avoid
ross interferen
e. Introdu
ing padsmodi�es the o�set of the se
ond array su
h that both arrays are then mappedto di�erent parts of the
a
he.Intra{array padding, on the other hand, inserts unused array elements be-tween rows of a multidimensional array by in
reasing the leading dimension ofthe array; i.e., the dimension running fastest in memory is in
reased by a smallnumber of extra elements. Whi
h dimension runs fastest in memory depends onthe programming language. For example, in Fortran77 the leftmost dimension isthe leading dimension, whereas in C/C++ the rightmost dimension runs fastest.The sizes of the pads depend on the mapping s
heme of the
a
he, the
a
hesize, the
a
he line size, its set asso
iativity, and the data a

ess pattern of the
ode. Typi
al padding sizes are multiples of the
a
he line size, but di�erent sizesmay be used as well. Array padding is usually applied at
ompile time. Intra{array padding
an, in prin
iple, be introdu
ed at runtime. However, knowledge ofthe
a
he ar
hite
ture is indispensable, and information about the a

ess patternof the program will improve the quality of the sele
ted padding size [46, 47℄. Thedisadvantage of array padding is that extra memory is required for pads.Array Merging. This layout optimization te
hnique
an be used to improve thespatial lo
ality between elements of di�erent arrays or other data stru
tures.Furthermore, array merging
an redu
e the number of
ross interferen
e missesfor s
enarios with large arrays and alternating a

ess patterns, as we have intro-du
ed in the previous paragraph. The array merging te
hnique is also known asgroup{and{transpose [36℄.Algorithm 3.5 Array merging.1: // Original data stru
ture:2: double a[1024℄;3: double b[1024℄;1: // array merging using multidimensional arrays:2: double ab[1024℄[2℄;1: // array merging using stru
tures:2: stru
tf3: double a;4: double b;5: g ab[1024℄; 11

Array merging is best applied if elements of di�erent arrays are lo
ated farapart in memory but usually a

essed together. Transforming the data stru
turesas shown in Algorithm 3.5 will
hange the data layout su
h that the elementsbe
ome
ontiguous in memory.Array Transpose. This te
hnique permutes the dimensions within multidimen-sional arrays and eventually reorders the array as shown in Algorithm 3.6 [16℄.This transformation has a similar e�e
t as loop inter
hange, see Se
tion 3.1.Algorithm 3.6 Array transpose.1: // Original data stru
ture:2: double a[N ℄[M ℄; 1: // Data stru
ture after transposing:2: double a[M ℄[N ℄;Data Copying. In Se
tion 3.1, loop blo
king has been introdu
ed as a te
hniqueto redu
e the number of
apa
ity misses. Resear
h has shown [23, 64℄ that blo
ked
odes su�er from a high degree of
on
i
t misses introdu
ed by self interferen
e.This e�e
t is demonstrated by means of Fig. 4. The �gure shows a part (blo
k)of a big array whi
h is to be reused by a blo
ked algorithm. Suppose that a dire
tmapped
a
he is used, and that the two words marked with x are mapped tothe same
a
he lo
ation. Due to the regularity of the
a
he mapping, the shadedwords in the upper part of the blo
k will be mapped to the same
a
he lines asthe shaded words in the lower part of the blo
k. Consequently, if the blo
k isa

essed repeatedly, the data in the upper left
orner will repla
e the data in thelower right
orner and vi
e versa, thus redu
ing the reusable part of the blo
k.
x

