
SURVEY & TUTORIAL SERIES

Synchronization, Coherence,
and Event Ordering in

Multiprocessors
Michel Dubois and Christoph Scheurich

Computer Research Institute, University of Southern California

FayC A. Brigs

Sun Microsystems

M ultiprocessors, especially
those constructed of rela-
tively low-cost microproces-

sors, offer a cost-effective solution to the
continually increasing need for computing
power and speed. These systems can be
designed either to maximize the through-
put of many jobs or to speed up the exe-
cution of a single job; they are respectively
called throughput-oriented and speedup-
oriented multiprocessors. In the first type
of system, jobs are distinct from each
other and execute as if they were running
on different uniprocessors. In the second
type an application is partitioned into a set
of cooperating processes, and these
processes interact while executing concur-
rently on different processors. The parti-
tioning of a job into cooperating processes
is called multitasking’ * or multithread-
ing. In both systems global resources must
be managed correctly and efficiently by the
operating system. The problems addressed
in this article apply to both throughput-

*Multitasking is not restricted to multiprocessor sys-
tems; in this article, however, we confine OUT discus-
sion, with no loss of generality, to multitasking
multiprocessors.

and speedup-oriented multiprocessor sys-
tems, either at the user level or the
operating-system level.

Multitasked multiprocessors are capa-
ble of efficiently executing the many

cooperating numerical or nonnumerical
tasks that comprise a large application. In
general, the speedup provided by multi-
tasking reduces the turnaround time of
a job and therefore ultimately improves
the user’s productivity. For applications
such as real-time processing, CAD/CAM,
and simulations, multitasking is crucial
because the multiprocessor structure
improves the execution speed of a given
algorithm within a time constraint that is
ordinarily impossible to meet on a single
processor employing available technology.

Designing and programming multipro-
cessor systems correctly and efficiently
pose complex problems. Synchronizing
processes, maintaining data coherence,
and ordering events in a multiprocessor are
issues that must be addressed from the
hardware design level up to the program-
ming language level. The goal of this arti-
cle is not only to review these problems in
some depth but also to show that in the
design of multiprocessors these problems
are intricately related. The definitions and
concepts presented here provide a solid
foundation on which to reason about the
logical properties of a specific multiproces-

February 1988 OOIS-9l62/88/0200-09$Ot 00 1 1988 IEEE 9

updated data back to memory in
sequence.)

i
Optional

I caches

I ’

N processors

Figure 1. A shared-memory multiprocessor with optional private caches. The inter-
connection network may be either a simple bus or a complex network.

sor and to demonstrate that the hardware
adheres to the logical model expected by
the programmer. This foundation aids in
understanding complex but useful
architectures such as multiprocessors with
private caches or with recombining inter-
connection networks (Figure l).’ Other
important issues, such as scheduling and
partitioning, have been addressed in a
previous survey article.3 Readers who are
not familiar with the concept of cache
memory should consult the survey by
Smith.4

Basic definitions
The instruction set of a multiprocessor

usually contains basic instructions that are
used to implement synchronization and
communication between cooperating
processes. These instructions are usually
supported by special-purpose hardware.
Some primary hardware functions are
necessary to guarantee correct interprocess
communication and synchronization,
while other, secondary hardware functions
simplify the design of parallel applications
and operating systems. The notions of syn-
chronization and communication are dif-
ficult to separate because communication

primitives can be used to implement syn-
chronization protocols, and vice versa. In
general, communication refers to the
exchange of data between different
processes. Usually, one or several sender
processes transmit data to one or several
receiver processes. Interprocess communi-
cation is mostly the result of explicit direc-
tives in the program. For example,
parameters passed to a coroutine and
results returned by such a coroutine con-
stitute interprocess communications. Syn-
chronization is a special form of
communication, in which the data are con-
trol information. Synchronization serves
the dual purpose of enforcing the correct
sequencing of processes and ensuring the
mutually exclusive access to certain shared
writable data. For example, synchroniza-
tion primitives can be used to

(1) Control a producer process and a
consumer process such that the consumer
process never reads stale data and the pro-
ducer process never overwrites data that
have not yet been read by the consumer
process.

(2) Protect the data in a database such
that concurrent write accesses to the same
record in the database are not allowed.
(Such accesses can lead to the loss of one
or more updates if two processes first read
the data in sequence and then write the

In shared-memory multiprocessor sys-
tems, communication and synchroniza-
tion are usually implemented through the
controlled sharing of data in memory.

A second issue addressed in this article
is memory coherence, a system’s ability to
execute memory operations correctly.
Censier and Feautrier define a coherent
memory scheme as follows: “A memory
scheme is coherent if the value returned on
a Load instruction is always the value
given by the latest Store instruction with
the same address.“’ This definition has
been useful in the design of cache coher-
ence mechanisms.4 As it stands, however,
the definition is difficult to interpret in the
context of a multiprocessor, in which data
accesses may be buffered and may not be
atomic. Accesses are buffered if multiple
accesses can be queued before reaching
their destination, such as main memory or
caches. An access by processor ion a var-
iable X is atomic if no other processor is
allowed to access any copy of X while the
access by processor i is in progress. It has
been shown that memory accesses need not
be atomic at the hardware level for correct
execution of concurrent programs.6s7
Correctness of execution depends on the
expected behavior of the machine. Two
major classes of logical machine behavior
have been identified because they are com-
mon in existing multiprocessor systems:
the strongly ordered and the weakly
ordered models of behavior.’ The hard-
ware of the machine must enforce these
models by proper ordering of storage
accesses and execution of synchronization
and communication primitives. This leads
to the third issue, the ordering ofevents.

The strictest logical model for the order-
ing of events is called sequential con-
sistency, defined by Lamport. In a
multiprocessor sequential consistency
refers to the allowable sequence of execu-
tion of instructions within the same pro-
cess and among different concurrent
processes. Lamport defines the term more
rigorously: “[A system is sequentially con-
sistent if] the result of any execution is the
same as if the operations of all the proces-
sors were executed in some sequential
order, and the operations of each individ-
ual processor appear in this sequence in the
order specified by its program.“’

Since the only way that two concurrent
processors can affect each other’s execu-
tion is through the sharing of writable data
and the sending of interrupt signals, it is

10 COMPUTER

the order of these events that really mat-
ters. In systems that are sequentially con-
sistent we say that events are strongly
ordered.

However, if we look at many systems
(transaction systems, for example), it
becomes clear that sequential consistency
is often violated in favor of a weaker con-
dition. In many machines it is often
implicitly assumed that the programmer
should make no assumption about the
order in which the events that a process
generates are observed by other processes
between two explicit synchronization
points. Accesses to shared writable data
should be executed in a mutually exclusive
manner, controlled by synchronizing var-
iables. Accesses to synchronizing variables
can be detected by the machine hardware
at execution time. Strong ordering of
accesses to these synchronizing variables
and restoration of coherence at synchro-
nization points are therefore the only re-
strictions that must be upheld. In such
systems we say that events are weakly
ordered. Weak ordering may result in
more efficient systems, but the implemen-
tation problems remain the same as for
strong ordering: strong ordering must still
be enforced for synchronizing variables
(rather than for all shared writable dataj.

