
SURVEY & TUTORIAL SERIES 

Synchronization, Coherence, 
and Event Ordering in 

Multiprocessors 
Michel Dubois and Christoph Scheurich 

Computer Research Institute, University of Southern California 

FayC A. Brigs 

Sun Microsystems 

M ultiprocessors, especially 
those constructed of rela- 
tively low-cost microproces- 

sors, offer a cost-effective solution to the 
continually increasing need for computing 
power and speed. These systems can be 
designed either to maximize the through- 
put of many jobs or to speed up the exe- 
cution of a single job; they are respectively 
called throughput-oriented and speedup- 
oriented multiprocessors. In the first type 
of system, jobs are distinct from each 
other and execute as if they were running 
on different uniprocessors. In the second 
type an application is partitioned into a set 
of cooperating processes, and these 
processes interact while executing concur- 
rently on different processors. The parti- 
tioning of a job into cooperating processes 
is called multitasking’ * or multithread- 
ing. In both systems global resources must 
be managed correctly and efficiently by the 
operating system. The problems addressed 
in this article apply to both throughput- 

*Multitasking is not restricted to multiprocessor sys- 
tems; in this article, however, we confine OUT discus- 
sion, with no loss of generality, to multitasking 
multiprocessors. 

and speedup-oriented multiprocessor sys- 
tems, either at the user level or the 
operating-system level. 

Multitasked multiprocessors are capa- 
ble of efficiently executing the many 

cooperating numerical or nonnumerical 
tasks that comprise a large application. In 
general, the speedup provided by multi- 
tasking reduces the turnaround time of 
a job and therefore ultimately improves 
the user’s productivity. For applications 
such as real-time processing, CAD/CAM, 
and simulations, multitasking is crucial 
because the multiprocessor structure 
improves the execution speed of a given 
algorithm within a time constraint that is 
ordinarily impossible to meet on a single 
processor employing available technology. 

Designing and programming multipro- 
cessor systems correctly and efficiently 
pose complex problems. Synchronizing 
processes, maintaining data coherence, 
and ordering events in a multiprocessor are 
issues that must be addressed from the 
hardware design level up to the program- 
ming language level. The goal of this arti- 
cle is not only to review these problems in 
some depth but also to show that in the 
design of multiprocessors these problems 
are intricately related. The definitions and 
concepts presented here provide a solid 
foundation on which to reason about the 
logical properties of a specific multiproces- 
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Figure 1. A shared-memory multiprocessor with optional private caches. The inter- 
connection network may be either a simple bus or a complex network. 

sor and to demonstrate that the hardware 
adheres to the logical model expected by 
the programmer. This foundation aids in 
understanding complex but useful 
architectures such as multiprocessors with 
private caches or with recombining inter- 
connection networks (Figure l).’ Other 
important issues, such as scheduling and 
partitioning, have been addressed in a 
previous survey article.3 Readers who are 
not familiar with the concept of cache 
memory should consult the survey by 
Smith.4 

Basic definitions 
The instruction set of a multiprocessor 

usually contains basic instructions that are 
used to implement synchronization and 
communication between cooperating 
processes. These instructions are usually 
supported by special-purpose hardware. 
Some primary hardware functions are 
necessary to guarantee correct interprocess 
communication and synchronization, 
while other, secondary hardware functions 
simplify the design of parallel applications 
and operating systems. The notions of syn- 
chronization and communication are dif- 
ficult to separate because communication 

primitives can be used to implement syn- 
chronization protocols, and vice versa. In 
general, communication refers to the 
exchange of data between different 
processes. Usually, one or several sender 
processes transmit data to one or several 
receiver processes. Interprocess communi- 
cation is mostly the result of explicit direc- 
tives in the program. For example, 
parameters passed to a coroutine and 
results returned by such a coroutine con- 
stitute interprocess communications. Syn- 
chronization is a special form of 
communication, in which the data are con- 
trol information. Synchronization serves 
the dual purpose of enforcing the correct 
sequencing of processes and ensuring the 
mutually exclusive access to certain shared 
writable data. For example, synchroniza- 
tion primitives can be used to 

(1) Control a producer process and a 
consumer process such that the consumer 
process never reads stale data and the pro- 
ducer process never overwrites data that 
have not yet been read by the consumer 
process. 