i

j

x

Fig. 4. Self interferen
e in blo
ked
ode.12

Therefore, resear
hers have proposed a data
opying te
hnique to guaranteehigh
a
he utilization for blo
ked algorithms [64℄. With this approa
h, non{
ontiguous data from a blo
k are
opied into a
ontiguous area of memory. Hen
e,ea
h word of the blo
k will be mapped to its own
a
he lo
ation, e�e
tivelyavoiding self interferen
e within the blo
k.The te
hnique, however, involves a
opy operation whi
h in
reases the total
ost of the algorithm. In many
ases the additional
ost will outweigh the bene�tsfrom
opying the data. Hen
e a
ompile time strategy has been introdu
ed inorder to determine when to
opy data [55℄. This te
hnique is based on an analysisof
a
he
on
i
ts.4 Ca
he{Aware Algorithms of Numeri
al Linear Algebra4.1 Overview: the Software Libraries BLAS and LAPACKThe optimization of numeri
al algorithms is a large and multifa
eted �eld of on-going resear
h. In this survey, we fo
us on algorithms of numeri
al linear algebrawhi
h play an essential role in numeri
al mathemati
s as well as in
omputa-tional s
ien
e. Partial di�erential equations (PDEs) whi
h arise in almost alls
ienti�
 and engineering appli
ations, for example, are typi
ally dis
retized us-ing �nite di�eren
es, �nite elements, or �nite volumes. This step usually yieldslarge systems of linear equations the solution of whi
h is only one fundamentalissue of algorithms of numeri
al linear algebra.These algorithms are often based on elementary kernel routines whi
h areprovided by highly optimized underlying software libraries; e.g. BLAS 4 and LA-PACK 5.BLAS provides building blo
ks for performing elementary ve
tor and matrixoperations [18℄. In the following, we use � and � to represent s
alar values,whereas x and y denote ve
tors, and A, B, and C represent matri
es. The BLASlibrary is divided into three levels. Level 1 BLAS do ve
tor{ve
tor operations;e.g., so{
alled AXPY
omputations su
h as y �x+y and dot produ
ts su
h as� �+xT y. Level 2 BLAS do matrix{ve
tor operations; e.g., y �op(A)x+�y,where op(A) = A;AT , or AH . Eventually, Level 3 BLAS do matrix{matrixoperations su
h as C �op(A)op(B) + �C. Dedi
ated routines are providedfor spe
ial
ases su
h as symmetri
 and Hermitian matri
es. BLAS providessimilar fun
tionality for real and
omplex data types, in both single and doublepre
ision.LAPACK is another software library whi
h is often used by numeri
al appli-
ations [5℄. LAPACK is based on the BLAS and implements routines for solvingsystems of linear equations,
omputing least{squares solutions of linear systems,and solving eigenvalue as well as singular value problems. The asso
iated routinesfor fa
torizing matri
es are also provided; e.g., LU, Cholesky, and QR de
om-position. LAPACK handles dense and banded matri
es, see Se
tion 4.4 below4 BLAS: Basi
 Linear Algebra Subprograms, see http://www.netlib.org/blas.5 LAPACK: Linear Algebra PACKage, see http://www.netlib.org/lapa
k.13

for a dis
ussion of iterative solvers for sparse linear systems. In analogy to theBLAS library, LAPACK implements similar fun
tionality for real and
omplexmatri
es, in both single and double pre
ision.4.2 Enhan
ing the Ca
he Performan
e of the BLAS LibraryOur presentation
losely follows the resear
h e�orts of the ATLAS 6 proje
t [63℄.This proje
t
on
entrates on the automati
 appli
ation of empiri
al
ode op-timization te
hniques for the generation of highly optimized platform{spe
i�
BLAS libraries. The basi
 idea is to su

essively introdu
e sour
e{to{sour
etransformations and evaluate the resulting performan
e, thus generating themost eÆ
ient implementation of BLAS. It is important to note that ATLAS stilldepends on an optimizing
ompiler for applying ar
hite
ture{dependent opti-mizations and generating eÆ
ient ma
hine
ode. A similar tuning approa
h hasguided the resear
h in the FFTW proje
t [24℄.ATLAS mainly targets the optimizations of Level 2 and Level 3 BLAS whilerelying on the underlying
ompiler to generate eÆ
ient Level 1 BLAS. This isdue to the fa
t that Level 1 BLAS basi
ally
ontains no memory reuse and highlevel sour
e
ode transformations only yield marginal speedups.On the
ontrary, the potential for data reuse is high in Level 2 and evenhigher in Level 3 BLAS due to the o

urren
e of at least one matrix operand.Con
erning the optimization of Level 2 BLAS, ATLAS implements both regis-ter blo
king7 and loop blo
king. In order to illustrate the appli
ation of thesete
hniques it is suÆ
ient to
onsider the update operation y Ax+ y, where Ais an n� n matrix and x; y are ve
tors of length n. This operation
an also bewritten as yi nXj=1 ai;jxj + yi; 1 � i � n ;see [63℄. By keeping the
urrent value yi in a CPU register (i.e., by applyingregister blo
king), the number of read/write a

esses to y
an be redu
ed fromO(n2) to O(n). Furthermore, unrolling the outermost loop and hen
e updatingk
omponents of the ve
tor y simultaneously
an redu
e the number of a

essesto x by a fa
tor of 1=k to n2=k. This is due to the fa
t that ea
h xj
ontributesto ea
h yi. In addition, loop blo
king
an be introdu
ed in order to redu
e thenumber of main memory a

esses to the
omponents of the ve
tor x from O(n2)to O(n) [63℄, see Se
tion 3 for details. This means that loop blo
king
an beapplied in order to load x only on
e into the
a
he.While Level 2 BLAS routines require O(n2) data a

esses in order to per-form O(n2) FP operations, Level 3 BLAS routines need O(n2) data a

essesto exe
ute O(n3) FP operations, thus
ontaining a higher potential for data6 ATLAS: Automati
ally Tuned Linear Algebra Software. More details are providedon http://math-atlas.sour
eforge.net.7 The developers of ATLAS refer to the term register blo
king as a te
hnique toexpli
itly enfor
e the reuse of CPU registers by introdu
ing temporary variables.14

reuse. Consequently, the most signi�
ant speedups are obtained by tuning the
a
he performan
e of Level 3 BLAS; parti
ularly the matrix multiply. This isa
hieved by implementing an L1
a
he{
ontained matrix multiply and parti-tioning the original problem into subproblems whi
h
an be
omputed in
a
he[63℄. In other words, the optimized
ode results from blo
king ea
h of the threeloops of a standard matrix multiply algorithm, see again Se
tion 3, and
allingthe L1
a
he{
ontained matrix multiply
ode from within the innermost loop.Fig. 5 illustrates the blo
ked algorithm. In order to
ompute the shaded blo
kof the produ
t C, the
orresponding blo
ks of its fa
tors A and B have to bemultiplied and added.
M M