We can infer from this discussion that
synchronization, coherence, and ordering
of events are closely related issues in the
design of multiprocessors.

Communication and
synchronization

Communication and synchronization
are two facets of the same basic problem:
how to design concurrent software that is
correct and reliable, especially when the
processes interact by exchanging control
and data information. Multiprocessor sys-
tems usually include various mechanisms
to deal with the various granules of syn-
chronizable resources. Usually, low-level
and simple primitives are implemented
directly by the hardware. These primitives
are the basic mechanisms that enforce
mutual exclusion for more complex
mechanisms implemented in microcode or
software.

Hardware-level synchronization mech-
anisms. All multiprocessors include hard-
ware mechanisms to enforce atomic op-
erations. The most primitive memory
operations in a machine are Loads and

February 1988

{Processor 1:)
A:=0

A:=1
LABl: If (ES =l) goto LAB1

/* event Sl(A) ‘/

<critical section>
/*event U(B) */

A:=0

(Processor 2:)
B:=O

s:=i /’ event S2(B) l /
LAB2: If (A =l) goto LAB2

<critical section>
/’ event L2(A) l /

B:=O

Figure 2. Synchronization protocol using two shared variables, A and B.

Stores. With atomic Loads and Stores
complex synchronization protocols can be
built. Figure 2 depicts a simple protocol.
Before a processor can enter its critical sec-
tion, it sets its control variable (A for
processor 1 and B for processor 2) to 1.
Hence, for both processors to be in their
critical sections concurrently, both A and
B must equal 1. But this is not possible,
since a processor cannot enter its critical
section if the other processor’s control var-
iable equals 1. Therefore, the two proces-
sors cannot execute their respective critical
sections concurrently. This simple pro-
tocol can be deadlocked, but the problem
can be remedied.’ Such protocols are
hard to design, understand, and prove cor-
rect, and in many cases they are inefficient.

More sophisticated synchronization
primitives are usually implemented in
hardware. If the primitive is simple
enough, the controller of the memory
bank can execute the primitive at the mem-
ory in the same way it executes a Load or
a Store, at the added cost of a more com-
plex memory controller. This is typically
the case for the Test&Set and the
Full/Empty bit primitives described
below. Interprocessor interrupts are also
possible hardware mechanisms for syn-
chronization and communication. To send
a message to another process currently

running on a different processor, a process
can send an interrupt to that processor to
notify the destination process.

A common set of synchronization
primitives consists of Test&Set(lock) and
Reset(1ock). The semantics of Test&Set
and Reset are

TEST&SET(lock)
{ temp + lock; lock +- 1;

return temp; }
RESET(lock)

{ lock + 0; }

The microcode or software will usually
repeat the Test&Set until the returned
value is 0. Synchronization at this level
implies some form of busy waiting, which
ties up a processor in an idle loop and
increases the memory bus traffic and con-
tention. The type of lock that relies on
busy waiting is called a spin-lock.

To avoid spinning, interprocessor inter-
rupts are used. A lock that relies on inter-
rupts instead of spinning is called a
suspend-lock (also called sleep-lock in the
C.mmp’). This lock is similar to the spin-
lock in the sense that a process does not
relinquish the processor while it is waiting
on a suspend-lock. However, whenever it
fails to obtain the lock, it records its sta-
tus in one field of the lock and disables all
interrupts except interprocessor inter-

11

rupts. When a process frees the lock, it sig-
nals all waiting processors through an
interprocessor interrupt. This mechanism
prevents the excessive interconnection
traffic caused by busy waiting but still
consumes processor cycles. Spin-locks
and suspend-locks can be based on primi-
tives similar to Test&Set, such as
Compare&Swap.

The Compare&Swap(rl,r2,w) primitive
is a synchronization primitive in the IBM
370 architecture; rl and r2 are two
machine registers, and w points to a mem-
ory location. The success of the
Compare&Swap is indicated by the flag z.
The semantics of the Compare&Swap
instruction are

COMPARE&SWAP(r 1 ,r2, w)
{ temp t w; if (temp = rl)

then{w+r2;z+l;}
else {rl + temp; z + 0;)

Test&Set and Compare&Swap are also
called read-modify-write (RMW) primi-
tives. A common performance problem
associated with these basic synchroniza-
tion primitives is the complexity of lock-
ing protocols. If N processes attempt to
access a critical section at the same time,
the memory system must execute N basic
lock operations, one after the other, even
if at most one process is successful. The
NYU Ultracomputer and the RP3
multiprocessor’ use the Fetch&Add&a)
primitive, where x is a shared-memory
word and a is an increment. When a sin-
gle processor executes the Fetch&Add on
x, the semantics are

FETCH&ADD(x,a)
{ temp+x;x+temp + a;

return temp; }

The implementation of the Fetch&Add
primitive on the Ultracomputer is such
that the complexity of an N-way synchro-
nization on the same memory word is
independent of N. The execution of this
primitive is distributed in the interconnec-
tion network between the processors and
the memory module. If N processes
attempt to Fetch&Add the same memory
word simultaneously, the memory is
updated only once, by adding the sum of
the N increments, and a unique value is
returned to each of the N processes. The
returned values correspond to an arbitrary
serialization of the N requests. From the
processor and memory point of view, the
result is similar to a sequential execution
of N Fetch&Adds, but it is performed in
one operation. Consequently, the

Fetch&Add primitive is extremely effec- value greater than or equal to 0. The
tive in accessing sequentially allocated semantics of the P and V operations are
queue structures and in the forking of
processes with identical code that operate
on different data segments. For example,
the following high-level parallel Fortran
statement” can be executed in parallel by
P processors if there is no dependency
between iterations of the loop:

DOALL N= 1 to 100
<code using N>

ENDDO

Each processor executes a Fetch&Add
on Nbefore working on a specific iteration
of the loop. Each processor .will return a
unique value of N, which can be used in the
code segment. The code for each proces-
sor is as follows (Nis initially loaded with
the value I):

J-w
{ if (s > 0) then

s +- (s - 1);
else

{ Block the process and append it
to the waiting list for s;
Resume the highest priority pro-
cess in the READY LIST;}

{ if (waiting list for s empty) then
s + (s + 1);

else
{ Remove the highest priority pro-

cess blocked for s;
Append it to the READY LIST;}

n + FETCH&ADD (N, 1)
while (n 5 100) do

{ <code using N>
n + FETCH&ADD (N, 1);

\ J

processor at any time. A different process

In the HEP (Heterogeneous Element
Processor) system, shared-memory words
are tagged as empty or full. Loads of such

can immediately be activated when an

words succeed only after the word is
updated and tagged as full. After a suc-

attempt to synchronize fails. Very few

cessful Load, the tag can be reset to empty.
Similarly, the Store on a full memory word

processor cycles are wasted on synchroni-

can be prevented until the word has been
read and the tag cleared. These mechan-

zation. However, the burden of managing

isms can be used to synchronize processes,
since a process can be made to wait on an

the tags is left to the programmer or the

empty memory word until some other
process fills it. This system also relies on

compiler. A more complex tagging scheme

busy waiting, and memory cycles are
wasted on each trial. Each processor in the

is advocated for the Cedar machine.3

HEP is a multistream pipeline, and several
process contexts are present in each

I

require more overhead. Note that locks are

In these two algorithms shared lists are
consulted and modified (namely, the

still necessary to implement semaphores.