(2) Protect the data in a database such 
that concurrent write accesses to the same 
record in the database are not allowed. 
(Such accesses can lead to the loss of one 
or more updates if two processes first read 
the data in sequence and then write the 

In shared-memory multiprocessor sys- 
tems, communication and synchroniza- 
tion are usually implemented through the 
controlled sharing of data in memory. 

A second issue addressed in this article 
is memory coherence, a system’s ability to 
execute memory operations correctly. 
Censier and Feautrier define a coherent 
memory scheme as follows: “A memory 
scheme is coherent if the value returned on 
a Load instruction is always the value 
given by the latest Store instruction with 
the same address.“’ This definition has 
been useful in the design of cache coher- 
ence mechanisms.4 As it stands, however, 
the definition is difficult to interpret in the 
context of a multiprocessor, in which data 
accesses may be buffered and may not be 
atomic. Accesses are buffered if multiple 
accesses can be queued before reaching 
their destination, such as main memory or 
caches. An access by processor ion a var- 
iable X is atomic if no other processor is 
allowed to access any copy of X while the 
access by processor i is in progress. It has 
been shown that memory accesses need not 
be atomic at the hardware level for correct 
execution of concurrent programs.6s7 
Correctness of execution depends on the 
expected behavior of the machine. Two 
major classes of logical machine behavior 
have been identified because they are com- 
mon in existing multiprocessor systems: 
the strongly ordered and the weakly 
ordered models of behavior.’ The hard- 
ware of the machine must enforce these 
models by proper ordering of storage 
accesses and execution of synchronization 
and communication primitives. This leads 
to the third issue, the ordering ofevents. 

The strictest logical model for the order- 
ing of events is called sequential con- 
sistency, defined by Lamport. In a 
multiprocessor sequential consistency 
refers to the allowable sequence of execu- 
tion of instructions within the same pro- 
cess and among different concurrent 
processes. Lamport defines the term more 
rigorously: “[A system is sequentially con- 
sistent if] the result of any execution is the 
same as if the operations of all the proces- 
sors were executed in some sequential 
order, and the operations of each individ- 
ual processor appear in this sequence in the 
order specified by its program.“’ 

Since the only way that two concurrent 
processors can affect each other’s execu- 
tion is through the sharing of writable data 
and the sending of interrupt signals, it is 
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the order of these events that really mat- 
ters. In systems that are sequentially con- 
sistent we say that events are strongly 
ordered. 

However, if we look at many systems 
(transaction systems, for example), it 
becomes clear that sequential consistency 
is often violated in favor of a weaker con- 
dition. In many machines it is often 
implicitly assumed that the programmer 
should make no assumption about the 
order in which the events that a process 
generates are observed by other processes 
between two explicit synchronization 
points. Accesses to shared writable data 
should be executed in a mutually exclusive 
manner, controlled by synchronizing var- 
iables. Accesses to synchronizing variables 
can be detected by the machine hardware 
at execution time. Strong ordering of 
accesses to these synchronizing variables 
and restoration of coherence at synchro- 
nization points are therefore the only re- 
strictions that must be upheld. In such 
systems we say that events are weakly 
ordered. Weak ordering may result in 
more efficient systems, but the implemen- 
tation problems remain the same as for 
strong ordering: strong ordering must still 
be enforced for synchronizing variables 
(rather than for all shared writable dataj. 

We can infer from this discussion that 
synchronization, coherence, and ordering 
of events are closely related issues in the 
design of multiprocessors. 

Communication and 
synchronization 

Communication and synchronization 
are two facets of the same basic problem: 
how to design concurrent software that is 
correct and reliable, especially when the 
processes interact by exchanging control 
and data information. Multiprocessor sys- 
tems usually include various mechanisms 
to deal with the various granules of syn- 
chronizable resources. Usually, low-level 
and simple primitives are implemented 
directly by the hardware. These primitives 
are the basic mechanisms that enforce 
mutual exclusion for more complex 
mechanisms implemented in microcode or 
software. 

