
An Overview of Cahe Optimization Tehniquesand Cahe{Aware Numerial Algorithms?Markus Kowarshik1 and Christian Wei�21 Lehrstuhl f�ur Systemsimulation (Informatik 10)Institut f�ur InformatikFriedrih{Alexander{Universit�at Erlangen{N�urnberg, GermanyMarkus.Kowarshik�s.fau.de2 Lehrstuhl f�ur Rehnertehnik und Rehnerorganisation (LRR{TUM)Fakult�at f�ur InformatikTehnishe Universit�at M�unhen, GermanyChristian.Weiss�s.tum.edu1 IntrodutionIn order to mitigate the impat of the growing gap between CPU speed andmain memory performane, today's omputer arhitetures implement hierar-hial memory strutures. The idea behind this approah is to hide both thelow main memory bandwidth and the lateny of main memory aesses whih isslow in ontrast to the oating{point performane of the CPUs. Usually, thereis a small and expensive high speed memory sitting on top of the hierarhywhih is usually integrated within the proessor hip to provide data with lowlateny and high bandwidth; i.e., the CPU registers. Moving further away fromthe CPU, the layers of memory suessively beome larger and slower. The mem-ory omponents whih are loated between the proessor ore and main memoryare alled ahe memories or ahes. They are intended to ontain opies ofmain memory bloks to speed up aesses to frequently needed data [31, 33℄.The next lower level of the memory hierarhy is the main memory whih is largebut also omparatively slow. While external memory suh as hard disk drives orremote memory omponents in a distributed omputing environment representthe lower end of any ommon hierarhial memory design, this paper fouses onoptimization tehniques for enhaning ahe performane.The levels of the memory hierarhy usually subset one another so that dataresiding within a smaller memory are also stored within the larger memories. Atypial memory hierarhy is shown in Fig. 1.EÆient program exeution an only be expeted if the odes respet theunderlying hierarhial memory design. Unfortunately, today's ompilers annotintrodue highly sophistiated ahe{based transformations and, onsequently,muh of this optimization e�ort is left to the programmer [26, 41℄.? This researh is being supported in part by the Deutshe Forshungsgemeinshaft(German Siene Foundation), projets Ru 422/7{1,2,3.

CPU

L1 Data Cache L1 Inst Cache

L2 Cache

Registers

L3
 C

ac
he

M
ai

n
M

em
or

y

Fig. 1. A typial memory hierarhy ontaining two on{hip L1 ahes, one on{hipL2 ahe, and a third level of o�{hip ahe. The thikness of the interonnetionsillustrates the bandwidths between the memory hierarhy levels.This is partiularly true for numerially intensive odes, whih our paper on-entrates on. Suh odes our in almost all siene and engineering disiplines;e.g., omputational uid dynamis, omputational physis, and mehanial en-gineering. They are haraterized both by a large portion of oating{point (FP)operations as well as by the fat that most of their exeution time is spent insmall omputational kernels based on loop nests. Thus, instrution ahe misseshave no signi�ant impat on exeution performane. However, the underlyingdata sets are typially by far too large to be kept in a higher level of the memoryhierarhy; i.e., in ahe.Due to data aess latenies and memory bandwidth issues, the number ofarithmeti operations alone is no longer an adequate means of desribing theomputational omplexity of numerial omputations. EÆient odes in sienti�omputing must neessarily ombine both omputationally optimal algorithmsand memory hierarhy optimizations. Multigrid methods [58℄, for example, areamong the most eÆient algorithms for the solution of large systems of linearequations. The performane of suh odes on ahe{based omputer systems,however, is only aeptable if memory hierarhy optimizations are applied [61℄.This paper is strutured as follows. In Setion 2, we will introdue some fun-damental ahe harateristis, inluding a brief disussion of ahe performaneanalysis tools. Setion 3 ontains a general desription of elementary ahe op-timization tehniques. In Setion 4, we will illustrate how suh tehniques anbe employed to develop ahe{aware algorithms. We will partiularly fous onalgorithms of numerial linear algebra. Setion 5 onludes the paper.2 Arhiteture and Performane Evaluation of Cahes2.1 Organization of Cahe MemoriesTypially, a memory hierarhy ontains a rather small number of registers on thehip whih are aessible without delay. Furthermore, a small ahe | usually2

alled level one (L1) ahe | is plaed on the hip to ensure low lateny andhigh bandwidth. The L1 ahe is often split into two separate parts; one onlykeeps data, the other instrutions. The lateny of on{hip ahes is ommonlyone or two yles. The hip designers, however, already fae the problem thatlarge on{hip ahes of new miroproessors running at high lok rates annotdeliver data within one yle sine the signal delays are too long. Therefore,the size of on{hip L1 ahes is limited to 64 Kbyte or even less for many hipdesigns. However, larger ahe sizes with aordingly higher aess latenies startto appear.The L1 ahes are usually baked up by a level two (L2) ahe. A few yearsago, arhitetures typially implemented the L2 ahe on the motherboard, usingSRAM hip tehnology. Currently, L2 ahe memories are typially loated on{hip as well; e.g., in the ase of Intel's Itanium CPU. O�{hip ahes are muhbigger, but also provide data with lower bandwidth and higher aess lateny.On{hip L2 ahes are usually smaller than 512 Kbyte and deliver data with alateny of approximately 5 to 10 yles. If the L2 ahes are implemented on{hip, an o�{hip level three (L3) ahe may be added to the hierarhy. O�{hipahe sizes vary from 1 Mbyte to 16 Mbyte. They provide data with a latenyof about 10 to 20 CPU yles.2.2 Loality of ReferenesBeause of their limited size, ahes an only hold opies of reently used data orode. Typially, when new data are loaded into the ahe, other data have to bereplaed. Cahes improve performane only if ahe bloks whih have alreadybeen loaded are reused before being replaed by others. The reason why ahesan substantially redue program exeution time is the priniple of loality ofreferenes [33℄ whih states that reently used data are very likely to be reusedin the near future. Loality an be subdivided into temporal loality and spatialloality. A sequene of referenes exhibits temporal loality if reently aesseddata are likely to be aessed again in the near future. A sequene of referenesexposes spatial loality if data loated lose together in address spae tend tobe referened lose together in time.2.3 Aspets of Cahe ArhiteturesIn this setion, we briey review the basi aspets of ahe arhitetures. Werefer to Chapter 8 for a more detailed presentation of hardware issues onerningahe memories as well as translation lookaside bu�ers (TLBs).Data within the ahe are stored in ahe lines. A ahe line holds the on-tents of a ontiguous blok of main memory. If data requested by the proessorare found in a ahe line, it is alled a ahe hit. Otherwise, a ahe miss o-urs. The ontents of the memory blok ontaining the requested word are thenfethed from a lower memory layer and opied into a ahe line. For this purpose,another data item must typially be replaed. Therefore, in order to guarantee3