NN

K

K

Matrix C Matrix A

Matrix BFig. 5. Blo
ked matrix multiply algorithm.In order to further enhan
e the
a
he performan
e of the matrix multiplyroutine, ATLAS introdu
es additional blo
king for either L2 or L3
a
he. Thisis a
hieved by tiling the loop whi
h moves the
urrent matrix blo
ks horizon-tally through the �rst fa
tor A and verti
ally through the se
ond fa
tor B, re-spe
tively. The resulting performan
e gains depend on various parameters; e.g.,hardware
hara
teristi
s, operating system features, and
ompiler
apabilities[63℄.It is important to note that fast matrix multiply algorithms whi
h requireO(n!); ! < 3; FP operations have been developed; e.g., Winograd's methodand Strassen's method. These algorithms are based on the idea of re
ursivelypartitioning the fa
tors into blo
ks and reusing intermediate results. However,error analysis reveals that these fast algorithms have di�erent properties in termsof numeri
al stability, see [34℄ for a detailed analysis.4.3 Blo
k Algorithms in LAPACKIn order to leverage the speedups whi
h are obtained by optimizing the
a
heutilization of Level 3 BLAS, LAPACK provides implementations of blo
k algo-rithms in addition to the standard versions of various routines only based on15

Level 1 and Level 2 BLAS. For example, LAPACK implements blo
k LU, blo
kCholesky, and blo
k QR fa
torizations [5℄. The idea behind these algorithms isto split the original matri
es into submatri
es (blo
ks) and pro
ess them usinghighly eÆ
ient Level 3 BLAS, see Se
tion 4.2.In order to illustrate the design of blo
k algorithms in LAPACK we
om-pare the standard LU fa
torization of a non{singular n � n matrix A to the
orresponding blo
k LU fa
torization. In order to simplify the presentation, weinitially leave pivoting issues aside. Ea
h of these algorithms determines a lowerunit triangular n � n matrix8 L and an upper triangular n � n matrix U su
hthat A = LU . The idea of this (unique) fa
torization is that any linear systemAx = b
an then be solved easily by �rst solving Ly = b using a forward sub-stitution step, and subsequently solving Ux = y using a ba
kward substitutionstep [27, 34℄.Computing the triangular matri
es L and U essentially
orresponds to per-forming Gaussian elimination on A in order to obtain an upper triangular matrix.In the
ourse of this
omputation, all elimination fa
tors li;j are stored. Thesefa
tors li;j be
ome the subdiagonal entries of the unit triangular matrix L, whilethe resulting upper triangular matrix de�nes the fa
tor U . This elimination pro-
ess is mainly based on Level 2 BLAS; it repeatedly requires rows of A to beadded to multiples of di�erent rows of A.The blo
k LU algorithm works as follows. The matrix A is partitioned intofour submatri
es A1;1; A1;2; A2;1, and A2;2. The fa
torization A = LU
an thenbe written as "A1;1 A1;2A2;1 A2;2 # = "L1;1 0L2;1 L2;2 # "U1;1 U1;20 U2;2 # ; (1)where the
orresponding blo
ks are equally sized, and A1;1; L1;1, and U1;1 aresquare submatri
es. Hen
e, we obtain the following equations:A1;1 = L1;1U1;1 ; (2)A1;2 = L1;1U1;2 ; (3)A2;1 = L2;1U1;1 ; (4)A2;2 = L2;1U1;2 + L2;2U2;2 : (5)A

ording to Equation (2), L1;1 and U1;1 are
omputed using the standard LUfa
torization routine. Afterwards, U1;2 and L2;1 are determined from Equations(3) and (4), respe
tively, using Level 3 BLAS solvers for triangular systems.Eventually, L2;2 and U2;2 are
omputed as the result of re
ursively applyingthe blo
k LU de
omposition routine to ~A2;2 = A2;2 � L2;1U1;2. This �nal stepfollows immediately from Equation (5). The
omputation of ~A
an again bea

omplished by leveraging Level 3 BLAS.It is important to point out that the blo
k algorithm
an yield di�erent nu-meri
al results than the standard version as soon as pivoting is introdu
ed; i.e.,8 A unit triangular matrix is
hara
terized by having only 1's on its main diagonal.16