Ready List* and the waiting list for s).
These accesses as well as the test and mod-
ification of s have to be protected by spin-

Another synchronization primitive

locks, suspend-locks, or Fetch&Adds

implemented in software or microcode is

associated with semaphores and with the
lists. In practice, P and V are processor

Barrier, used to “join” a number of par-

instructions or microcoded routines, or
they are operating system calls to the pro-

allel processes. All processes synchroniz-

cess manager. The process manager is the
part of the system kernel controlling pro-

ing at a barrier must reach the barrier

cess creation, activation, and deletion, as
well as management of the locks. Because

before any one of them can continue. Bar-

the process manager can be called from

riers can be defined as follows after the

different processors at the same time, its
associated data structures must be pro-
tected. Semaphores are particularly well
adapted for synchronization. Unlike spin-
locks and suspend-locks, semaphores are
not wasteful of processor cycles while a
process is waiting, but their invocations

Software-level synchronization mech- task counter Count has been initialized to
anisms. Two approaches to synchroniza- zero:
tion are popular in multiprocessor BARRIER(N)
operating systems: semaphores and mes- { count : = count + I;
sage passing. We will discuss message pass- if (count 2 N) then
ing in the next section. Operations on
semaphores are Pand V. A binary sema-

{ Resume all
queue;

processes on barrier

phore has the values 0 or 1, which signal
acquisition and blocking, respectively. A
counting semaphore can take any integer

The Ready List is a data structure containing the
descriptors of processes that are runable.

12 COMPUTER

Table 1. Synchronization, communication, and coherence in various multiprocessors.

Multiprocessor

IBM 3081

Synapse N + 1*

Denelcor HEP*

IBM RP3t

Number of CPU architecture
processors

54 IBM 370

532 Motorola 68000

100s Custom

100s IBM ROMP

Hardware
primitives

Compare&Swap
(CS, CDS),
Test&Set (TS)

Compare&Swap
(CA%
Test&Set (TAS)

Full/empty bit

Fetch&Op
(e.g., Fetch&Add)

Cache

Write-back

Write-back

No cache

Write-back

Coherence
scheme

Central table

Distributed table/
bus watching

No shared
writable
data in cache

NYU Ultracomputert 100s Fetch&Add Write-back No shared
writable
data in cache

Encore Multimax 120 National Semiconductor Test&Set Write-through Bus watching
32032 (“interlocked” (two processors

instructions) share each cache)

Sequent Balance 8000 5 12 National Semiconductor Test&Set Write-through Bus watching
32032 (spin-lock using lock

cache and bus
watching)

*Commercial machines no longer in production.
tExperimenta1 prototype.

Reset count; }
else

Block task and place in barrier
queue;

The first N-l tasks to execute Barrier
would be blocked. Upon execution of Bar-
rier by the Nth task, all N tasks are ready
to resume. In the HEP each task that is
blocked spin-locks on a Full/Empty bit.
The Nth task that crosses the barrier writes
into the tagged memory location and
thereby wakes up all the blocked tasks.
This technique is very efficient for execut-
ing parallel, iterative algorithms common
in numerical applications.

Interprocess communication. In a
shared-memory multiprocessor, inter-
process communication can be as simple
as one processor writing to a particular
memory location and another processor
reading that memory location. However,
since these activities occur asyn-
chronously, communication is in most
cases implemented by synchronization
mechanisms. The reading process must be
informed at what time the message to be

read is valid, and the writing process must
know at what time it is allowed to write to
a particular memory location without de-
stroying a message yet to be read by
another process. Therefore, communica-
tion is often implemented by mutually
exclusive accesses to mailboxes. Mailboxes
are configured and maintained in shared
memory by software or microcode.

Message-based communication can be
synchronous or asynchronous. In a syn-
chronous system the sender transmits a
message to a receiving process and waits
until the receiving process responds with
an acknowledgment that the message has
been received. Symmetrically, the receiver
waits for a message and then sends an
acknowledgment. The sender resumes exe-
cution only when it is confirmed that the
message has been received. In asyn-
chronous systems the sending process does
not wait for the receiving process to receive
the message. If the receiver is not ready to
receive the message at its time of arrival,
the message may be buffered or simply
lost. Buffering can be provided in hard-
ware or, more appropriately, in mailboxes
in shared memory.

A summary of synchronization and
communication primitives for different
processors is given in Table 1.

Coherence in
multiprocessors

Coherence problems exist at various
levels of multiprocessors. Inconsistencies
(i.e., contradictory information) can occur
between adjacent levels or within the same
level of a memory hierarchy. For example,
in a cache-based system with write-back
caches, cache and main memory may con-
tain inconsistent copies of data.4 Multiple
caches conceivably could possess different
copies of the same memory block because
one of the processors has modified its
copy. Generally, this condition is not
allowable.

In some cases data inconsistencies do
not affect the correct execution of a pro-
gram (for example, inconsistencies
between memory and write-back caches
may be tolerated). In the following para-
graphs we identify the cases for which data

February 1988 13

Memory

Figure 3. Cache configuration after a Load on X by processors 0 and 1. Copies in
both caches are consistent.

Bus

Memory

Figure 4. Cache configuration after a Store on X by processor 0 (write-through
cache). The copies are inconsistent.

inconsistencies pose a problem and discuss memory multiprocessor in which each
various solutions. CPU does not have a private memory or

cache (Figure 1 without optional caches).
Conditions for coherence. Data coher- If Loads, Stores, and RMW cycles are

ence problems do not exist in multiproces- atomic, then data elements are accessed
sors that maintain only a single copy of and modified in indivisible operations.
data. For example, consider a shared- Each access to an element applies to the

latest copy. Simultaneous accesses to the
same element of data are serialized by the
hardware.

Cache coherence problems exist in mul-
tiprocessors with private caches (Figure 1
with optional caches) and are caused by
three factors: sharing of writable data,
process migration, and l/O activity. To
illustrate the effects of these three factors,
we use a two-processor architecture with
private caches (Figures 3-S). We assume
that an element X is referenced by the
CPUs. Let L,(X) and S,(X) denote a Load
and a Store by processor j for element X
in memory, respectively. If the caches do
not contain copies of Xinitially, a Load of
X by the two CPUs results in consistent
copies of X, as shown in Figure 3. Next, if
one of the processors performs a Store to
X, then the copies of X in the caches
become inconsistent. A Load by the other
processor will not return the latest value.
Depending on the memory update policy
used in the cache, the cache level may also
be inconsistent with respect to main mem-
ory. A write-through policy maintains
consistency between main memory and
cache. However, a write-back policy does
not maintain such consistency at the time
of the Store; memory is updated eventu-
ally when the modified data in the cache
are replaced or invalidated. Figures 4 and
5 depict the states of the caches and mem-
ory for write-through and write-back poli-
cies, respectively.