low aess lateny, the question into whih ahe line the data should be loadedand how to retrieve them heneforth must be handled eÆiently.In respet of hardware omplexity, the heapest approah to implement blokplaement is diret mapping; the ontents of a memory blok an be plaed intoexatly one ahe line. Diret mapped ahes have been among the most popularahe arhitetures in the past and are still very ommon for o�{hip ahes.However, omputer arhitets have reently foused on inreasing the set as-soiativity of on{hip ahes. An a{way set{assoiative ahe is haraterized bya higher hardware omplexity, but usually implies higher hit rates. The ahelines of an a{way set{assoiative ahe are grouped into sets of size a. The on-tents of any memory blok an be plaed into any ahe line of the orrespondingset.Finally, a ahe is alled fully assoiative if the ontents of a memory blokan be plaed into any ahe line. Usually, fully assoiative ahes are onlyimplemented as small speial{purpose ahes; e.g., TLBs [33℄. Diret mappedand fully assoiative ahes an be seen as speial ases of a{way set{assoiativeahes; a diret mapped ahe is a 1{way set{assoiative ahe, whereas a fullyassoiative ahe is C{way set{assoiative, provided that C is the number ofahe lines.In a fully assoiative ahe and in a k{way set{assoiative ahe, a memoryblok an be plaed into several alternative ahe lines. The question into whihahe line a memory blok is opied and whih blok thus has to be replaed isdeided by a (blok) replaement strategy. The most ommonly used strategiesfor today's miroproessor ahes are random and least reently used (LRU). Therandom replaement strategy hooses a random ahe line to be replaed. TheLRU strategy replaes the blok whih has not been aessed for the longesttime interval. Aording to the priniple of loality, it is more likely that a dataitem whih has been aessed reently will be aessed again in the near future.Less ommon strategies are least frequently used (LFU) and �rst in, �rstout (FIFO). The former replaes the memory blok in the ahe line whih hasleast frequently been used, whereas the latter replaes the data whih have beenresiding in ahe for the longest time.Eventually, the optimal replaement strategy replaes the memory blokwhih will not be aessed for the longest time. It is impossible to implementthis strategy in a real ahe, sine it requires information about future ahe ref-erenes. Thus, the strategy is only of theoretial value; for any possible sequeneof referenes, a fully assoiative ahe with optimal replaement strategy willprodue the minimum number of ahe misses among all types of ahes of thesame size [54℄.2.4 Measuring and Simulating Cahe BehaviorIn general, pro�ling tools are used in order to determine if a ode runs eÆiently,to identify performane bottleneks, and to guide ode optimization [26℄. Onefundamental onept of any memory hierarhy, however, is to hide the existeneof ahes. This generally ompliates data loality optimizations; a speedup in4

exeution time only indiates an enhanement of loality behavior, but it is noevidene.To allow performane pro�ling regardless of this fat, many miroproessormanufaturers add dediated registers to their CPUs in order to ount ertainevents. These speial{purpose registers are alled hardware performane oun-ters. The information whih an be gathered by the hardware performane oun-ters varies from platform to platform. Typial quantities whih an be measuredinlude ahe misses and ahe hits for various ahe levels, pipeline stalls, pro-essor yles, instrution issues, and branh mispreditions. Some prominentexamples of pro�ling tools based on hardware performane ounters are thePerformane Counter Library (PCL) [9℄, the Performane Appliation Program-ming Interfae (PAPI) [13℄, and the Digital Continuous Pro�ling Infrastruture(DCPI) (Alpha{based Compaq Tru64 UNIX only) [6℄.Another approah towards evaluating ode performane is based on instru-mentation. Pro�ling tools suh as GNU prof [22℄ and ATOM [21℄ insert allsto a monitoring library into the program to gather information for small oderegions. The library routines may either inlude omplex programs themselves(e.g., simulators) or only modify ounters. Instrumentation is used, for example,to determine the fration of the CPU time spent in a ertain subroutine. Sinethe ahe is not visible to the instrumented ode the information onerning thememory behavior is limited to address traes and timing information.Eventually, ahe performane information an be obtained by ahe mod-eling and simulation [25, 32, 53℄ or by mahine simulation [48℄. Simulation istypially very time{onsuming ompared to regular program exeution. Thus,the ahe models and the mahine models often need to be simpli�ed in order toredue simulation time. Consequently, the results are often not preise enoughto be useful.3 Basi Tehniques for Improving Cahe EÆieny3.1 Data Aess OptimizationsData aess optimizations are ode transformations whih hange the order inwhih iterations in a loop nest are exeuted. The goal of these transformations ismainly to improve temporal loality. Moreover, they an also expose parallelismand make loop iterations vetorizable. Note that the data aess optimizationswe present in this setion maintain all data dependenies and do not hange theresults of the numerial omputations1.Usually, it is diÆult to deide whih ombination of transformations must beapplied in order to ahieve a maximum performane gain. Compilers typiallyuse heuristis to determine whether a transformation will be e�etive or not.Loop transformation theory and algorithms found in the literature typially1 However, these transformations may trigger an aggressively optimizing ompiler toreorder FP operations. Due to the properties of �nite preision arithmeti, this mayause di�erent numerial results. 5

fous on transformations for perfetly nested loops [1℄; i.e., nested loops whereall assignment statements are ontained in the innermost loop. However, loopnests in sienti� odes are not perfetly nested in general. Hene, initial enablingtransformations like loop skewing, loop unrolling, and loop peeling are required.Desriptions of these transformations an be found in the ompiler literature [2,7, 44, 65℄.In the following, a set of loop transformations will be desribed whih fouson improving data loality for one level of the memory hierarhy; typially aahe. As we have already mentioned in Setion 1, instrution ahe misses haveno severe impat on the performane of numerially intensive odes sine theseprograms typially exeute small omputational kernels over and over again.Nevertheless, some of the transformations we present in this setion an be usedto improve instrution loality as well.
loop

interchange

stride−8 access stride−1 access

Fig. 2. Aess patterns for interhanged loop nests.
Loop Interhange. This transformation reverses the order of two adjaent loopsin a loop nest [2, 65℄. Generally speaking, loop interhange an be applied if theorder of the loop exeution is unimportant. Loop interhange an be generalizedto loop permutation by allowing more than two loops to be moved at one andby not requiring them to be adjaent.Loop interhange an improve loality by reduing the stride of an array{based omputation. The stride is the distane of array elements in memoryaessed within onseutive loop iterations. Upon a memory referene, severalwords of an array are loaded into a ahe line. If the array is larger than theahe, aesses with large stride only use one word per ahe line. The otherwords whih are loaded into the ahe line are evited before they an be reused.Loop interhange an also be used to enable and improve vetorization andparallelism, and to improve register reuse. The di�erent targets may be onit-ing. For example, inreasing parallelism requires loops with no dependenies tobe moved outward, whereas vetorization requires them to be moved inward.6