Hardware-level synchronization mech- 
anisms. All multiprocessors include hard- 
ware mechanisms to enforce atomic op- 
erations. The most primitive memory 
operations in a machine are Loads and 
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{Processor 1:) 
A:=0 

A:=1 
LABl: If (ES =l) goto LAB1 

/* event Sl(A) ‘/ 

<critical section> 
/*event U(B) */ 

A:=0 

(Processor 2:) 
B:=O 

s:=i /’ event S2(B) l / 
LAB2: If (A =l) goto LAB2 

<critical section> 
/’ event L2(A) l / 

B:=O 

Figure 2. Synchronization protocol using two shared variables, A and B. 

Stores. With atomic Loads and Stores 
complex synchronization protocols can be 
built. Figure 2 depicts a simple protocol. 
Before a processor can enter its critical sec- 
tion, it sets its control variable (A for 
processor 1 and B for processor 2) to 1. 
Hence, for both processors to be in their 
critical sections concurrently, both A and 
B must equal 1. But this is not possible, 
since a processor cannot enter its critical 
section if the other processor’s control var- 
iable equals 1. Therefore, the two proces- 
sors cannot execute their respective critical 
sections concurrently. This simple pro- 
tocol can be deadlocked, but the problem 
can be remedied.’ Such protocols are 
hard to design, understand, and prove cor- 
rect, and in many cases they are inefficient. 

More sophisticated synchronization 
primitives are usually implemented in 
hardware. If the primitive is simple 
enough, the controller of the memory 
bank can execute the primitive at the mem- 
ory in the same way it executes a Load or 
a Store, at the added cost of a more com- 
plex memory controller. This is typically 
the case for the Test&Set and the 
Full/Empty bit primitives described 
below. Interprocessor interrupts are also 
possible hardware mechanisms for syn- 
chronization and communication. To send 
a message to another process currently 

running on a different processor, a process 
can send an interrupt to that processor to 
notify the destination process. 

A common set of synchronization 
primitives consists of Test&Set(lock) and 
Reset(1ock). The semantics of Test&Set 
and Reset are 

TEST&SET(lock) 
{ temp + lock; lock +- 1; 

return temp; } 
RESET(lock) 

{ lock + 0; } 

The microcode or software will usually 
repeat the Test&Set until the returned 
value is 0. Synchronization at this level 
implies some form of busy waiting, which 
ties up a processor in an idle loop and 
increases the memory bus traffic and con- 
tention. The type of lock that relies on 
busy waiting is called a spin-lock. 

To avoid spinning, interprocessor inter- 
rupts are used. A lock that relies on inter- 
rupts instead of spinning is called a 
suspend-lock (also called sleep-lock in the 
C.mmp’). This lock is similar to the spin- 
lock in the sense that a process does not 
relinquish the processor while it is waiting 
on a suspend-lock. However, whenever it 
fails to obtain the lock, it records its sta- 
tus in one field of the lock and disables all 
interrupts except interprocessor inter- 
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rupts. When a process frees the lock, it sig- 
nals all waiting processors through an 
interprocessor interrupt. This mechanism 
prevents the excessive interconnection 
traffic caused by busy waiting but still 
consumes processor cycles. Spin-locks 
and suspend-locks can be based on primi- 
tives similar to Test&Set, such as 
Compare&Swap. 