as soon as a de
omposition PA = LU is
omputed, where P denotes a suitablepermutation matrix [27℄. While the sear
h for appropriate pivots may
over thewhole matrix A in the
ase of the standard algorithm, the blo
k algorithm re-stri
ts this sear
h to the
urrent blo
k A1;1 to be de
omposed into triangularfa
tors. The
hoi
e of di�erent pivots during the de
omposition pro
ess may leadto di�erent round{o� behavior due to �nite pre
ision arithmeti
.Further
a
he performan
e optimizations for LAPACK have been developed.The appli
ation of re
ursively pa
ked matrix storage formats is an example ofhow to
ombine both data layout as well as data a

ess optimizations [4℄. Amemory{eÆ
ient LU de
omposition algorithm with partial pivoting is presentedin [56℄. It is based on re
ursively partitioning the input matrix.4.4 Ca
he{Aware Iterative AlgorithmsIterative algorithms form another
lass of numeri
al solution methods for systemsof linear equations [27, 30, 60℄. LAPACK does not provide implementations of it-erative methods. A typi
al example of the use of these methods is the solution oflarge sparse systems whi
h arise from the dis
retization of PDEs. Iterative meth-ods
overs basi
 te
hniques su
h as Ja
obi's method, Ja
obi overrelaxation (JOR),the method of Gauss{Seidel, and the method of su

essive overrelaxation (SOR)[27, 30, 60℄ as well as advan
ed te
hniques su
h as multigrid algorithms. Gener-ally speaking, the idea behind multigrid algorithms is to a

elerate
onvergen
eby uniformly eliminating error
omponents over the entire frequen
y domain.This is a

omplished by solving a re
ursive sequen
e of several instan
es of theoriginal problem simultaneously, ea
h of them on a di�erent s
ale, and
ombiningthe results to form the required solution [11, 29, 58℄. Typi
ally, Krylov subspa
emethods su
h as the method of
onjugate gradients (CG) and the method ofgeneralized minimal residuals (GMRES) are
onsidered iterative, too. Althoughtheir maximum number of
omputational steps is theoreti
ally limited by thedimension of the linear system to be solved, this is of no pra
ti
al relevan
e inthe
ase of systems with millions of unknowns [27, 30℄.In this paper, we fo
us on the dis
ussion of
a
he{aware variants of basi
iterative s
hemes; parti
ularly the method of Gauss{Seidel. On the one hand,su
h methods are used as linear solvers themselves. On the other hand, theyare
ommonly employed as smoothers to eliminate the highly os
illating Fourier
omponents of the error in multigrid settings [11, 29, 58℄ and as pre
onditionersin the
ontext of Krylov subspa
e methods [27, 30℄.Given an initial approximation x(0) to the exa
t solution x of the linearsystem Ax = b of order n, the method of Gauss{Seidel su

essively
omputes anew approximation x(k+1) from the previous approximation x(k) as follows:x(k+1)i = a�1i;i 0�bi �Xj<i ai;jx(k+1)j �Xj>i ai;jx(k)j 1A ; 1 � i � n : (6)17

If used as a linear solver by itself, the iteration typi
ally runs until some
on-vergen
e
riterion is ful�lled; e.g., until the Eu
lidean norm of the residualr(k) = b�Ax(k) falls below some given toleran
e.For the dis
ussion of optimization te
hniques we
on
entrate on the
ase of ablo
k tridiagonal matrix whi
h typi
ally results from the 5{point dis
retizationof a PDE on a two{dimensional re
tangular grid using �nite di�eren
es. Wefurther assume a grid{based implementation9 of the method of Gauss{Seidelusing a red/bla
k ordering of the unknowns.For the sake of optimizing the
a
he performan
e of su
h algorithms, bothdata layout optimizations as well as data a

ess optimizations have been pro-posed. Data layout optimizations
omprise the appli
ation of array padding inorder to minimize the numbers of
on
i
t misses
aused by the sten
il{based
omputation [46℄ as well as array merging te
hniques to enhan
e the spatiallo
ality of the
ode [19, 39℄. These array merging te
hniques are based on theobservation that, for ea
h update, all entries ai;j of any matrix row i as well as the
orresponding right{hand side bi are always needed simultaneously, see Equation(6). Data a

ess optimizations for red/bla
k Gauss{Seidel
omprise loop fusionas well as loop blo
king te
hniques. As we have mentioned in Se
tion 3, theseoptimizations aim at reusing data as long as they reside in
a
he, thus enhan
-ing temporal lo
ality. Loop fusion merges two su

essive passes through the gridinto a single one, integrating the update steps for the red and the bla
k nodes.On top of loop fusion, loop blo
king
an be applied. For instan
e, blo
king theoutermost loop means beginning with the
omputation of x(k+2) from x(k+1) be-fore the
omputation of x(k+1) from x(k) has been
ompleted, reusing the matrixentries ai;j , the values bi of the right{hand side, and the approximations x(k+1)iwhi
h are still in
a
he.Again, the performan
e of the optimized
odes depends on a variety of ma-
hine, operating system, and
ompiler parameters. Depending on the problemsize, speedups of up to 500%
an be obtained, see [50, 61, 62℄ for details. It is im-portant to point out that these optimizing data a