Algorithm 3.1 Loop interhange1: double sum;2: double a[n; n℄;3: // Original loop nest:4: for j = 1 to n do5: for i = 1 to n do6: sum+ = a[i; j℄;7: end for8: end for
1: double sum;2: double a[n; n℄;3: // Interhanged loop nest:4: for i = 1 to n do5: for j = 1 to n do6: sum+ = a[i; j℄;7: end for8: end forThe e�et of loop interhange is illustrated in Fig. 2. We assume that the(6; 8) array is stored in memory in row major order; i.e., two array elementsare stored adjaent in memory if their seond indies are onseutive numbers.The ode orresponding to the left part of Fig. 2, however, aesses the arrayelements in a olumn{wise manner. Consequently, the preloaded data in theahe line marked with grey olor will not be reused if the array is too large to�t entirely in ahe. However, after interhanging the loop nest as demonstratedin Algorithm 3.1, the array is no longer aessed using stride{8, but stride{1. Consequently, all words in the ahe line are now used by suessive loopiterations. This is illustrated by the right part of Fig. 2.Loop Fusion. Loop fusion is a transformation whih takes two adjaent loopsthat have the same iteration spae traversal and ombines their bodies into asingle loop [17℄. Loop fusion | sometimes also alled loop jamming | is theinverse transformation of loop distribution or loop �ssion whih breaks a singleloop into multiple loops with the same iteration spae. Loop fusion is legal aslong as no ow, anti, or output dependenies in the fused loop exist for whihinstrutions from the �rst loop depend on instrutions from the seond loop [2℄.Fusing two loops results in a single loop whih ontains more instrutionsin its body and therefore o�ers inreased instrution level parallelism. Further-more, only one loop is exeuted, thus reduing the total loop overhead by ap-proximately a fator of two.Algorithm 3.2 Loop fusion1: // Original ode:2: for i = 1 to n do3: b[i℄ = a[i℄ + 1:0;4: end for5: for i = 1 to n do6: [i℄ = b[i℄ � 4:0;7: end for
1: // After loop fusion:2: for i = 1 to n do3: b[i℄ = a[i℄ + 1:0;4: [i℄ = b[i℄ � 4:0;5: end forLoop fusion also improves data loality. Assume that two onseutive loopsperform global sweeps through an array as in the ode shown in Algorithm 3.2,7

and that the data of the array are too large to �t ompletely in ahe. The dataof array b whih are loaded into the ahe by the �rst loop will not ompletelyremain in ahe, and the seond loop will have to reload the same data frommain memory. If, however, the two loops are ombined with loop fusion only oneglobal sweep through the array b will be performed. Consequently, fewer ahemisses will our.Loop Bloking. Loop bloking (also alled loop tiling) is a loop transformationwhih inreases the depth of a loop nest with depth n by adding additional loopsto the loop nest. The depth of the resulting loop nest will be anything from n+1to 2n. Loop bloking is primarily used to improve data loality by enhaningthe reuse of data in ahe [2, 52, 64℄.Algorithm 3.3 Loop bloking for matrix transposition1: // Original ode:2: for i = 1 to n do3: for j = 1 to n do4: a[i; j℄ = b[j; i℄;5: end for6: end for 1: // Loop bloked ode:2: for ii = 1 to n by B do3: for jj = 1 to n by B do4: for i = ii to min(ii+B � 1; n) do5: for j = jj to min(jj +B � 1; n) do6: a[i; j℄ = b[j; i℄;7: end for8: end for9: end for10: end forThe need for loop bloking is illustrated in Algorithm 3.3. Assume that theode reads an array a with stride{1, whereas the aess to array b is of stride{n.Interhanging the loops will not help in this ase sine it would ause the arraya to be aessed with stride{n instead.Tiling a single loop replaes it by a pair of loops. The inner loop of thenew loop nest traverses a blok of the original iteration spae with the sameinrement as the original loop. The outer loop traverses the original iterationspae with an inrement equal to the size of the blok whih is traversed by theinner loop. Thus, the outer loop feeds bloks of the whole iteration spae to theinner loop whih then exeutes them step by step. The hange in the iterationspae traversal of the bloked loop in Algorithm 3.3 is shown in Fig. 3.A very prominent example for the impat of the loop bloking transformationon data loality is matrix multipliation [10, 37, 40, 63℄, see also Setion 4.2. Inpartiular, the ase of sparse matries is onsidered in [45℄.Data Prefething. The loop transformations disussed so far aim at reduingthe apaity misses whih our in the ourse of a omputation. Misses whihare introdued by �rst{time aesses are not addressed by these optimizations.Prefething allows the miroproessor to issue a data request before the ompu-tation atually requires the data [59℄. If the data are requested early enough the8

1

2

3

4

i

1

2

3

4

i

4321
j

4321
j

loop

blocking

Fig. 3. Iteration spae traversal for original and bloked ode.penalty of old (ompulsory) misses as well as apaity misses not overed byloop transformations an be hidden2.Many modern miroproessors implement a prefeth instrution whih is is-sued as a regular instrution. The prefeth instrution is similar to a load, withthe exeption that the data are not forwarded to the CPU after they have beenahed. The prefeth instrution is often handled as a hint for the proessor toload a ertain data item, but the atual exeution of the prefeth is not guaran-teed by the CPU.Prefeth instrutions an be inserted into the ode manually by the pro-grammer or automatially by a ompiler [43℄. In both ases, prefething involvesoverhead. The prefeth instrutions themselves have to be exeuted; i.e., pipelineslots will be �lled with prefeth instrutions instead of other instrutions readyto be exeuted. Furthermore, the memory addresses of the prefethed data mustbe alulated and will be alulated again when the load operation is exeutedwhih atually fethes the data from the memory hierarhy into the CPU.Besides software{based prefething, hardware shemes have been proposedand implemented whih add prefething apability to a system without the needof prefeth instrutions. One of the simplest hardware{based prefething shemesis sequential prefething [51℄; whenever a memory blok is aessed, the next andpossibly some subsequent memory bloks are prefethed. More sophistiatedprefeth shemes have been invented [15℄, but most miroproessors still onlyimplement stride{1 stream detetion or even no prefething at all.In general, prefething will only be suessful if the data stream is preditedorretly either by the hardware or by the ompiler and if there is enough spaeleft in ahe to keep the prefethed data together with memory referenes thatare still ative. If the prefethed data replae data whih are still needed thiswill inrease bus utilization, the overall miss rates, as well as memory latenies[14℄.2 For a lassi�ation of ahe misses we refer to Chapter 8.9

3.2 Data Layout OptimizationsData aess optimizations have proven to be able to improve the data loality ofappliations by reordering the omputation, as we have shown in the previoussetion. However, for many appliations, loop transformations alone may notbe suÆient for ahieving reasonable data loality. Espeially for omputationswith a high degree of onit misses3, loop transformations are not e�etive inimproving performane [46℄.Data layout optimizations modify how data strutures and variables are ar-ranged in memory. These transformations aim at avoiding e�ets like ahe on-it misses and false sharing [33℄, see Chapter 16. They are further intended toimprove the spatial loality of a ode.Data layout optimizations inlude hanging base addresses of variables, mod-ifying array sizes, transposing array dimensions, and merging arrays. These teh-niques are usually applied at ompile time, although some optimizations an alsobe applied at runtime.Array Padding. If two arrays are aessed in an alternating manner as in Algo-rithm 3.4 and the data strutures happen to be mapped to the same ahe lines,a high number of onit misses are introdued.In the example, reading the �rst element of array a will load a ahe lineontaining this array element and possibly subsequent array elements for furtheruse. Provided that the �rst array element of array b is mapped to the same aheline as the �rst element of array a, a read of the former element will triggerthe ahe to replae the elements of array a whih have just been loaded. Thefollowing aess to the next element of array a will no longer be satis�ed by theahe, thus fore the ahe to reload the data and in turn to replae the dataof array b. Hene, the array b elements must be reloaded, and so on. Althoughboth arrays are referened sequentially with stride{1, no reuse of data whih havebeen preloaded into the ahe will our sine the data are evited immediatelyby elements of the other array, after they have been loaded. This phenomenonis alled ross interferene of array referenes [40℄.Algorithm 3.4 Inter{array padding.1: // Original ode:2: double a[1024℄;3: double b[1024℄;4: for i = 1 to 1023 do5: sum+ = a[i℄ � b[i℄;6: end for 1: // Code after applying inter{array padding:2: double a[1024℄;3: double pad[x℄;4: double b[1024℄;5: for i = 1 to 1023 do6: sum+ = a[i℄ � b[i℄;7: end for3 See again Chapter 8. 10