Consistency problems also occur
because of the I/O configuration in a sys-
tem with caches. In Figure 6 the I/O
processor (IOP) is attached to the bus, as
is most commonly done. If the current
state of the system is reached by an L,(X)
and S,(X) sequence, a modified copy of X
in cache 0 and main memory will not have
been updated in the case of write-back
caches. A subsequent I/O Load of X by
the IOP returns a “stale” value of X as
contained in memory. To solve the con-
sistency problem in this configuration, the
I/O processor must participate in the
cache coherence protocol on the bus. The
configuration in Figure 7 shows the IOPs
sharing the caches with the CPUs. In this
case I/O consistency is maintained if
cache-to-cache consistency is also main-
tained; an obvious disadvantage of this
scheme is the likely increase of cache per-
turbations and poor locality of I/O data,
which will result in high miss ratios.

Some systems allow processes to
migrate-i.e., to be scheduled in different
processors during their lifetime-in order
to balance the work load among the

14 COMPUTER

processors. If this feature is used in con
junction with private caches, data incon
sistencies can result. For example, process
A, which runs on CPUO, may alter data
contained in its cache by executing S,(X)
before it is suspended. If process A
migrates to CPU, before memory has
been updated with the most recent value of
X, process A may subsequently Load the
stale value of X contained in memory.

Q (7-q Processors

It is obvious that a mere write-through
policy will not maintain consistency in the
system, since the write does not automat-
ically update the possible copies of the data
contained in the other caches. In fact,
write-through is neither necessary nor
sufficient for coherence.

x

”

x

P

Caches

t
I I

I Bus

Solutions to the cache coherence prob-
lem. Approaches to maintaining coher-
ence in multiprocessors range from simple
architectural principles that make incoher-
ence impossible to complex memory
coherence schemes that maintain coher-
ence “on the fly” only when necessary.
Here we list these approaches from least to
most complex:

Memory

Figure 5. Same as Figure 4 but with write-back cache. The copies are inconsistent.

(1) A simple architectural technique is (2) For performance considerations it is other data protected by critical sections.
to disallow private caches and have only desirable to attach a private cache to each Instructions and other data can be copied
shared caches that are associated with the CPU. Data inconsistency can be prevented into caches as usual. Such items are
main memory modules. Every data access by not caching shared writable data; such referred to as cachable. The compiler must
is made to the shared cache. A network data are called noncachable. Examples of tag data as either cachable or noncachable.
interconnects the processors to the shared shared writable data are locks, shared data The hardware must adhere to the meaning
cache modules. structures such as process queues, and any of the tags. This technique, apparently

I I I
1 Bus

I I

PO IOP

9 Cache

IOP Pi

F cache

IBus
I Memory

Figure 6. IOPs are attached to the bus and bypass the cache. Figure 7. IOPs are attached to the caches.

February 1988 I5

updated in a critical section, and subse-
quently released. It works for write-
through caches; for write-back caches, the
design is more complex.

Wci) W(i)

W(i) = Write to block by processor i. W(j) = Write to block by processor j (j + i),
R(i) = Read block by processor i. R(j) = Read block by processor j (j f i),
Z(i) = Displace block by cache i. Z(j) = Displace block by cache j(j + i).

Figure 8. State diagram for a given block in cache i for a write-through coherence
protocol.

W(i) = Write to block by processor i.
R(i) = Read block by processor i.
Z(i) = Displace block by cache i.

W(j) = Write to block by processor j(j + i).
R(j) = Read block by processor j(j # i).
Z(j) = Displace block by cache j(j # i).

Figure 9. State diagram for a given block in cache i for a write-back coherence
protocol.

simple in principle, must rely on the detec-
tion within each CPU that a block is cach-
able or not. Such a detection can be made
in a virtual memory environment by tag-
ging each page. The tag is stored in entries
in the CPU’s translation buffers. Transla-
tion buffers (TBs) are similar to caches,
but they store virtual-to-physical address
translations.

(3) If all shared writable data are
declared noncachable, the performance
may be degraded appreciably. If accesses
to shared writable data always occur in
critical sections, then such data can be

cached. Only the locks that protect the crit-
ical sections must remain noncachable.
However, to maintain data consistency, all
data modified in the critical section must
be invalidated in the cache when the criti-
cal section is exited. This operation is often
referred to as a cacheflush. The flushing
operation ensures that no stale data remain
in the cache at the next access to the criti-
cal section. If another cache accesses the
data via the acquisition of the lock, con-
sistency is maintained. This scheme is ade-
quate for transaction-processing systems
in which a shared record is acquired,

(4) A scheme allowing shared writable
data to exist in multiple caches employs a
centralized global table’ and is used in
many mainframe multiprocessor systems,
such as the IBM 308x. The table stores the
status of memory blocks so that coherence
enforcement signals, called cache cross-
interrogates (XI), can be generated on the
basis of the block status. To maintain con-
sistency, XI signals with the associated
block address are propagated to the other
caches either to invalidate or to change the
state of the copies of the referenced block.
An arbitrary number of caches can contain
a copy of a block, provided that all the
copies are identical. We refer to such a
copy as a read-only copy (RO). To modify
a block present in its cache, the processor
must own the block with read and write
access. When a block is copied from mem-
ory into cache, the block is tagged as exclu-
sive (EX) if the cache is the only cache that
has a copy of the block. A block is owned
exclusively with read and write (RW)
access when it has been modified. Only
one processor can own an RW copy of a
block at any time. The state IN (invalid)
signals that the block has been invalidated.

The centralized table is usually located
in the storage control element, which may
also incorporate a crossbar switch that
connects the CPUs to the main memory.
To limit the accesses to the global table,
local status flags can be provided in the
cache directories for the blocks that reside
in the cache. Depending on the status of
the local flags and the type of request, the
processor is allowed to proceed or is
required to consult the global table.

(5) In bus-oriented multiprocessors the
table that records the status of each block
can be efficiently distributed among
processors. The distributed-table scheme
takes advantage of the broadcasting capa-
bility of the bus. Typically, consistency
between the caches is maintained by a bus-
watching mechanism, often called a
snoopy cache controller, which imple-
ments a cache coherence protocol on the
bus. In a simple scheme for write-through
caches, all the snoopy controllers watch
the bus for Stores. If a Store is made to a
location cached in remote caches, then the
copies of the block in remote caches are
either invalidated or updated. This scheme
also maintains coherence with I/O
activity. Figure 8 depicts a state diagram
of the block state changes depending on

16 COMPUTER

the access type and the previous state of the
block. A similar scheme was applied in the
Sequent Balance 8000 multiprocessor,
which can be configured with up to 12
processors.