ess transformations maintainall data dependen
ies of the original algorithm and therefore do not in
uen
ethe numeri
al results of the
omputation.Similar resear
h has been done for Ja
obi's method [8℄, whi
h su

essively
omputes a new approximation x(k+1) from the previous approximation x(k) asfollows: x(k+1)i = a�1i;i 0�bi �Xj 6=i ai;jx(k)j 1A ; 1 � i � n : (7)It is obvious that this method requires the handling of an extra array sin
e theupdates
annot be done in pla
e; in order to
ompute the (k + 1){th iteratefor unknown xi, the k{th iterates of all neighboring unknowns are required, see9 Instead of using data stru
tures to store the
omputational grids whi
h
over thegeometri
 domains, these methods
an also be implemented by employing matrixand ve
tor data stru
tures. 18

Equation (7), although there may already be more re
ent values for some ofthem from the
urrent (k + 1){th update step.Moreover, the optimization of iterative methods on unstru
tured grids hasalso been addressed [20℄. These te
hniques are based on partitioning the
om-putational domain into blo
ks whi
h are adapted to the size of the
a
he. Theiteration then performs as mu
h work as possible on the
urrent
a
he blo
k andrevisits previous
a
he blo
ks in order to
omplete the update pro
ess. The in-vestigation of
orresponding
a
he optimizations for three{dimensional problemshas revealed that TLB misses be
ome more relevant than in the two{dimensional
ase [38, 47℄.More advan
ed resear
h on hierar
hi
al memory optimization addresses thedesign of new iterative numeri
al algorithms. Su
h methods
over domain de
om-position approa
hes with domain sizes whi
h are adapted to the
a
he
apa
ity[3, 28℄ as well as approa
hes based on runtime{
ontrolled adaptivity whi
h
on-
entrates the
omputational work on those parts of the domain where the errorsare still large and need to be further redu
ed by smoothing and
oarse grid
or-re
tion in a multigrid
ontext [49, 42℄. Other resear
h address the developmentof grid stru
tures for PDE solvers based on highly regular building blo
ks, see[12, 35℄ for example. On the one hand these meshes
an be used to approximate
omplex geometries, on the other hand they permit the appli
ation of a varietyof optimization te
hniques to enhan
e
a
he utilization, see Se
tion 3 for details.5 Con
lusionsCa
he performan
e optimizations
an yield signi�
ant exe
ution speedups, par-ti
ularly when applied to numeri
ally intensive
odes. The investigation of su
hte
hniques has led to a variety of new numeri
al algorithms, some of whi
h havebeen outlined in this paper. While several of the basi
 optimization te
hniques
an automati
ally be introdu
ed by optimizing
ompilers, most of the tuninge�ort is left to the programmer. This is espe
ially true, if the resulting algo-rithms have di�erent numeri
al properties; e.g.,
on
erning stability, robustness,or
onvergen
e behavior. In order to simplify the development of portable (
a
he{)eÆ
ient numeri
al appli
ations in s
ien
e and engineering, optimized routinesare often provided by ma
hine{spe
i�
 software libraries.Future
omputer ar
hite
ture trends further motivate resear
h e�orts fo
us-ing on memory hierar
hy optimizations. Fore
asts predi
t the number of transis-tors on
hip in
reasing beyond one billion. Computer ar
hite
ts have announ
edthat most of the transistors will be used for larger on{
hip
a
hes and on{
hipmemory. Most of the fore
ast systems will be equipped with memory stru
turessimilar to the memory hierar
hies
urrently in use.While those future
a
hes will be bigger and smarter, the data stru
turespresently used in real{world s
ienti�

odes already ex
eed the maximum
apa
-ity of fore
ast
a
he memories by several orders of magnitude. Today's appli
a-tions in s
ienti�

omputing typi
ally require several Megabytes up to hundredsof Gigabytes of memory. 19