A similar problem | alled self interferene | an our if several rows of amultidimensional array are mapped to the same set of ahe lines and the rowsare aessed in an alternating fashion.For both ases of interferene, array padding [57, 46℄ provides a means to re-due the number of onit misses. Inter{array padding inserts unused variables(pads) between two arrays in order to avoid ross interferene. Introduing padsmodi�es the o�set of the seond array suh that both arrays are then mappedto di�erent parts of the ahe.Intra{array padding, on the other hand, inserts unused array elements be-tween rows of a multidimensional array by inreasing the leading dimension ofthe array; i.e., the dimension running fastest in memory is inreased by a smallnumber of extra elements. Whih dimension runs fastest in memory depends onthe programming language. For example, in Fortran77 the leftmost dimension isthe leading dimension, whereas in C/C++ the rightmost dimension runs fastest.The sizes of the pads depend on the mapping sheme of the ahe, the ahesize, the ahe line size, its set assoiativity, and the data aess pattern of theode. Typial padding sizes are multiples of the ahe line size, but di�erent sizesmay be used as well. Array padding is usually applied at ompile time. Intra{array padding an, in priniple, be introdued at runtime. However, knowledge ofthe ahe arhiteture is indispensable, and information about the aess patternof the program will improve the quality of the seleted padding size [46, 47℄. Thedisadvantage of array padding is that extra memory is required for pads.Array Merging. This layout optimization tehnique an be used to improve thespatial loality between elements of di�erent arrays or other data strutures.Furthermore, array merging an redue the number of ross interferene missesfor senarios with large arrays and alternating aess patterns, as we have intro-dued in the previous paragraph. The array merging tehnique is also known asgroup{and{transpose [36℄.Algorithm 3.5 Array merging.1: // Original data struture:2: double a[1024℄;3: double b[1024℄;1: // array merging using multidimensional arrays:2: double ab[1024℄[2℄;1: // array merging using strutures:2: strutf3: double a;4: double b;5: g ab[1024℄; 11

Array merging is best applied if elements of di�erent arrays are loated farapart in memory but usually aessed together. Transforming the data struturesas shown in Algorithm 3.5 will hange the data layout suh that the elementsbeome ontiguous in memory.Array Transpose. This tehnique permutes the dimensions within multidimen-sional arrays and eventually reorders the array as shown in Algorithm 3.6 [16℄.This transformation has a similar e�et as loop interhange, see Setion 3.1.Algorithm 3.6 Array transpose.1: // Original data struture:2: double a[N ℄[M ℄; 1: // Data struture after transposing:2: double a[M ℄[N ℄;Data Copying. In Setion 3.1, loop bloking has been introdued as a tehniqueto redue the number of apaity misses. Researh has shown [23, 64℄ that blokedodes su�er from a high degree of onit misses introdued by self interferene.This e�et is demonstrated by means of Fig. 4. The �gure shows a part (blok)of a big array whih is to be reused by a bloked algorithm. Suppose that a diretmapped ahe is used, and that the two words marked with x are mapped tothe same ahe loation. Due to the regularity of the ahe mapping, the shadedwords in the upper part of the blok will be mapped to the same ahe lines asthe shaded words in the lower part of the blok. Consequently, if the blok isaessed repeatedly, the data in the upper left orner will replae the data in thelower right orner and vie versa, thus reduing the reusable part of the blok.
x

i

j

x

Fig. 4. Self interferene in bloked ode.12

Therefore, researhers have proposed a data opying tehnique to guaranteehigh ahe utilization for bloked algorithms [64℄. With this approah, non{ontiguous data from a blok are opied into a ontiguous area of memory. Hene,eah word of the blok will be mapped to its own ahe loation, e�etivelyavoiding self interferene within the blok.The tehnique, however, involves a opy operation whih inreases the totalost of the algorithm. In many ases the additional ost will outweigh the bene�tsfrom opying the data. Hene a ompile time strategy has been introdued inorder to determine when to opy data [55℄. This tehnique is based on an analysisof ahe onits.4 Cahe{Aware Algorithms of Numerial Linear Algebra4.1 Overview: the Software Libraries BLAS and LAPACKThe optimization of numerial algorithms is a large and multifaeted �eld of on-going researh. In this survey, we fous on algorithms of numerial linear algebrawhih play an essential role in numerial mathematis as well as in omputa-tional siene. Partial di�erential equations (PDEs) whih arise in almost allsienti� and engineering appliations, for example, are typially disretized us-ing �nite di�erenes, �nite elements, or �nite volumes. This step usually yieldslarge systems of linear equations the solution of whih is only one fundamentalissue of algorithms of numerial linear algebra.These algorithms are often based on elementary kernel routines whih areprovided by highly optimized underlying software libraries; e.g. BLAS 4 and LA-PACK 5.BLAS provides building bloks for performing elementary vetor and matrixoperations [18℄. In the following, we use � and � to represent salar values,whereas x and y denote vetors, and A, B, and C represent matries. The BLASlibrary is divided into three levels. Level 1 BLAS do vetor{vetor operations;e.g., so{alled AXPY omputations suh as y �x+y and dot produts suh as� �+xT y. Level 2 BLAS do matrix{vetor operations; e.g., y �op(A)x+�y,where op(A) = A;AT , or AH . Eventually, Level 3 BLAS do matrix{matrixoperations suh as C �op(A)op(B) + �C. Dediated routines are providedfor speial ases suh as symmetri and Hermitian matries. BLAS providessimilar funtionality for real and omplex data types, in both single and doublepreision.LAPACK is another software library whih is often used by numerial appli-ations [5℄. LAPACK is based on the BLAS and implements routines for solvingsystems of linear equations, omputing least{squares solutions of linear systems,and solving eigenvalue as well as singular value problems. The assoiated routinesfor fatorizing matries are also provided; e.g., LU, Cholesky, and QR deom-position. LAPACK handles dense and banded matries, see Setion 4.4 below4 BLAS: Basi Linear Algebra Subprograms, see http://www.netlib.org/blas.5 LAPACK: Linear Algebra PACKage, see http://www.netlib.org/lapak.13