The efficiency of the hardware that
maintains coherence on the fly is vital.
Recognizing that the Store traffic may
contribute to bus congestion in a write-
through system, Goodman proposed a
scheme called write-once, in which the ini-
tial Store to a block copy in the cache also
updates memory.” This Store also invali-
dates matching entries in remote caches,
thereby ensuring that the writing proces-
sor has the only cached copy. Further-
more, Stores can be performed in the
cache at the cache speed. Subsequent
updates of the modified block are made in
the cache only. A CPU or IOP Load is
serviced by the unit (a cache or the mem-
ory) that has the latest copy of the block.

Multiprocessors with write-back caches
rely on an ownership protocol. When the
memory owns a block, caches can contain
only RO copies of the block. Before a
block is modified, ownership for exclusive
access must first be obtained by a read-
private bus transaction, which is broadcast
to the caches and memory. If a modified
block copy exists in another cache, mem-
ory must first be updated, the copy invali-
dated, and ownership transferred to the
requesting cache. Figure 9 diagrams mem-
ory block state transitions brought about
by processor actions. The first commercial
multiprocessor with write-back caches was
the Synapse N + 1.

Variants of the cache coherence bus pro-
tocols have been proposed. One scheme,
proposed for the Spur project at the Uni-
versity of California, Berkeley, combines
compile-time tagging of shared and private
data and the ownership protocol. In
another system, the Xerox Dragon multi-
processor, a write is always broadcast to
other caches and main memory is updated
only on replacement. These bus protocols
are described and their performances com-
pared in an article by Archibald and
Baer. I2

Advantages and disadvantages.
Although scheme 1 provides coherence
while being transparent to the user and the
operating system, it does not reduce mem-
ory conflicts but only the memory access
latency. Shared caches, by necessity, con-
tradict the rule that processors and caches
should be as close together as possible. I/O
accesses must be serviced via the shared
caches to maintain coherence.

February 1988

Tagging shared
writable data fails to

alleviate the coherence
problem caused by

I/O accesses.

There are a number of disadvantages
associated with scheme 2, which’tags data
as cachable or noncachable. The major
one is the nontransparency of the multi-
processor architecture to the user or the
compiler. The user must declare data ele-
ments as shared or nonshared if a concur-
rent language such as Ada, Modula-2, or
Concurrent Pascal is used.13 Alterna-
tively, a multiprocessing compiler, such as
Parafrase,” can classify data as shared or
nonshared automatically. The efficiency
of these approaches depends respectively
on the ability of the language to specify
data structures (or parts thereof) that are
shared and writable and of the compiler to
detect the subset of shared writable data.
Since in practical implementations a whole
page must be declared as cachable or not,
internal fragmentation may result, or
more data than the shared writable data
may become noncachable.

Tagging shared writable data also fails
to alleviate the coherence problem caused
by I/O accesses. Either caches must be
flushed before I/O is allowed to proceed,
or all data subject to I/O must be tagged
as noncachable as well. Depending on the
frequency of I/O operations, both
approaches reduce the overall hit rate of
the caches and hence the speedup obtained
by using caches.

Another common drawback of tagging
shared writable data rather than maintain-
ing coherence on the fly is the inefficiency
caused by process migration. Caches must
be flushed before each migration or pro-
cess migration must be disallowed at the
cost of limiting scheduling flexibility.

Scheme 3-flushing caches only when
synchronization variables are accessed-
has performance problems. In practice the
whole cache has to be flushed, or else the
data accessed in a critical section must be
tagged in the cache. I/O must also be
preceded by cache flushing. Note that the
programmer must be aware that coherence
is restored only at synchronization points.

Scheme 3 appears to be attractive only for
small caches.

Scheme 4 solves the problems caused by
I/O accesses and process migration. HOW-
ever, a global table that must be accessed
by all cache controllers can become a bot-
tleneck, even when XIs are filtered by
hardware. But the main problem of this
coherence scheme is the distance between
the processors and the global table. AS
processors become faster, the access
latency of the table becomes a limiting fac-
tor of system performance; in particular,
when cache access times are very fast, the
time penalty for a miss (misspenalty) must
be minimized.

By distributing the table among the
caches, the last scheme partly solves the
problems of table access contention and
latency. HoweJer, the complexity of the
bus interface unit is increased because it
has to “watch” the bus. Furthermore,
since the scheme relies on a broadcast bus,
the number of processors that can be inter-
connected is limited by the bus bandwidth.

Ping-pong effect. In systems with
caches employing scheme 4 or 5, the exe-
cution of synchronization primitives, such
as atomic read-modify-write memory
cycles, can create additional access penal-
ties. If two or more processors are spinning
on a lock, RMW cycles that cause the lock
variable to bounce repeatedly from one
cache to another are generated. This can
be aggravated by clustering different locks
into a given block of memory. However,
if RMW operations are implemented care-
fully, spin-locks can be efficient.

Let us illustrate the ping-pong problem
by an example and discuss techniques for
reducing system performance degrada-
tions. In this example we will assume the
use of the Test&Set(lock) instruction;
however, the problem can occur with other
primitives. The traditional segment of
code executed to acquire access to a criti-
cal section via a spin-lock is the following:

while (TEST&SET(lock) = 1) do nothing;
/* spin-lock with RMW cycles */

<execute critical section >
RESET(lock);

/* exit critical section */
Assume that each processor has a private
write-back cache and that three or more
processors attempt to access the critical
section concurrently. If processor PO suc-
ceeds in acquiring the lock, the other
processors (PI and P2) will spin-lock and
cause the modified lock variable to be
invalidated in the other processors’ caches

17

for each access to the lock. As a result of
the invalidation of the modified lock var-
iable, the block is transferred to the
requesting cache-a significant penalty.
The modification is a result of the writing
in the last part of the RMW memory cycle.

One technique for avoiding the ping-
pong effect is to use the following segment
of code in place of the while statement in
the previous code segment:

repeat
while (LOAD(lock) = 1) do nothing;

/* spin without modification */
until (TEST&SET(lock) = 0);

In this segment of code the lock is first
loaded to test its status. If available, a
Test&Set is used to attempt acquisition.
However, while a processor is attempting
to acquire the lock, it “spins” locally in its
cache, repeating the execution of a tight
loop made of a Load followed by a Test.
This spinning causes no invalidation traf-
fic on the bus. On a subsequent release of
the lock, the processors contend for the
lock, and only one of them will succeed.
The ping-pong problem is solved; spin-
locks can therefore be implemented effi-
ciently in cache-based systems.

Ping-ponging also occurs for shared
writable variables. A typical example is the
index N in the Doall loop described
earlier, in the section on hardware-level
synchronization mechanisms. Unless the
implementation of Fetch&Add is carefully
designed, accesses to the index Ncreate a
“hot spot,“g which in a cache-based sys-
tem results in intense ping-ponging
between the caches. The careful imple-
mentation of synchronization primitives
and the creation of hot spots in cache-
based systems are research topics that
deserve more attention.