The Compare&Swap(rl,r2,w) primitive 
is a synchronization primitive in the IBM 
370 architecture; rl and r2 are two 
machine registers, and w points to a mem- 
ory location. The success of the 
Compare&Swap is indicated by the flag z. 
The semantics of the Compare&Swap 
instruction are 

COMPARE&SWAP(r 1 ,r2, w) 
{ temp t w; if (temp = rl) 

then{w+r2;z+l;} 
else {rl + temp; z + 0;) 

Test&Set and Compare&Swap are also 
called read-modify-write (RMW) primi- 
tives. A common performance problem 
associated with these basic synchroniza- 
tion primitives is the complexity of lock- 
ing protocols. If N processes attempt to 
access a critical section at the same time, 
the memory system must execute N basic 
lock operations, one after the other, even 
if at most one process is successful. The 
NYU Ultracomputer and the RP3 
multiprocessor’ use the Fetch&Add&a) 
primitive, where x is a shared-memory 
word and a is an increment. When a sin- 
gle processor executes the Fetch&Add on 
x, the semantics are 

FETCH&ADD(x,a) 
{ temp+x;x+temp + a; 

return temp; } 

The implementation of the Fetch&Add 
primitive on the Ultracomputer is such 
that the complexity of an N-way synchro- 
nization on the same memory word is 
independent of N. The execution of this 
primitive is distributed in the interconnec- 
tion network between the processors and 
the memory module. If N processes 
attempt to Fetch&Add the same memory 
word simultaneously, the memory is 
updated only once, by adding the sum of 
the N increments, and a unique value is 
returned to each of the N processes. The 
returned values correspond to an arbitrary 
serialization of the N requests. From the 
processor and memory point of view, the 
result is similar to a sequential execution 
of N Fetch&Adds, but it is performed in 
one operation. Consequently, the 

Fetch&Add primitive is extremely effec- value greater than or equal to 0. The 
tive in accessing sequentially allocated semantics of the P and V operations are 
queue structures and in the forking of 
processes with identical code that operate 
on different data segments. For example, 
the following high-level parallel Fortran 
statement” can be executed in parallel by 
P processors if there is no dependency 
between iterations of the loop: 

DOALL N= 1 to 100 
<code using N> 

ENDDO 

Each processor executes a Fetch&Add 
on Nbefore working on a specific iteration 
of the loop. Each processor .will return a 
unique value of N, which can be used in the 
code segment. The code for each proces- 
sor is as follows (Nis initially loaded with 
the value I): 

J-w 
{ if (s > 0) then 

s +- (s - 1); 
else 

{ Block the process and append it 
to the waiting list for s; 
Resume the highest priority pro- 
cess in the READY LIST;} 

{ if (waiting list for s empty) then 
s + (s + 1); 

else 
{ Remove the highest priority pro- 

cess blocked for s; 
Append it to the READY LIST;} 

n + FETCH&ADD (N, 1) 
while (n 5 100) do 

{ <code using N> 
n + FETCH&ADD (N, 1); 

\ J 

processor at any time. A different process 

In the HEP (Heterogeneous Element 
Processor) system, shared-memory words 
are tagged as empty or full. Loads of such 

can immediately be activated when an 

words succeed only after the word is 
updated and tagged as full. After a suc- 

attempt to synchronize fails. Very few 

cessful Load, the tag can be reset to empty. 
Similarly, the Store on a full memory word 

processor cycles are wasted on synchroni- 

can be prevented until the word has been 
read and the tag cleared. These mechan- 

zation. However, the burden of managing 

isms can be used to synchronize processes, 
since a process can be made to wait on an 

the tags is left to the programmer or the 

empty memory word until some other 
process fills it. This system also relies on 

compiler. A more complex tagging scheme 

busy waiting, and memory cycles are 
wasted on each trial. Each processor in the 

is advocated for the Cedar machine.3 

HEP is a multistream pipeline, and several 
process contexts are present in each 

I 

require more overhead. Note that locks are 

In these two algorithms shared lists are 
consulted and modified (namely, the 

still necessary to implement semaphores. 