for a disussion of iterative solvers for sparse linear systems. In analogy to theBLAS library, LAPACK implements similar funtionality for real and omplexmatries, in both single and double preision.4.2 Enhaning the Cahe Performane of the BLAS LibraryOur presentation losely follows the researh e�orts of the ATLAS 6 projet [63℄.This projet onentrates on the automati appliation of empirial ode op-timization tehniques for the generation of highly optimized platform{spei�BLAS libraries. The basi idea is to suessively introdue soure{to{souretransformations and evaluate the resulting performane, thus generating themost eÆient implementation of BLAS. It is important to note that ATLAS stilldepends on an optimizing ompiler for applying arhiteture{dependent opti-mizations and generating eÆient mahine ode. A similar tuning approah hasguided the researh in the FFTW projet [24℄.ATLAS mainly targets the optimizations of Level 2 and Level 3 BLAS whilerelying on the underlying ompiler to generate eÆient Level 1 BLAS. This isdue to the fat that Level 1 BLAS basially ontains no memory reuse and highlevel soure ode transformations only yield marginal speedups.On the ontrary, the potential for data reuse is high in Level 2 and evenhigher in Level 3 BLAS due to the ourrene of at least one matrix operand.Conerning the optimization of Level 2 BLAS, ATLAS implements both regis-ter bloking7 and loop bloking. In order to illustrate the appliation of thesetehniques it is suÆient to onsider the update operation y Ax+ y, where Ais an n� n matrix and x; y are vetors of length n. This operation an also bewritten as yi nXj=1 ai;jxj + yi; 1 � i � n ;see [63℄. By keeping the urrent value yi in a CPU register (i.e., by applyingregister bloking), the number of read/write aesses to y an be redued fromO(n2) to O(n). Furthermore, unrolling the outermost loop and hene updatingk omponents of the vetor y simultaneously an redue the number of aessesto x by a fator of 1=k to n2=k. This is due to the fat that eah xj ontributesto eah yi. In addition, loop bloking an be introdued in order to redue thenumber of main memory aesses to the omponents of the vetor x from O(n2)to O(n) [63℄, see Setion 3 for details. This means that loop bloking an beapplied in order to load x only one into the ahe.While Level 2 BLAS routines require O(n2) data aesses in order to per-form O(n2) FP operations, Level 3 BLAS routines need O(n2) data aessesto exeute O(n3) FP operations, thus ontaining a higher potential for data6 ATLAS: Automatially Tuned Linear Algebra Software. More details are providedon http://math-atlas.soureforge.net.7 The developers of ATLAS refer to the term register bloking as a tehnique toexpliitly enfore the reuse of CPU registers by introduing temporary variables.14

reuse. Consequently, the most signi�ant speedups are obtained by tuning theahe performane of Level 3 BLAS; partiularly the matrix multiply. This isahieved by implementing an L1 ahe{ontained matrix multiply and parti-tioning the original problem into subproblems whih an be omputed in ahe[63℄. In other words, the optimized ode results from bloking eah of the threeloops of a standard matrix multiply algorithm, see again Setion 3, and allingthe L1 ahe{ontained matrix multiply ode from within the innermost loop.Fig. 5 illustrates the bloked algorithm. In order to ompute the shaded blokof the produt C, the orresponding bloks of its fators A and B have to bemultiplied and added.
M M

NN

K

K

Matrix C Matrix A

Matrix BFig. 5. Bloked matrix multiply algorithm.In order to further enhane the ahe performane of the matrix multiplyroutine, ATLAS introdues additional bloking for either L2 or L3 ahe. Thisis ahieved by tiling the loop whih moves the urrent matrix bloks horizon-tally through the �rst fator A and vertially through the seond fator B, re-spetively. The resulting performane gains depend on various parameters; e.g.,hardware harateristis, operating system features, and ompiler apabilities[63℄.It is important to note that fast matrix multiply algorithms whih requireO(n!); ! < 3; FP operations have been developed; e.g., Winograd's methodand Strassen's method. These algorithms are based on the idea of reursivelypartitioning the fators into bloks and reusing intermediate results. However,error analysis reveals that these fast algorithms have di�erent properties in termsof numerial stability, see [34℄ for a detailed analysis.4.3 Blok Algorithms in LAPACKIn order to leverage the speedups whih are obtained by optimizing the aheutilization of Level 3 BLAS, LAPACK provides implementations of blok algo-rithms in addition to the standard versions of various routines only based on15

Level 1 and Level 2 BLAS. For example, LAPACK implements blok LU, blokCholesky, and blok QR fatorizations [5℄. The idea behind these algorithms isto split the original matries into submatries (bloks) and proess them usinghighly eÆient Level 3 BLAS, see Setion 4.2.In order to illustrate the design of blok algorithms in LAPACK we om-pare the standard LU fatorization of a non{singular n � n matrix A to theorresponding blok LU fatorization. In order to simplify the presentation, weinitially leave pivoting issues aside. Eah of these algorithms determines a lowerunit triangular n � n matrix8 L and an upper triangular n � n matrix U suhthat A = LU . The idea of this (unique) fatorization is that any linear systemAx = b an then be solved easily by �rst solving Ly = b using a forward sub-stitution step, and subsequently solving Ux = y using a bakward substitutionstep [27, 34℄.Computing the triangular matries L and U essentially orresponds to per-forming Gaussian elimination on A in order to obtain an upper triangular matrix.In the ourse of this omputation, all elimination fators li;j are stored. Thesefators li;j beome the subdiagonal entries of the unit triangular matrix L, whilethe resulting upper triangular matrix de�nes the fator U . This elimination pro-ess is mainly based on Level 2 BLAS; it repeatedly requires rows of A to beadded to multiples of di�erent rows of A.The blok LU algorithm works as follows. The matrix A is partitioned intofour submatries A1;1; A1;2; A2;1, and A2;2. The fatorization A = LU an thenbe written as "A1;1 A1;2A2;1 A2;2 # = "L1;1 0L2;1 L2;2 # "U1;1 U1;20 U2;2 # ; (1)where the orresponding bloks are equally sized, and A1;1; L1;1, and U1;1 aresquare submatries. Hene, we obtain the following equations:A1;1 = L1;1U1;1 ; (2)A1;2 = L1;1U1;2 ; (3)A2;1 = L2;1U1;1 ; (4)A2;2 = L2;1U1;2 + L2;2U2;2 : (5)Aording to Equation (2), L1;1 and U1;1 are omputed using the standard LUfatorization routine. Afterwards, U1;2 and L2;1 are determined from Equations(3) and (4), respetively, using Level 3 BLAS solvers for triangular systems.Eventually, L2;2 and U2;2 are omputed as the result of reursively applyingthe blok LU deomposition routine to ~A2;2 = A2;2 � L2;1U1;2. This �nal stepfollows immediately from Equation (5). The omputation of ~A an again beaomplished by leveraging Level 3 BLAS.It is important to point out that the blok algorithm an yield di�erent nu-merial results than the standard version as soon as pivoting is introdued; i.e.,8 A unit triangular matrix is haraterized by having only 1's on its main diagonal.16