Strong and weak
ordering of events

The mapping of an algorithm as con-
ceived and understood by a human pro-
grammer into a list of machine instructions
that correctly implement that algorithm is
a complex process. Once the translation
has been accomplished, however, it is rela-
tively easy in the case of a uniprocessor to
understand what modifications of the
machine code can be made without alter-
ing the outcome of the execution. A com-
piler, for example, can resequence
instructions to boost performance, or the
processor itself can execute instructions

Local dependency
checking is necessary,

but it may not
preserve the intended

outcome of a
concurrent execution.

out of order if it is pipelined. This is allow-
able in uniprocessors, provided that hard-
ware mechanisms (interlocks) exist to
check data and control dependencies
between instructions to be executed con-
currently or out of program order.

dependencies
instructions,

exist
then

among reordered
the interleaving

b,d,f,e,a,cis possible and would yield the
output OOOOOO. Note that this outcome is
not possible if processors execute instruc-
tions in program order only.

If a processor is a part of a multiproces-
sor that executes a concurrent program,
then such local dependency checking is still
necessary but may not be sufficient to pre-
serve the intended outcome of a concur-
rent execution. Maintaining correctness
and predictability of the execution of con-
current programs is more complex for
three reasons:

(1) The order in which instructions
belonging to different instruction streams
are executed is not fixed in a concurrent
program. If no synchronization among
instruction streams exists, then a very large
number of different instruction interleav-
ings is possible.

Of the 720 (6!) possible execution inter-
leavings, 90 preserve the individual pro-
gram order. We have already pointed out
that of the 90 program-order interleavings
not all six-tuple combinations can result
(i.e., 000000 is not possible). The question
remains whether out of the 720 non-
program-order interleavings all six-tuple
combinations can result. So far we have
assumed that the memory system of the
example multiprocessor is access atomic;
this means that memory updates affect all
processors at the same time. In a cache-
based system such as depicted in Figure 1,
this may not be the case; such a system
be nonatomic if an invalidation does

can
not

(2) If for performance reasons the order
of execution of instructions belonging to
the same instruction stream is different
from the order implied by the program,
then an even larger number of instruction
interleavings is possible.

reach all caches at the same time.

(3) If accesses are not atomic (for exam-
ple, if multiple copies of the same data
exist), as is the case in a cache-based sys-
tem, and if not all copies are updated at the
same time, then different processors can
individually observe different interleav-
ings during the same execution. In this case
the total number of possible execution
instantiations of a program becomes still
larger.

TO illustrate the possible types of inter-
leavings, we examine the following three
program segments to be executed concur-
rently by three processors (initially
A = B = C = 0, and we assume that a Print
statement reads both variables indivisibly
during the same cycle):

In an atomic system it is easy to show
that, indeed, not all six-tuple combinations
are possible, even if processors need not
adhere to program order. For example, the
outcome 011001 implies the following:
Processor Pl observes that C has been
updated and B has not been updated yet.
This implies that P3 must have executed
statement e before P2 executed statement
c. Processor P2 observes that A has been
updated before C has been updated. This
implies that Pl must have executed state-
ment a before P3 executed statement e.
Processor P3 observes that B has been
updated but A has not been updated. This
implies that P2 must have executed state-
ment c before PI executed statement a.
Hence, e occurred before c, a occurred
before e, and c occurred before a. Since
this ordering is plainly impossible, we can
conclude that in an atomic system, the out-
come 011001 cannot occur.

The above conclusion does not hold true

Pl P2 P3
a:A+l c: B+l e: C-1
b: Print BC d: Print AC f: Print AB

If the outputs of the processors are con-
catenated in the order Pl, P2, and P3, then
the output forms a six-tuple. There are 64
possible output combinations. For exam-
ple, if processors execute instructions in
program order, then the execution inter-
leaving a, b,c,d,e,f is possible and would
yield the output 001011. Likewise, the
interleaving a,c,e, b,df is possible and
would yield the output 111111. If proces-
sors are allowed to execute instructions out
of program order, assuming that no data

18 COMPUTER

in a nonatomic multiprocessor. Let us
assume that the actual execution interleav-
ing of instructions is a,c,e,b,d,f. Let us
further assume the following sequence of
events: When PI executes b, Pl’s own
copy of B has not been updated, but PI’s
own copy of C has been updated. Hence,
Pl prints the tuple 01. When P2 executes
d, P2’s own copy of A has been updated,
but P2’s own copy of C has not been
updated. Hence, P2 prints the tuple 10.
When P3 executes f, P3’s own copy of A
has not been updated, but P3’s own copy
of B has been updated. Hence, P3 prints
the tuple 01. The resulting six-tuple is
indeed 011001. Note that all instructions
were executed in program order, but other
processors did not observe them in pro-
gram order.

We might ask ourselves whether a multi-
processor functions incorrectly if it is capa-
ble of generating any or all of the
above-mentioned six-tuple outputs. This
question does not have a definitive answer;
rather the answer depends on the expecta-
tions of the programmer. A programmer
who expects a system to behave in a
sequentially consistent manner will per-
ceive the system to behave incorrectly if it
allows its processors to execute accesses
out of program order. The programmer
will likely find that synchronization pro-
tocols using shared variables will not func-
tion. The difficulty of concurrent
programming and parallel architectures
stems from the effort to disallow all inter-
leavings that will result in incorrect out-
comes while not being overly restrictive.

Systems with atomic accesses. We have
shown in an earlier worki that a neces-
sary and sufficient condition for a system
with atomic memory accesses to be
sequentially consistent (the strongest con-
dition for logical behavior) is that memory
accesses must be performed in the order
intended by the programmer-i.e., in pro-
gram order. (A Load is considered per-
formed at a point in time when the issuing
of a Store from any processor to the same
address cannot affect the value returned by
the Load. Similarly, a Store on X by
processor i is considered performed at a
point in time when an issued Load from
any processor to the same address cannot
return a value of X preceding the Store.)
In a system where such a condition holds,
we say that storage accesses are strong/y
ordered.

In a system without caches a memory
access is performed when it reaches the
memory system or at any point in time

February 1988

Processor 1 Processor 2 Processor 3

S,(A)

Figure 10. Concurrent program for three processors accessing shared variables.

when the order of all preceding accesses to
memory has become fixed. For example,
if accesses are queued in a FIFO (first in,
first out) buffer at the memory, then an
access is performed once it is latched in the
buffer. When a private cache is added to
each processor, Stores can also be atomic
in the case of a bus system because of the
simultaneous broadcast capability of the
buses; in such systems the invalidations
generated by a Store and the Load requests
broadcast by a processor are latched simul-
taneously by all the controllers (including
possibly the memory controllers). As soon
as each controller has taken the proper
action on the invalidation, the access can
be considered performed.