Ready List* and the waiting list for s). 
These accesses as well as the test and mod- 
ification of s have to be protected by spin- 

Another synchronization primitive 

locks, suspend-locks, or Fetch&Adds 

implemented in software or microcode is 

associated with semaphores and with the 
lists. In practice, P and V are processor 

Barrier, used to “join” a number of par- 

instructions or microcoded routines, or 
they are operating system calls to the pro- 

allel processes. All processes synchroniz- 

cess manager. The process manager is the 
part of the system kernel controlling pro- 

ing at a barrier must reach the barrier 

cess creation, activation, and deletion, as 
well as management of the locks. Because 

before any one of them can continue. Bar- 

the process manager can be called from 

riers can be defined as follows after the 

different processors at the same time, its 
associated data structures must be pro- 
tected. Semaphores are particularly well 
adapted for synchronization. Unlike spin- 
locks and suspend-locks, semaphores are 
not wasteful of processor cycles while a 
process is waiting, but their invocations 

Software-level synchronization mech- task counter Count has been initialized to 
anisms. Two approaches to synchroniza- zero: 
tion are popular in multiprocessor BARRIER(N) 
operating systems: semaphores and mes- { count : = count + I; 
sage passing. We will discuss message pass- if (count 2 N) then 
ing in the next section. Operations on 
semaphores are Pand V. A binary sema- 

{ Resume all 
queue; 

processes on barrier 

phore has the values 0 or 1, which signal 
acquisition and blocking, respectively. A 
counting semaphore can take any integer 

The Ready List is a data structure containing the 
descriptors of processes that are runable. 
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Table 1. Synchronization, communication, and coherence in various multiprocessors. 

Multiprocessor 

IBM 3081 

Synapse N + 1* 

Denelcor HEP* 

IBM RP3t 

Number of CPU architecture 
processors 

54 IBM 370 

532 Motorola 68000 

100s Custom 

100s IBM ROMP 

Hardware 
primitives 

Compare&Swap 
(CS, CDS), 
Test&Set (TS) 

Compare&Swap 
(CA% 
Test&Set (TAS) 

Full/empty bit 

Fetch&Op 
(e.g., Fetch&Add) 

Cache 

Write-back 

Write-back 

No cache 

Write-back 

Coherence 
scheme 

Central table 

Distributed table/ 
bus watching 

No shared 
writable 
data in cache 

NYU Ultracomputert 100s Fetch&Add Write-back No shared 
writable 
data in cache 

Encore Multimax 120 National Semiconductor Test&Set Write-through Bus watching 
32032 (“interlocked” (two processors 

instructions) share each cache) 

Sequent Balance 8000 5 12 National Semiconductor Test&Set Write-through Bus watching 
32032 (spin-lock using lock 

cache and bus 
watching) 

*Commercial machines no longer in production. 
tExperimenta1 prototype. 

Reset count; } 
else 

Block task and place in barrier 
queue; 

The first N-l tasks to execute Barrier 
would be blocked. Upon execution of Bar- 
rier by the Nth task, all N tasks are ready 
to resume. In the HEP each task that is 
blocked spin-locks on a Full/Empty bit. 
The Nth task that crosses the barrier writes 
into the tagged memory location and 
thereby wakes up all the blocked tasks. 
This technique is very efficient for execut- 
ing parallel, iterative algorithms common 
in numerical applications. 

Interprocess communication. In a 
shared-memory multiprocessor, inter- 
process communication can be as simple 
as one processor writing to a particular 
memory location and another processor 
reading that memory location. However, 
since these activities occur asyn- 
chronously, communication is in most 
cases implemented by synchronization 
mechanisms. The reading process must be 
informed at what time the message to be 

read is valid, and the writing process must 
know at what time it is allowed to write to 
a particular memory location without de- 
stroying a message yet to be read by 
another process. Therefore, communica- 
tion is often implemented by mutually 
exclusive accesses to mailboxes. Mailboxes 
are configured and maintained in shared 
memory by software or microcode. 

Message-based communication can be 
synchronous or asynchronous. In a syn- 
chronous system the sender transmits a 
message to a receiving process and waits 
until the receiving process responds with 
an acknowledgment that the message has 
been received. Symmetrically, the receiver 
waits for a message and then sends an 
acknowledgment. The sender resumes exe- 
cution only when it is confirmed that the 
message has been received. In asyn- 
chronous systems the sending process does 
not wait for the receiving process to receive 
the message. If the receiver is not ready to 
receive the message at its time of arrival, 
the message may be buffered or simply 
lost. Buffering can be provided in hard- 
ware or, more appropriately, in mailboxes 
in shared memory. 