as soon as a deomposition PA = LU is omputed, where P denotes a suitablepermutation matrix [27℄. While the searh for appropriate pivots may over thewhole matrix A in the ase of the standard algorithm, the blok algorithm re-strits this searh to the urrent blok A1;1 to be deomposed into triangularfators. The hoie of di�erent pivots during the deomposition proess may leadto di�erent round{o� behavior due to �nite preision arithmeti.Further ahe performane optimizations for LAPACK have been developed.The appliation of reursively paked matrix storage formats is an example ofhow to ombine both data layout as well as data aess optimizations [4℄. Amemory{eÆient LU deomposition algorithm with partial pivoting is presentedin [56℄. It is based on reursively partitioning the input matrix.4.4 Cahe{Aware Iterative AlgorithmsIterative algorithms form another lass of numerial solution methods for systemsof linear equations [27, 30, 60℄. LAPACK does not provide implementations of it-erative methods. A typial example of the use of these methods is the solution oflarge sparse systems whih arise from the disretization of PDEs. Iterative meth-ods overs basi tehniques suh as Jaobi's method, Jaobi overrelaxation (JOR),the method of Gauss{Seidel, and the method of suessive overrelaxation (SOR)[27, 30, 60℄ as well as advaned tehniques suh as multigrid algorithms. Gener-ally speaking, the idea behind multigrid algorithms is to aelerate onvergeneby uniformly eliminating error omponents over the entire frequeny domain.This is aomplished by solving a reursive sequene of several instanes of theoriginal problem simultaneously, eah of them on a di�erent sale, and ombiningthe results to form the required solution [11, 29, 58℄. Typially, Krylov subspaemethods suh as the method of onjugate gradients (CG) and the method ofgeneralized minimal residuals (GMRES) are onsidered iterative, too. Althoughtheir maximum number of omputational steps is theoretially limited by thedimension of the linear system to be solved, this is of no pratial relevane inthe ase of systems with millions of unknowns [27, 30℄.In this paper, we fous on the disussion of ahe{aware variants of basiiterative shemes; partiularly the method of Gauss{Seidel. On the one hand,suh methods are used as linear solvers themselves. On the other hand, theyare ommonly employed as smoothers to eliminate the highly osillating Fourieromponents of the error in multigrid settings [11, 29, 58℄ and as preonditionersin the ontext of Krylov subspae methods [27, 30℄.Given an initial approximation x(0) to the exat solution x of the linearsystem Ax = b of order n, the method of Gauss{Seidel suessively omputes anew approximation x(k+1) from the previous approximation x(k) as follows:x(k+1)i = a�1i;i 0�bi �Xj<i ai;jx(k+1)j �Xj>i ai;jx(k)j 1A ; 1 � i � n : (6)17

If used as a linear solver by itself, the iteration typially runs until some on-vergene riterion is ful�lled; e.g., until the Eulidean norm of the residualr(k) = b�Ax(k) falls below some given tolerane.For the disussion of optimization tehniques we onentrate on the ase of ablok tridiagonal matrix whih typially results from the 5{point disretizationof a PDE on a two{dimensional retangular grid using �nite di�erenes. Wefurther assume a grid{based implementation9 of the method of Gauss{Seidelusing a red/blak ordering of the unknowns.For the sake of optimizing the ahe performane of suh algorithms, bothdata layout optimizations as well as data aess optimizations have been pro-posed. Data layout optimizations omprise the appliation of array padding inorder to minimize the numbers of onit misses aused by the stenil{basedomputation [46℄ as well as array merging tehniques to enhane the spatialloality of the ode [19, 39℄. These array merging tehniques are based on theobservation that, for eah update, all entries ai;j of any matrix row i as well as theorresponding right{hand side bi are always needed simultaneously, see Equation(6). Data aess optimizations for red/blak Gauss{Seidel omprise loop fusionas well as loop bloking tehniques. As we have mentioned in Setion 3, theseoptimizations aim at reusing data as long as they reside in ahe, thus enhan-ing temporal loality. Loop fusion merges two suessive passes through the gridinto a single one, integrating the update steps for the red and the blak nodes.On top of loop fusion, loop bloking an be applied. For instane, bloking theoutermost loop means beginning with the omputation of x(k+2) from x(k+1) be-fore the omputation of x(k+1) from x(k) has been ompleted, reusing the matrixentries ai;j , the values bi of the right{hand side, and the approximations x(k+1)iwhih are still in ahe.Again, the performane of the optimized odes depends on a variety of ma-hine, operating system, and ompiler parameters. Depending on the problemsize, speedups of up to 500% an be obtained, see [50, 61, 62℄ for details. It is im-portant to point out that these optimizing data aess transformations maintainall data dependenies of the original algorithm and therefore do not inuenethe numerial results of the omputation.Similar researh has been done for Jaobi's method [8℄, whih suessivelyomputes a new approximation x(k+1) from the previous approximation x(k) asfollows: x(k+1)i = a�1i;i 0�bi �Xj 6=i ai;jx(k)j 1A ; 1 � i � n : (7)It is obvious that this method requires the handling of an extra array sine theupdates annot be done in plae; in order to ompute the (k + 1){th iteratefor unknown xi, the k{th iterates of all neighboring unknowns are required, see9 Instead of using data strutures to store the omputational grids whih over thegeometri domains, these methods an also be implemented by employing matrixand vetor data strutures. 18

Equation (7), although there may already be more reent values for some ofthem from the urrent (k + 1){th update step.Moreover, the optimization of iterative methods on unstrutured grids hasalso been addressed [20℄. These tehniques are based on partitioning the om-putational domain into bloks whih are adapted to the size of the ahe. Theiteration then performs as muh work as possible on the urrent ahe blok andrevisits previous ahe bloks in order to omplete the update proess. The in-vestigation of orresponding ahe optimizations for three{dimensional problemshas revealed that TLB misses beome more relevant than in the two{dimensionalase [38, 47℄.More advaned researh on hierarhial memory optimization addresses thedesign of new iterative numerial algorithms. Suh methods over domain deom-position approahes with domain sizes whih are adapted to the ahe apaity[3, 28℄ as well as approahes based on runtime{ontrolled adaptivity whih on-entrates the omputational work on those parts of the domain where the errorsare still large and need to be further redued by smoothing and oarse grid or-retion in a multigrid ontext [49, 42℄. Other researh address the developmentof grid strutures for PDE solvers based on highly regular building bloks, see[12, 35℄ for example. On the one hand these meshes an be used to approximateomplex geometries, on the other hand they permit the appliation of a varietyof optimization tehniques to enhane ahe utilization, see Setion 3 for details.5 ConlusionsCahe performane optimizations an yield signi�ant exeution speedups, par-tiularly when applied to numerially intensive odes. The investigation of suhtehniques has led to a variety of new numerial algorithms, some of whih havebeen outlined in this paper. While several of the basi optimization tehniquesan automatially be introdued by optimizing ompilers, most of the tuninge�ort is left to the programmer. This is espeially true, if the resulting algo-rithms have di�erent numerial properties; e.g., onerning stability, robustness,or onvergene behavior. In order to simplify the development of portable (ahe{)eÆient numerial appliations in siene and engineering, optimized routinesare often provided by mahine{spei� software libraries.Future omputer arhiteture trends further motivate researh e�orts fous-ing on memory hierarhy optimizations. Foreasts predit the number of transis-tors on hip inreasing beyond one billion. Computer arhitets have announedthat most of the transistors will be used for larger on{hip ahes and on{hipmemory. Most of the foreast systems will be equipped with memory struturessimilar to the memory hierarhies urrently in use.While those future ahes will be bigger and smarter, the data struturespresently used in real{world sienti� odes already exeed the maximum apa-ity of foreast ahe memories by several orders of magnitude. Today's applia-tions in sienti� omputing typially require several Megabytes up to hundredsof Gigabytes of memory. 19