Buffering of access requests and invali-
dations also become possible if the rules
governing sequential consistency are care-
fully observed. With extensive buffering at
all levels, and provided that the intercon-
nection and the memory system have suffi-
cient bandwidth, the efficiency of all
processors may be very high, even if the
memory access latency is large compared
to the processor cycle time. Two articles
present more detailed discussions of the
buffering of accesses and invalidations in
cache-based multiprocessors.7~‘5

In a weakly ordered system the condi-
tion of strong ordering is relaxed to include
accesses to synchronization variables only.
Synchronization variables must be
hardware-recognizable to enforce the spe-
cific conditions of strong ordering on
them. Moreover, before a lock access can
proceed, all previous accesses to nonsyn-
chronization data must be allowed to “set-
tle.” This means that all shared memory
accesses made before the lock operation
was encountered must be completed
before the lock operation can proceed. In
systems that synchronize very infre-
quently, the relaxation of strong ordering

to weak ordering of data accesses can
result in greater efficiency. For example,
if the interconnection network is buffered
and packet-switched, the interface
between the processor and the network can
send global memory requests only one at
a time to the memory if strong ordering is
to be enforced. The reason for this is that
in such a network the access time is vari-
able and unpredictable because of con-
flicts; in many cases waiting for an
acknowledgment from the memory con-
troller is the only way to ensure that global
accesses are performed in program order.
In the case of weak ordering the interface
can send the next global access directly
after the current global access has been
latched in the first stage of the interconnec-
tion network, resulting in better processor
efficiency. However, the frequency of lock
operations will be higher in a program
designed for a weakly ordered system.

Systems with nonatomic accesses. In a
multiprocessor system with nonatomic
accesses, it has been shown that the previ-
ous condition for strong ordering of stor-
age accesses (and sequential consistency)
is not sufficient.14

Example I. In a system with a recombin-
ing network’ the network can provide for
access short-circuiting, which combines
Loads and Stores to the same address
within the network, before the Store
reaches its destination memory module.
For the parallel program in Figure
IO--S;(X) and L,(X) represent global
accesses “Store into location Xby proces-
sor i” and “Load from location X by
processor i, ” respectively-such short-
circuiting can result in the following
sequence of events:

(I) Processor I issues a command to
store a value at memory location A.

I9

(2) Processor 2 reads the value written
by processor 1 “on the fly” before A is
updated.

(3) Because of the successful read of A
in step 2, processor 2 issues a command to
write a value at memory location B.

(4) Processor 3 reads the value written
by processor 2; it reflects the updated B.

(5) Processor 3 reads memory location
A and an old value for A is returned
because the write to A by processor 1 has
not propagated to A yet.

Each processor performs instructions in
the order specified by the programmer, but
sequential consistency is violated. Proces-
sor 2 implies that step 1 has been com-
pleted by processor 1 when it initiates step
3. In step 4 processor 3 recognizes that
implication by successfully reading B. But
when processor 3 then reads A, it does not
find the implied new value but rather the
old value. Consequently, processor 3
observes an effect of step 1 before it is
capable of observing step 1 itself.

Example 2. In a cache-based system
where memory accesses and invalidations
are propagated one by one through a
packet-switched (but not recombining)
network, the same problem as in the previ-
ous example may occur. Initially, all
processors have an RO copy of A in their
cache.

(1) Processor 1 issues a command to
store a value at memory location A. Invali-
dations are sent to each processor with a
copy of A in its cache. (For simplicity we
assume that the size of a cache block is one
word.)

(2) Processor 2 reads the value of A as
updated by processor 1, because the invali-
dation has reached its cache; processor 1
writes the data back to main memory and
forwards a copy to processor 2.

(3) Because of the successful read of A
in step 2, processor 2 issues a command to
write a value at memory location B, send-
ing invalidations for copies of B.

(4) Processor 3 reads the value written
by processor 2; it reflects the updated B,
because the associated invalidations have
propagated to processor 3.

(5) Processor 3 reads memory location
A and an old value for A is returned
because the invalidation for A caused by
processor 1 has not yet propagated to the
third processor’s cache.

Again each processor executes all
instructions in program order. Further-
more, a processor does not proceed to
issue memory accesses before all previous

invalidations broadcast by the processor
have been acknowledged. Yet t.he same
problem occurs as in the previous example;
sequential consistency is violated. This is
the case because invalidations are essen-
tially memory accesses. Because invalida-
tions are not atomic, the system is not
strongly ordered.

User interface

The discussion in this article shows that
the issues of synchronization, communi-
cation, coherence, and ordering of events
in multiprocessors are intricately related
and that design decisions must be based on
the environment for which the machine is
destined. Coherence depends on synchro-
nization in some coherence protocols
because the user has to be aware that syn-
chronization points are the only points in
time at which coherence is restored. Strict
ordering of events may be enforced all the
time (strong ordering) or at synchroniza-
tion points only (weak ordering).

At the user level most features of the
physical (hardware) architecture are not
visible. The instruction set of each proces-
sor and the virtual memory are the most
important system features visible to the
programs. Depending on the features of
the physical architecture that are visible to
the programmer, the task of programming
the machine may be more difficult, and it
may be more difficult to share the machine
among different users.

Nontransparent coherence or ordering
schemes. A sophisticated compiler may
succeed in efficiently detecting and tagging
the shared writable data to avoid the
coherence problem. Such a compiler may
also be able to make efficient use of syn-
chronization primitives provided at differ-
ent levels. The compiler may be aware of
access ordering on a specific machine and
generate code accordingly. It is not clear
that compiler technology will improve to
a point where efficient code can be gener-
ated for these different options.

If a program is written in a high-level
concurrent language, the facility to specify
shared writable data may not exist in the
language, in which case we must still rely
on the compiler for detecting the minimum
set of data to tag as noncachable. It should
be emphasized that perfectly legal pro-
grams in concurrent languages that allow
the sharing of data, generally will not exe-
cute correctly in a system where events are
weakly ordered.

User access to synchronization primi-
tives. Programmers of concurrent applica-
tions may have in their repertoires
different hardware- or software-controlled
synchronization primitives. For perfor-
mance reasons it may be advisable to let
basic hardware-level synchronization
instructions be directly accessible to users,
who know their applications and can tai-
lor the synchronization algorithm to their
own needs. The basic drawback of such a
policy is the increased possibility of dead-
locks, resulting from programming errors
or processor failure. Spin-locks and
suspend-locks consume processor cycles
and bus cycles. Therefore, such locks
should never be held for a long time.
Ideally, a processor should not be inter-
ruptible during the time that it owns a lock;
for example, one or several processors may
spin forever on a lock if the process that
“owns” the lock has to be aborted because
of an exception. In a virtual-machine envi-
ronment the user process does not have
any control over the interruptibility of the
processor, and thus a process can be
preempted while it is owning a lock. This
will result in unnecessary, resource-
consuming spinning from all other
processes attempting to obtain the lock.