A summary of synchronization and 
communication primitives for different 
processors is given in Table 1. 

Coherence in 
multiprocessors 

Coherence problems exist at various 
levels of multiprocessors. Inconsistencies 
(i.e., contradictory information) can occur 
between adjacent levels or within the same 
level of a memory hierarchy. For example, 
in a cache-based system with write-back 
caches, cache and main memory may con- 
tain inconsistent copies of data.4 Multiple 
caches conceivably could possess different 
copies of the same memory block because 
one of the processors has modified its 
copy. Generally, this condition is not 
allowable. 

In some cases data inconsistencies do 
not affect the correct execution of a pro- 
gram (for example, inconsistencies 
between memory and write-back caches 
may be tolerated). In the following para- 
graphs we identify the cases for which data 
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Memory 

Figure 3. Cache configuration after a Load on X by processors 0 and 1. Copies in 
both caches are consistent. 

Bus 

Memory 

Figure 4. Cache configuration after a Store on X by processor 0 (write-through 
cache). The copies are inconsistent. 

inconsistencies pose a problem and discuss memory multiprocessor in which each 
various solutions. CPU does not have a private memory or 

cache (Figure 1 without optional caches). 
Conditions for coherence. Data coher- If Loads, Stores, and RMW cycles are 

ence problems do not exist in multiproces- atomic, then data elements are accessed 
sors that maintain only a single copy of and modified in indivisible operations. 
data. For example, consider a shared- Each access to an element applies to the 

latest copy. Simultaneous accesses to the 
same element of data are serialized by the 
hardware. 

Cache coherence problems exist in mul- 
tiprocessors with private caches (Figure 1 
with optional caches) and are caused by 
three factors: sharing of writable data, 
process migration, and l/O activity. To 
illustrate the effects of these three factors, 
we use a two-processor architecture with 
private caches (Figures 3-S). We assume 
that an element X is referenced by the 
CPUs. Let L,(X) and S,(X) denote a Load 
and a Store by processor j for element X 
in memory, respectively. If the caches do 
not contain copies of Xinitially, a Load of 
X by the two CPUs results in consistent 
copies of X, as shown in Figure 3. Next, if 
one of the processors performs a Store to 
X, then the copies of X in the caches 
become inconsistent. A Load by the other 
processor will not return the latest value. 
Depending on the memory update policy 
used in the cache, the cache level may also 
be inconsistent with respect to main mem- 
ory. A write-through policy maintains 
consistency between main memory and 
cache. However, a write-back policy does 
not maintain such consistency at the time 
of the Store; memory is updated eventu- 
ally when the modified data in the cache 
are replaced or invalidated. Figures 4 and 
5 depict the states of the caches and mem- 
ory for write-through and write-back poli- 
cies, respectively. 

Consistency problems also occur 
because of the I/O configuration in a sys- 
tem with caches. In Figure 6 the I/O 
processor (IOP) is attached to the bus, as 
is most commonly done. If the current 
state of the system is reached by an L,(X) 
and S,(X) sequence, a modified copy of X 
in cache 0 and main memory will not have 
been updated in the case of write-back 
caches. A subsequent I/O Load of X by 
the IOP returns a “stale” value of X as 
contained in memory. To solve the con- 
sistency problem in this configuration, the 
I/O processor must participate in the 
cache coherence protocol on the bus. The 
configuration in Figure 7 shows the IOPs 
sharing the caches with the CPUs. In this 
case I/O consistency is maintained if 
cache-to-cache consistency is also main- 
tained; an obvious disadvantage of this 
scheme is the likely increase of cache per- 
turbations and poor locality of I/O data, 
which will result in high miss ratios. 

Some systems allow processes to 
migrate-i.e., to be scheduled in different 
processors during their lifetime-in order 
to balance the work load among the 
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processors. If this feature is used in con 
junction with private caches, data incon 
sistencies can result. For example, process 
A, which runs on CPUO, may alter data 
contained in its cache by executing S,(X) 
before it is suspended. If process A 
migrates to CPU, before memory has 
been updated with the most recent value of 
X, process A may subsequently Load the 
stale value of X contained in memory. 