Consequently, due to the similar struture of present and future memoryarhitetures, data loality optimizations for numerially intensive odes willfurther on be essential for all omputer arhitetures whih employ the oneptof hierarhial memory.Referenes1. N. Ahmed, N. Mateev, and K. Pingali. Tiling Imperfetly{Nested Loop Nests. InPro. of the ACM/IEEE Superomputing Conferene, Dallas, Texas, USA, 2000.2. R. Allen and K. Kennedy. Optimizing Compilers for Modern Arhitetures. MorganKaufmann Publishers, San Franiso, California, USA, 2001.3. M. Altieri, C. Beker, and S. Turek. On the Realisti Performane of LinearAlgebra Components in Iterative Solvers. In H.-J. Bungartz, F. Durst, and C.Zenger, editors, High Performane Sienti� and Engineering Computing, Pro.of the Int. FORTWIHR Conferene on HPSEC, volume 8 of LNCSE, pages 3{12.Springer, 1998.4. B.S. Andersen, J.A. Gunnels, F. Gustavson, and J. Wa�sniewski. A ReursiveFormulation of the Inversion of Symmetri Positive De�nite Matries in PakedStorage Data Format. In Pro. of the 6th Int. Conferene on Applied ParallelComputing, volume 2367 of LNCS, pages 287{296, Espoo, Finland, 2002. Springer.5. E. Anderson, Z. Bai, C. Bishof, S. Blakford, J. Demmel, J. Dongarra, J. Du Croz,A. Greenbaum, S. Hammarling, A. MKenney, and D. Sorensen. LAPACK Users'Guide. SIAM, 3rd edition, 1999. http://www.netlib.org/lapak/lug.6. J.M. Anderson, L.M. Ber, J. Dean, S. Ghemawat, M.R. Henzinger, S.A. Leung,R.L. Sites, M.T. Vandevoorde, C.A. Waldspurger, and W.E. Weihl. ContinuousPro�ling: Where Have All the Cyles Gone? In Pro. of the 16th ACM Symposiumon Operating System Priniples, pages 1{14, St. Malo, Frane, 1997.7. D.F. Baon, S.L. Graham, and O.J. Sharp. Compiler Transformations for High{Performane Computing. ACM Computing Surveys, 26(4):345{420, 1994.8. F. Bassetti, K. Davis, and D. Quinlan. Temporal Loality Optimizations for Sten-il Operations within Parallel Objet{Oriented Sienti� Frameworks on Cahe{Based Arhitetures. In Pro. of the Int. Conferene on Parallel and DistributedComputing and Systems, pages 145{153, Las Vegas, Nevada, USA, 1998.9. R. Berrendorf and B. Mohr. PCL | The Performane Counter Library: ACommon Interfae to Aess Hardware Performane Counters on Miroproes-sors. Tehnial report, Researh Center Juelih GmbH, Juelih, Germany, 2000.http://www.fz-juelih.de/zam/PCL.10. J. Bilmes, K. Asanovi, C.-W. Chin, and J. Demmel. Optimizing Matrix Multiplyusing PHiPAC: A Portable, High{Performane, ANSI C Coding Methodology. InPro. of the Int. Conferene on Superomputing, Vienna, Austria, 1997.11. W.L. Briggs, V.E. Henson, and S.F. MCormik. A Multigrid Tutorial. SIAM,seond edition, 2000.12. D. Brown, W. Henshaw, and D. Quinlan. Overture: An Objet{Oriented Frame-work for Solving Partial Di�erential Equations on Overlapping Grids. In Pro. ofthe SIAM Workshop on Objet Oriented Methods for Inter{operable Sienti� andEngineering Computing, Yorktown Heights, New York, USA, 1998. SIAM.13. S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mui. A Portable ProgrammingInterfae for Performane Evaluation on Modern Proessors. Int. Journal of HighPerformane Computing Appliations, 14(3):189{204, 2000.20

14. D.C. Burger, J.R. Goodman, and A. K�agi. The Delining E�etiveness of Dy-nami Cahing for General{Purpose Miroproessors. Tehnial Report CS TR{95{1261, Computer Siene Department, University of Wisonsin, Madison, Wis-onsin, USA, 1995.15. T.-F. Chen and J.-L. Baer. E�etive Hardware Based Data Prefething for High{Performane Proessors. IEEE Transations on Computers, 44(5):609{623, 1995.16. M. Cierniak andW. Li. Unifying Data and Control Transformations for DistributedShared{Memory Mahines. In Pro. of the Conferene on Programming LanguageDesign and Implementation, pages 205{217, La Jolla, California, USA, 1995.17. A. Darte. On the Complexity of Loop Fusion. In Pro. of the Int. Confereneon Parallel Arhitetures and Compilation Tehniques, pages 149{157, NewportBeah, California, USA, 1999.18. J. Dongarra, J. Du Croz, S. Hammarling, and I. Du�. A Set of Level 3 Basi LinearAlgebra Subprograms. ACM Transations on Mathematial Software, 16(1):1{17,1990.19. C.C. Douglas. Cahing in With Multigrid Algorithms: Problems in Two Dimen-sions. Parallel Algorithms and Appliations, 9:195{204, 1996.20. C.C. Douglas, J. Hu, M. Kowarshik, U. R�ude, and C. Wei�. Cahe Optimiza-tion for Strutured and Unstrutured Grid Multigrid. Eletroni Transations onNumerial Analysis, 10:21{40, 2000.21. A. Eustae and A. Srivastava. ATOM: A Flexible Interfae for Building High Per-formane Program Analysis Tools. In Pro. of the USENIX Tehnial Confereneon UNIX and Advaned Computing Systems, pages 303{314, 1995.22. J. Fenlason and R. Stallman. GNU gprof. Free Software Foundation, In., Boston,Massahusetts, USA, 1998. http://www.gnu.org.23. J. Ferrante, V. Sarkar, and W. Trash. On Estimating and Enhaning Cahe E�e-tiveness. In U. Banerjee, editor, Pro. of the Fourth Int. Workshop on Languagesand Compilers for Parallel Computing. Springer, 1991.24. M. Frigo and S.G. Johnson. FFTW: An Adaptive Software Arhiteture for theFFT. In Pro. of the Int. Conferene on Aoustis, Speeh, and Signal Proessing,volume 3, pages 1381{1384, Seattle, Washington, USA, 1998.25. S. Ghosh, M. Martonosi, and S. Malik. Cahe Miss Equations: An AnalytialRepresentation of Cahe Misses. In Pro. of the Int. Conferene on Superomputing,pages 317{324, Vienna, Austria, 1997.26. S. Goedeker and A. Hoisie. Performane Optimization of Numerially IntensiveCodes. SIAM, 2001.27. G.H. Golub and C.F. Van Loan. Matrix Computations. John Hopkins UniversityPress, third edition, 1998.28. W.D. Gropp, D.K. Kaushik, D.E. Keyes, and B.F. Smith. High Performane Par-allel Impliit CFD. Parallel Computing, 27(4):337{362, 2001.29. W. Hakbush. Multigrid Methods and Appliations. Springer, 1985.30. W. Hakbush. Iterative Solution of Large Sparse Systems of Equations, volume 95of Applied Mathematial Sienes. Springer, 1993.31. J. Handy. The Cahe Memory Book. Aademi Press, seond edition, 1998.32. J. Harper, D. Kerbyson, and G. Nudd. Analytial Modeling of Set{AssoiativeCahe Behavior. IEEE Transations on Computers, 48(10):1009{1024, 1999.33. J.L. Hennessy and D.A. Patterson. Computer Arhiteture: A Quantitative Ap-proah. Morgan Kaufmann Publisher, In., San Franiso, California, USA, seondedition, 1996.34. N.J. Higham. Auray and Stability of Numerial Algorithms. SIAM, seondedition, 2002. 21