Consequently, due to the similar stru
ture of present and future memoryar
hite
tures, data lo
ality optimizations for numeri
ally intensive
odes willfurther on be essential for all
omputer ar
hite
tures whi
h employ the
on
eptof hierar
hi
al memory.Referen
es1. N. Ahmed, N. Mateev, and K. Pingali. Tiling Imperfe
tly{Nested Loop Nests. InPro
. of the ACM/IEEE Super
omputing Conferen
e, Dallas, Texas, USA, 2000.2. R. Allen and K. Kennedy. Optimizing Compilers for Modern Ar
hite
tures. MorganKaufmann Publishers, San Fran
is
o, California, USA, 2001.3. M. Altieri, C. Be
ker, and S. Turek. On the Realisti
 Performan
e of LinearAlgebra Components in Iterative Solvers. In H.-J. Bungartz, F. Durst, and C.Zenger, editors, High Performan
e S
ienti�
 and Engineering Computing, Pro
.of the Int. FORTWIHR Conferen
e on HPSEC, volume 8 of LNCSE, pages 3{12.Springer, 1998.4. B.S. Andersen, J.A. Gunnels, F. Gustavson, and J. Wa�sniewski. A Re
ursiveFormulation of the Inversion of Symmetri
 Positive De�nite Matri
es in Pa
kedStorage Data Format. In Pro
. of the 6th Int. Conferen
e on Applied ParallelComputing, volume 2367 of LNCS, pages 287{296, Espoo, Finland, 2002. Springer.5. E. Anderson, Z. Bai, C. Bis
hof, S. Bla
kford, J. Demmel, J. Dongarra, J. Du Croz,A. Greenbaum, S. Hammarling, A. M
Kenney, and D. Sorensen. LAPACK Users'Guide. SIAM, 3rd edition, 1999. http://www.netlib.org/lapa
k/lug.6. J.M. Anderson, L.M. Ber
, J. Dean, S. Ghemawat, M.R. Henzinger, S.A. Leung,R.L. Sites, M.T. Vandevoorde, C.A. Waldspurger, and W.E. Weihl. ContinuousPro�ling: Where Have All the Cy
les Gone? In Pro
. of the 16th ACM Symposiumon Operating System Prin
iples, pages 1{14, St. Malo, Fran
e, 1997.7. D.F. Ba
on, S.L. Graham, and O.J. Sharp. Compiler Transformations for High{Performan
e Computing. ACM Computing Surveys, 26(4):345{420, 1994.8. F. Bassetti, K. Davis, and D. Quinlan. Temporal Lo
ality Optimizations for Sten-
il Operations within Parallel Obje
t{Oriented S
ienti�
 Frameworks on Ca
he{Based Ar
hite
tures. In Pro
. of the Int. Conferen
e on Parallel and DistributedComputing and Systems, pages 145{153, Las Vegas, Nevada, USA, 1998.9. R. Berrendorf and B. Mohr. PCL | The Performan
e Counter Library: ACommon Interfa
e to A

ess Hardware Performan
e Counters on Mi
ropro
es-sors. Te
hni
al report, Resear
h Center Jueli
h GmbH, Jueli
h, Germany, 2000.http://www.fz-jueli
h.de/zam/PCL.10. J. Bilmes, K. Asanovi
, C.-W. Chin, and J. Demmel. Optimizing Matrix Multiplyusing PHiPAC: A Portable, High{Performan
e, ANSI C Coding Methodology. InPro
. of the Int. Conferen
e on Super
omputing, Vienna, Austria, 1997.11. W.L. Briggs, V.E. Henson, and S.F. M
Cormi
k. A Multigrid Tutorial. SIAM,se
ond edition, 2000.12. D. Brown, W. Henshaw, and D. Quinlan. Overture: An Obje
t{Oriented Frame-work for Solving Partial Di�erential Equations on Overlapping Grids. In Pro
. ofthe SIAM Workshop on Obje
t Oriented Methods for Inter{operable S
ienti�
 andEngineering Computing, Yorktown Heights, New York, USA, 1998. SIAM.13. S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mu

i. A Portable ProgrammingInterfa
e for Performan
e Evaluation on Modern Pro
essors. Int. Journal of HighPerforman
e Computing Appli
ations, 14(3):189{204, 2000.20