Q (7-q Processors 

It is obvious that a mere write-through 
policy will not maintain consistency in the 
system, since the write does not automat- 
ically update the possible copies of the data 
contained in the other caches. In fact, 
write-through is neither necessary nor 
sufficient for coherence. 

x 

” 

x 

P 

Caches 

t 
I I 

I Bus 

Solutions to the cache coherence prob- 
lem. Approaches to maintaining coher- 
ence in multiprocessors range from simple 
architectural principles that make incoher- 
ence impossible to complex memory 
coherence schemes that maintain coher- 
ence “on the fly” only when necessary. 
Here we list these approaches from least to 
most complex: 

Memory 

Figure 5. Same as Figure 4 but with write-back cache. The copies are inconsistent. 

(1) A simple architectural technique is (2) For performance considerations it is other data protected by critical sections. 
to disallow private caches and have only desirable to attach a private cache to each Instructions and other data can be copied 
shared caches that are associated with the CPU. Data inconsistency can be prevented into caches as usual. Such items are 
main memory modules. Every data access by not caching shared writable data; such referred to as cachable. The compiler must 
is made to the shared cache. A network data are called noncachable. Examples of tag data as either cachable or noncachable. 
interconnects the processors to the shared shared writable data are locks, shared data The hardware must adhere to the meaning 
cache modules. structures such as process queues, and any of the tags. This technique, apparently 

I I I 
1 Bus 

I I 

PO IOP 

9 Cache 

IOP Pi 

F cache 

IBus 
I Memory 

Figure 6. IOPs are attached to the bus and bypass the cache. Figure 7. IOPs are attached to the caches. 
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updated in a critical section, and subse- 
quently released. It works for write- 
through caches; for write-back caches, the 
design is more complex. 

Wci) W(i) 

W(i) = Write to block by processor i. W(j) = Write to block by processor j (j + i), 
R(i) = Read block by processor i. R(j) = Read block by processor j (j f i), 
Z(i) = Displace block by cache i. Z(j) = Displace block by cache j(j + i). 

Figure 8. State diagram for a given block in cache i for a write-through coherence 
protocol. 

W(i) = Write to block by processor i. 
R(i) = Read block by processor i. 
Z(i) = Displace block by cache i. 

W(j) = Write to block by processor j(j + i). 
R(j) = Read block by processor j(j # i). 
Z(j) = Displace block by cache j(j # i). 

Figure 9. State diagram for a given block in cache i for a write-back coherence 
protocol. 

simple in principle, must rely on the detec- 
tion within each CPU that a block is cach- 
able or not. Such a detection can be made 
in a virtual memory environment by tag- 
ging each page. The tag is stored in entries 
in the CPU’s translation buffers. Transla- 
tion buffers (TBs) are similar to caches, 
but they store virtual-to-physical address 
translations. 

(3) If all shared writable data are 
declared noncachable, the performance 
may be degraded appreciably. If accesses 
to shared writable data always occur in 
critical sections, then such data can be 

cached. Only the locks that protect the crit- 
ical sections must remain noncachable. 
However, to maintain data consistency, all 
data modified in the critical section must 
be invalidated in the cache when the criti- 
cal section is exited. This operation is often 
referred to as a cacheflush. The flushing 
operation ensures that no stale data remain 
in the cache at the next access to the criti- 
cal section. If another cache accesses the 
data via the acquisition of the lock, con- 
sistency is maintained. This scheme is ade- 
quate for transaction-processing systems 
in which a shared record is acquired, 

(4) A scheme allowing shared writable 
data to exist in multiple caches employs a 
centralized global table’ and is used in 
many mainframe multiprocessor systems, 
such as the IBM 308x. The table stores the 
status of memory blocks so that coherence 
enforcement signals, called cache cross- 
interrogates (XI), can be generated on the 
basis of the block status. To maintain con- 
sistency, XI signals with the associated 
block address are propagated to the other 
caches either to invalidate or to change the 
state of the copies of the referenced block. 
An arbitrary number of caches can contain 
a copy of a block, provided that all the 
copies are identical. We refer to such a 
copy as a read-only copy (RO). To modify 
a block present in its cache, the processor 
must own the block with read and write 
access. When a block is copied from mem- 
ory into cache, the block is tagged as exclu- 
sive (EX) if the cache is the only cache that 
has a copy of the block. A block is owned 
exclusively with read and write (RW) 
access when it has been modified. Only 
one processor can own an RW copy of a 
block at any time. The state IN (invalid) 
signals that the block has been invalidated. 