35. F. H�ulsemann, P. Kipfer, U. R�ude, and G. Greiner. gridlib: Flexible and EÆientGrid Management for Simulation and Visualization. In Pro. of the Int. Confer-ene on Computational Siene, Part III, volume 2331 of LNCS, pages 652{661,Amsterdam, The Netherlands, 2002. Springer.36. T. Jeremiassen and S. Eggers. Reduing False Sharing on Shared Memory Mul-tiproessors through Compile Time Data Transformations. In Pro. of the FifthACM SIGPLAN Symposium on Priniples and Pratie of Parallel Programming,pages 179{188, Santa Barbara, California, USA, 1995.37. I. Kodukula, N. Ahmed, and K. Pingali. Data{Centri Multi{Level Bloking. InPro. of the ACM SIGPLAN Conferene on Programming Language Design andImplementation, pages 346{357, Las Vegas, Nevada, USA, 1997.38. M. Kowarshik, U. R�ude, N. Th�urey, and C. Wei�. Performane Optimizationof 3D Multigrid on Hierarhial Memory Arhitetures. In Pro. of the 6th Int.Conferene on Applied Parallel Computing, volume 2367 of LNCS, pages 307{316,Espoo, Finland, 2002. Springer.39. M. Kowarshik, C. Wei�, and U. R�ude. Data Layout Optimizations for VariableCoeÆient Multigrid. In Pro. of the Int. Conferene on Computational Siene,Part III, volume 2331 of LNCS, pages 642{651, Amsterdam, The Netherlands,2002. Springer.40. M.S. Lam, E.E. Rothberg, and M.E. Wolf. The Cahe Performane and Optimiza-tions of Bloked Algorithms. In Pro. of the Fourth Int. Conferene on Arhite-tural Support for Programming Languages and Operating Systems, pages 63{74,Palo Alto, California, USA, 1991.41. D. Loshin. EÆient Memory Programming. MGraw{Hill, 1998.42. H. L�otzbeyer and U. R�ude. Path{Adaptive Multilevel Iteration. BIT, 37(3):739{758, 1997.43. T.C. Mowry. Tolerating Lateny Through Software{Controlled Data Prefething.PhD thesis, Computer Systems Laboratory, Stanford University, 1994.44. S.S. Muhnik. Advaned Compiler Design & Implementation. Morgan KaufmannPublishers, San Franiso, California, USA, 1997.45. J.J. Navarro, E. Garia-Diego, J.-L. Larriba-Pey, and T. Juan. Blok Algorithmsfor Sparse Matrix Computations on High Performane Workstations. In Pro. ofthe Int. Conferene on Superomputing, pages 301{308, Philadelphia, Pennsylvania,USA, 1996.46. G. Rivera and C.-W. Tseng. Data Transformations for Eliminating Conit Misses.In Pro. of the ACM SIGPLAN Conferene on Programming Language Design andImplementation, Montreal, Canada, 1998.47. G. Rivera and C.-W. Tseng. Tiling Optimizations for 3D Sienti� Computations.In Pro. of the ACM/IEEE Superomputing Conferene, Dallas, Texas, USA, 2000.48. M. Rosenblum, S.A. Herrod, E. Withel, and A. Gupta. Complete Computer Sys-tem Simulation: The SimOS Approah. IEEE Parallel and Distributed Tehnology:Systems & Appliations, 4(3):34{43, 1995.49. U. R�ude. Fully Adaptive Multigrid Methods. SIAM Journal on Numerial Anal-ysis, 30(1):230{248, 1993.50. S. Sellappa and S. Chatterjee. Cahe{EÆient Multigrid Algorithms. In Pro.of the Int. Conferene on Computational Siene, Part I, volume 2073 of LNCS,pages 107{116, San Franiso, California, USA, 2001. Springer.51. A.J. Smith. Cahe Memories. ACM Computing Surveys, 14(3):473{530, 1982.52. Y. Song and Z. Li. New Tiling Tehniques to Improve Cahe Temporal Loality.In Pro. of the ACM SIGPLAN Conferene on Programming Language Design andImplementation, pages 215{228, Atlanta, Georgia, USA, 1999.22

53. R.A. Sugumar and S.G. Abraham. EÆient Simulation of Cahes under OptimalReplaement with Appliations to Miss Charaterization. In Pro. of the ACMSIGMETRICS Conferene on Measurements and Modeling of Computer Systems,pages 24{35, Santa Clara, California, USA, 1993.54. O. Temam. Investigating Optimal Loal Memory Performane. In Pro. ACM Int.Conferene on Arhitetural Support for Programming Languages and OperatingSystems, San Diego, California, USA, 1998.55. O. Temam, E. Granston, and W. Jalby. To Copy or Not to Copy: A Compile{Time Tehnique for Assessing When Data Copying Should be Used to EliminateCahe Conits. In Pro. of the ACM/IEEE Superomputing Conferene, Portland,Oregon, USA, 1993.56. S. Toledo. Loality of Referene in LU Deomposition with Partial Pivoting. SIAMJournal on Matrix Analysis and Appliations, 18(4):1065{1081, 1997.57. J. Torrellas, M. Lam, and J. Hennessy. Shared Data Plaement Optimizationsto Redue Multiproessor Cahe Miss Rates. In Pro. of the Int. Conferene onParallel Proessing, volume 2, pages 266{270, Pennsylvania, USA, 1990.58. U. Trottenberg, C. Oosterlee, and A. Sh�uller. Multigrid. Aademi Press, 2001.59. S.P. Vanderwiel and D.J. Lilja. Data Prefething Mehanisms. ACM ComputingSurveys, 32(2):174{199, 2000.60. R.S. Varga. Matrix Iterative Analysis. Prentie{Hall, 1962.61. C. Wei�. Data Loality Optimizations for Multigrid Methods on Strutured Grids.PhD thesis, Lehrstuhl f�ur Rehnertehnik und Rehnerorganisation, Institut f�urInformatik, Tehnishe Universit�at M�unhen, Munih, Germany, 2001.62. C. Wei�, W. Karl, M. Kowarshik, and U. R�ude. Memory Charateristis of Iter-ative Methods. In Pro. of the ACM/IEEE Superomputing Conferene, Portland,Oregon, USA, 1999.63. R.C. Whaley and J. Dongarra. Automatially Tuned Linear Algebra Software.In Pro. of the ACM/IEEE Superomputing Conferene, Orlando, Florida, USA,1998.64. M.E. Wolf and M.S. Lam. A Data Loality Optimizing Algorithm. In Pro. of theSIGPLAN'91 Symposium on Programming Language Design and Implementation,volume 26 of SIGPLAN Noties, pages 33{44, Toronto, Canada, 1991.65. M.J. Wolfe. High{Perfomane Compilers for Parallel Computing. Addison{Wesley,Redwood City, California, USA, 1996.

23