14. D.C. Burger, J.R. Goodman, and A. K�agi. The De
lining E�e
tiveness of Dy-nami
 Ca
hing for General{Purpose Mi
ropro
essors. Te
hni
al Report CS TR{95{1261, Computer S
ien
e Department, University of Wis
onsin, Madison, Wis-
onsin, USA, 1995.15. T.-F. Chen and J.-L. Baer. E�e
tive Hardware Based Data Prefet
hing for High{Performan
e Pro
essors. IEEE Transa
tions on Computers, 44(5):609{623, 1995.16. M. Cierniak andW. Li. Unifying Data and Control Transformations for DistributedShared{Memory Ma
hines. In Pro
. of the Conferen
e on Programming LanguageDesign and Implementation, pages 205{217, La Jolla, California, USA, 1995.17. A. Darte. On the Complexity of Loop Fusion. In Pro
. of the Int. Conferen
eon Parallel Ar
hite
tures and Compilation Te
hniques, pages 149{157, NewportBea
h, California, USA, 1999.18. J. Dongarra, J. Du Croz, S. Hammarling, and I. Du�. A Set of Level 3 Basi
 LinearAlgebra Subprograms. ACM Transa
tions on Mathemati
al Software, 16(1):1{17,1990.19. C.C. Douglas. Ca
hing in With Multigrid Algorithms: Problems in Two Dimen-sions. Parallel Algorithms and Appli
ations, 9:195{204, 1996.20. C.C. Douglas, J. Hu, M. Kowars
hik, U. R�ude, and C. Wei�. Ca
he Optimiza-tion for Stru
tured and Unstru
tured Grid Multigrid. Ele
troni
 Transa
tions onNumeri
al Analysis, 10:21{40, 2000.21. A. Eusta
e and A. Srivastava. ATOM: A Flexible Interfa
e for Building High Per-forman
e Program Analysis Tools. In Pro
. of the USENIX Te
hni
al Conferen
eon UNIX and Advan
ed Computing Systems, pages 303{314, 1995.22. J. Fenlason and R. Stallman. GNU gprof. Free Software Foundation, In
., Boston,Massa
husetts, USA, 1998. http://www.gnu.org.23. J. Ferrante, V. Sarkar, and W. Trash. On Estimating and Enhan
ing Ca
he E�e
-tiveness. In U. Banerjee, editor, Pro
. of the Fourth Int. Workshop on Languagesand Compilers for Parallel Computing. Springer, 1991.24. M. Frigo and S.G. Johnson. FFTW: An Adaptive Software Ar
hite
ture for theFFT. In Pro
. of the Int. Conferen
e on A
ousti
s, Spee
h, and Signal Pro
essing,volume 3, pages 1381{1384, Seattle, Washington, USA, 1998.25. S. Ghosh, M. Martonosi, and S. Malik. Ca
he Miss Equations: An Analyti
alRepresentation of Ca
he Misses. In Pro
. of the Int. Conferen
e on Super
omputing,pages 317{324, Vienna, Austria, 1997.26. S. Goede
ker and A. Hoisie. Performan
e Optimization of Numeri
ally IntensiveCodes. SIAM, 2001.27. G.H. Golub and C.F. Van Loan. Matrix Computations. John Hopkins UniversityPress, third edition, 1998.28. W.D. Gropp, D.K. Kaushik, D.E. Keyes, and B.F. Smith. High Performan
e Par-allel Impli
it CFD. Parallel Computing, 27(4):337{362, 2001.29. W. Ha
kbus
h. Multigrid Methods and Appli
ations. Springer, 1985.30. W. Ha
kbus
h. Iterative Solution of Large Sparse Systems of Equations, volume 95of Applied Mathemati
al S
ien
es. Springer, 1993.31. J. Handy. The Ca
he Memory Book. A
ademi
 Press, se
ond edition, 1998.32. J. Harper, D. Kerbyson, and G. Nudd. Analyti
al Modeling of Set{Asso
iativeCa
he Behavior. IEEE Transa
tions on Computers, 48(10):1009{1024, 1999.33. J.L. Hennessy and D.A. Patterson. Computer Ar
hite
ture: A Quantitative Ap-proa
h. Morgan Kaufmann Publisher, In
., San Fran
is
o, California, USA, se
ondedition, 1996.34. N.J. Higham. A

ura
y and Stability of Numeri
al Algorithms. SIAM, se
ondedition, 2002. 21

35. F. H�ulsemann, P. Kipfer, U. R�ude, and G. Greiner. gridlib: Flexible and EÆ
ientGrid Management for Simulation and Visualization. In Pro
. of the Int. Confer-en
e on Computational S
ien
e, Part III, volume 2331 of LNCS, pages 652{661,Amsterdam, The Netherlands, 2002. Springer.36. T. Jeremiassen and S. Eggers. Redu
ing False Sharing on Shared Memory Mul-tipro
essors through Compile Time Data Transformations. In Pro
. of the FifthACM SIGPLAN Symposium on Prin
iples and Pra
ti
e of Parallel Programming,pages 179{188, Santa Barbara, California, USA, 1995.37. I. Kodukula, N. Ahmed, and K. Pingali. Data{Centri
 Multi{Level Blo
king. InPro
. of the ACM SIGPLAN Conferen
e on Programming Language Design andImplementation, pages 346{357, Las Vegas, Nevada, USA, 1997.38. M. Kowars
hik, U. R�ude, N. Th�urey, and C. Wei�. Performan
e Optimizationof 3D Multigrid on Hierar
hi
al Memory Ar
hite
tures. In Pro
. of the 6th Int.Conferen
e on Applied Parallel Computing, volume 2367 of LNCS, pages 307{316,Espoo, Finland, 2002. Springer.39. M. Kowars
hik, C. Wei�, and U. R�ude. Data Layout Optimizations for VariableCoeÆ
ient Multigrid. In Pro
. of the Int. Conferen
e on Computational S
ien
e,Part III, volume 2331 of LNCS, pages 642{651, Amsterdam, The Netherlands,2002. Springer.40. M.S. Lam, E.E. Rothberg, and M.E. Wolf. The Ca
he Performan
e and Optimiza-tions of Blo
ked Algorithms. In Pro
. of the Fourth Int. Conferen
e on Ar
hite
-tural Support for Programming Languages and Operating Systems, pages 63{74,Palo Alto, California, USA, 1991.41. D. Loshin. EÆ
ient Memory Programming. M
Graw{Hill, 1998.42. H. L�otzbeyer and U. R�ude. Pat
h{Adaptive Multilevel Iteration. BIT, 37(3):739{758, 1997.43. T.C. Mowry. Tolerating Laten
y Through Software{Controlled Data Prefet
hing.PhD thesis, Computer Systems Laboratory, Stanford University, 1994.44. S.S. Mu
hni
k. Advan
ed Compiler Design & Implementation. Morgan KaufmannPublishers, San Fran
is
o, California, USA, 1997.45. J.J. Navarro, E. Gar
ia-Diego, J.-L. Larriba-Pey, and T. Juan. Blo
k Algorithmsfor Sparse Matrix Computations on High Performan
e Workstations. In Pro
. ofthe Int. Conferen
e on Super
omputing, pages 301{308, Philadelphia, Pennsylvania,USA, 1996.46. G. Rivera and C.-W. Tseng. Data Transformations for Eliminating Con
i
t Misses.In Pro
. of the ACM SIGPLAN Conferen
e on Programming Language Design andImplementation, Montreal, Canada, 1998.47. G. Rivera and C.-W. Tseng. Tiling Optimizations for 3D S
ienti�
 Computations.In Pro
. of the ACM/IEEE Super
omputing Conferen
e, Dallas, Texas, USA, 2000.48. M. Rosenblum, S.A. Herrod, E. Wit
hel, and A. Gupta. Complete Computer Sys-tem Simulation: The SimOS Approa
h. IEEE Parallel and Distributed Te
hnology:Systems & Appli
ations, 4(3):34{43, 1995.49. U. R�ude. Fully Adaptive Multigrid Methods. SIAM Journal on Numeri
al Anal-ysis, 30(1):230{248, 1993.50. S. Sellappa and S. Chatterjee. Ca
he{EÆ
ient Multigrid Algorithms. In Pro
.of the Int. Conferen
e on Computational S
ien
e, Part I, volume 2073 of LNCS,pages 107{116, San Fran
is
o, California, USA, 2001. Springer.51. A.J. Smith. Ca
he Memories. ACM Computing Surveys, 14(3):473{530, 1982.52. Y. Song and Z. Li. New Tiling Te
hniques to Improve Ca
he Temporal Lo
ality.In Pro
. of the ACM SIGPLAN Conferen
e on Programming Language Design andImplementation, pages 215{228, Atlanta, Georgia, USA, 1999.22