A solution to this problem is the task-
force scheduling strategy,’ in which all
active processes of a multitask are always
scheduled and preempted together.
Another solution is the implementation of
some kind of time-out on spinning. The
drastic solution to all these problems is to
involve the operating system in every syn-
chronization or communication, so that it
can include these mechanisms in its
scheduling policy to maximize per-
formance.

M aking a multiprocessor func-
tion correctly can be a simple
or an extremely difficult

task. Basic synchronization mechanisms
can be primitive or complex, wasteful of
processor cycles or highly efficient. In any
case the underlying hardware must sup-
port the basic assumptions of the logical
model expected by the user. In a strongly
ordered system such an assumption
usually is that the system behaves in a
sequentially consistent manner.

Increased transparency comes at the
cost of efficiency and increased hardware
complexity. But traditional and significant
advantages such as the ability to protect
users against themselves and other users,
ease of programming, portability of pro-
grams, and efficient management of

20 COMPUTER

shared resources by multiple users are
strong arguments for the designers of
general-purpose computers to accept the
hardware complexity and the negative
effect on performance. The designers of
general-purpose machines will probably
prefer coherence enforcement on the fly in
hardware, strong ordering of memory
accesses, and restricted access to synchro-
nization primitives by the user.

On the other hand, for machines with
limited access by sophisticated users, such
as supercomputers and experimental
multiprocessor systems, the performance
of each individual task may be of prime
importance, and the increased cost of
transparency may not be justified.

The challenge of the future lies in the
ability to control interprocess communi-
cation and synchronization in systems
without rigid structures. Efficient multi-
processing will be provided by systems
in H hich synchronization, coherence, and
logical ordering of events are carefully
analyzed and blended together harmoni-
ously in the context of efficient hardware
implementations. It is necessary, however,
to provide the programmer with a simple
logical model of concurrency behavior.
When multiprocessors do not conform to
the concept of a single logical model, but
rather must be viewed as a dynamic pool
of processing, storage, and connection
resources, the control in software over
communication and synchronization
becomes a truly formidable task. The con-
cepts of strong and weak ordering as
defined in this article correspond to two
widely accepted models of multiprocessor
behavior, and we believe that future
designs will conform to one of the two
models. 0

Acknowledgment
Through many technical discussions, William

Collier of IBM Poughkeepsie helped shape the
content of this article.

References
1. A.K. Jones and P. Schwarz, “Experience

Using Multiprocessor Systems-A Status
Report,” Computing Surveys, June 1980,
pp. 121-165.

2. A. Gottlieb et al., “The NYU
Ultracomputer-Designing an MIMD
Shared Memory Parallel Computer,” IEEE
Trans. Computers, Feb. 1983, pp. 175-189.

3. D. Gajski and J.-K. Peir, “Essential Issues
in Multiprocessor Systems,” Computer,
June 1985, pp. 9-27.

4. A.J. Smith, “Cache Memories,” Comput-
ing Surveys, Sept. 1982, pp.473.530.

5. L.M. Censier and P. Feautrier, “A New
Solution to Coherence Problems in Mul-
ticache Systems,” IEEE Trans. Computers,
Dec. 1978, pp.l112-1118.

6. W.W. Collier, “Architectures for Systems
of Parallel Processes,” IBM Technical
Report TR 00.3253, Poughkeepsie, N.Y.,
Jan. 1984.

7. M. Dubois, C. Scheurich, and F. Briggs,
“Memory Access Buffering In Multiproces-
sors,” Proc. 13th Int’l Symp. Computer
Architecture, June 1986, pp. 434-442.

8. L. Lamport, “How to Make a Multiproces-
sor Computer That Correctly Executes Mul-
tiprocess Programs,” IEEE Trans.
Computers, Sept. 1979, pp. 690-691.

9. G.F. Pfister et al., “The IBM Research Par-
allel Processor Prototype (RP3): Introduc-
tion and Architecture,” Proc. 1985 Parallel
Processing ConJ., pp. 764-771.

10. D.A. Padua, D.J. Kuck, and D.H. Lawrie,
“High-Speed Multiprocessors and Compi-
lation Techniques,” IEEE Trans. Com-
puters, Sept. 1980, pp. 763-776.

11. J.R. Goodman, “Using Cache Memory to
Reduce Processor-Memory Traffic,” Proc.
10th Int’l Symp. Computer Architecture,
June 1983, Stockholm, Sweden, pp.
124-131.

12. J. Archibald and J.-L. Baer, “Cache
Coherence Protocols: Evaluation Using a
Multiprocessor Simulation Model,” ACM
Trans. ComputerSystems, Nov. 1986, pp.
273-298.

13. G.R. Andrews and F.l!%. Schneider, “Con-
cepts and Notations for Concurrent Pro-
gramming,” Computing Surveys, Mar.
1983, pp. 3-43.

14. M. Dubois and C. Scheurich, “Dependency
and Hazard Resolution in Multiproces-
sors,” Univ. of Southern Calif. Technical
Report CR1 86-20.

15. C. Scheurich and M. Dubois, “Correct
Memory Operation of Cache-Based Mul-
tiprocessors,” Proc. 14th Int’lSymp. Com-
PuterArchitecture, June 1987, pp. 234-243.

Michel Dubois has been an assistant professor
in the Department of Electrical Engineering of
the University of Southern California since

1984. Before that, he was a research engineer at
the Central Research Laboratory of Thomson-
CSF in Orsay, France. His main interests are
computer architecture and parallel processing
with an emphasis on high-performance multi-
processor systems. He has published more than
30 technical papers on multiprocessor architec-
tures, performance, and algorithms, and he
served on the program committee of the 1987
Architecture Symposium.

Dubois holds a PhD from Purdue University,
an MS from the University of Minnesota, and
an engineering degree from the Faculte Poly-
technique de Mons in Belgium, all in electrical
engineering. He is a member of the ACM and
the Computer Society of the IEEE.

Christoph Scheurich is a doctoral student and
research assistant in the Department of Electri-
cal Engineering-Systems at USC. He received
the BSEE in 1981 from the University of the
Pacific, Stockton, California, and the MS
degree in computer engineering in 1985 from
USC. His current interests lie in computer archi-
tecture, specifically the design and implemen-
tation of multiprocessor memory systems.

Scheurich is a student member of the ACM
and the Computer Society of the IEEE.

FayC A. Briggs is in the Advanced Development
Group at Sun Microsystems. He was an associ-
ate professor of electrical and computer
engineering at Rice University, and prior to that
he was on the faculty of Purdue University. He
has also served as a consultant to IBM, TI, and
Sun. His current research interests are multipro-
cessor and vector architectures, their compilers,
operating systems, and performance. He has
published more than 35 technical papers in these
areas and is the coauthor of Computer Archi-
tecture and Parallel Processing (McGraw-Hill).

Briggs has a PhD from the University of
Illinois and an MS from Stanford University,
both in electrical engineering.

Readers may write to the authors c/o Michel
Dubois, Dept. of Electrical Engineering, Uni-
versity of Southern California, University Park,
Los Angeles, CA 90089-0781.

February 1988 21