53. R.A. Sugumar and S.G. Abraham. EÆ
ient Simulation of Ca
hes under OptimalRepla
ement with Appli
ations to Miss Chara
terization. In Pro
. of the ACMSIGMETRICS Conferen
e on Measurements and Modeling of Computer Systems,pages 24{35, Santa Clara, California, USA, 1993.54. O. Temam. Investigating Optimal Lo
al Memory Performan
e. In Pro
. ACM Int.Conferen
e on Ar
hite
tural Support for Programming Languages and OperatingSystems, San Diego, California, USA, 1998.55. O. Temam, E. Granston, and W. Jalby. To Copy or Not to Copy: A Compile{Time Te
hnique for Assessing When Data Copying Should be Used to EliminateCa
he Con
i
ts. In Pro
. of the ACM/IEEE Super
omputing Conferen
e, Portland,Oregon, USA, 1993.56. S. Toledo. Lo
ality of Referen
e in LU De
omposition with Partial Pivoting. SIAMJournal on Matrix Analysis and Appli
ations, 18(4):1065{1081, 1997.57. J. Torrellas, M. Lam, and J. Hennessy. Shared Data Pla
ement Optimizationsto Redu
e Multipro
essor Ca
he Miss Rates. In Pro
. of the Int. Conferen
e onParallel Pro
essing, volume 2, pages 266{270, Pennsylvania, USA, 1990.58. U. Trottenberg, C. Oosterlee, and A. S
h�uller. Multigrid. A
ademi
 Press, 2001.59. S.P. Vanderwiel and D.J. Lilja. Data Prefet
hing Me
hanisms. ACM ComputingSurveys, 32(2):174{199, 2000.60. R.S. Varga. Matrix Iterative Analysis. Prenti
e{Hall, 1962.61. C. Wei�. Data Lo
ality Optimizations for Multigrid Methods on Stru
tured Grids.PhD thesis, Lehrstuhl f�ur Re
hnerte
hnik und Re
hnerorganisation, Institut f�urInformatik, Te
hnis
he Universit�at M�un
hen, Muni
h, Germany, 2001.62. C. Wei�, W. Karl, M. Kowars
hik, and U. R�ude. Memory Chara
teristi
s of Iter-ative Methods. In Pro
. of the ACM/IEEE Super
omputing Conferen
e, Portland,Oregon, USA, 1999.63. R.C. Whaley and J. Dongarra. Automati
ally Tuned Linear Algebra Software.In Pro
. of the ACM/IEEE Super
omputing Conferen
e, Orlando, Florida, USA,1998.64. M.E. Wolf and M.S. Lam. A Data Lo
ality Optimizing Algorithm. In Pro
. of theSIGPLAN'91 Symposium on Programming Language Design and Implementation,volume 26 of SIGPLAN Noti
es, pages 33{44, Toronto, Canada, 1991.65. M.J. Wolfe. High{Perfoman
e Compilers for Parallel Computing. Addison{Wesley,Redwood City, California, USA, 1996.

23