The centralized table is usually located 
in the storage control element, which may 
also incorporate a crossbar switch that 
connects the CPUs to the main memory. 
To limit the accesses to the global table, 
local status flags can be provided in the 
cache directories for the blocks that reside 
in the cache. Depending on the status of 
the local flags and the type of request, the 
processor is allowed to proceed or is 
required to consult the global table. 

(5) In bus-oriented multiprocessors the 
table that records the status of each block 
can be efficiently distributed among 
processors. The distributed-table scheme 
takes advantage of the broadcasting capa- 
bility of the bus. Typically, consistency 
between the caches is maintained by a bus- 
watching mechanism, often called a 
snoopy cache controller, which imple- 
ments a cache coherence protocol on the 
bus. In a simple scheme for write-through 
caches, all the snoopy controllers watch 
the bus for Stores. If a Store is made to a 
location cached in remote caches, then the 
copies of the block in remote caches are 
either invalidated or updated. This scheme 
also maintains coherence with I/O 
activity. Figure 8 depicts a state diagram 
of the block state changes depending on 
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the access type and the previous state of the 
block. A similar scheme was applied in the 
Sequent Balance 8000 multiprocessor, 
which can be configured with up to 12 
processors. 

The efficiency of the hardware that 
maintains coherence on the fly is vital. 
Recognizing that the Store traffic may 
contribute to bus congestion in a write- 
through system, Goodman proposed a 
scheme called write-once, in which the ini- 
tial Store to a block copy in the cache also 
updates memory.” This Store also invali- 
dates matching entries in remote caches, 
thereby ensuring that the writing proces- 
sor has the only cached copy. Further- 
more, Stores can be performed in the 
cache at the cache speed. Subsequent 
updates of the modified block are made in 
the cache only. A CPU or IOP Load is 
serviced by the unit (a cache or the mem- 
ory) that has the latest copy of the block. 

Multiprocessors with write-back caches 
rely on an ownership protocol. When the 
memory owns a block, caches can contain 
only RO copies of the block. Before a 
block is modified, ownership for exclusive 
access must first be obtained by a read- 
private bus transaction, which is broadcast 
to the caches and memory. If a modified 
block copy exists in another cache, mem- 
ory must first be updated, the copy invali- 
dated, and ownership transferred to the 
requesting cache. Figure 9 diagrams mem- 
ory block state transitions brought about 
by processor actions. The first commercial 
multiprocessor with write-back caches was 
the Synapse N + 1. 

Variants of the cache coherence bus pro- 
tocols have been proposed. One scheme, 
proposed for the Spur project at the Uni- 
versity of California, Berkeley, combines 
compile-time tagging of shared and private 
data and the ownership protocol. In 
another system, the Xerox Dragon multi- 
processor, a write is always broadcast to 
other caches and main memory is updated 
only on replacement. These bus protocols 
are described and their performances com- 
pared in an article by Archibald and 
Baer. I2 

Advantages and disadvantages. 
Although scheme 1 provides coherence 
while being transparent to the user and the 
operating system, it does not reduce mem- 
ory conflicts but only the memory access 
latency. Shared caches, by necessity, con- 
tradict the rule that processors and caches 
should be as close together as possible. I/O 
accesses must be serviced via the shared 
caches to maintain coherence. 
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Tagging shared 
writable data fails to 

alleviate the coherence 
problem caused by 

I/O accesses. 

There are a number of disadvantages 
associated with scheme 2, which’tags data 
as cachable or noncachable. The major 
one is the nontransparency of the multi- 
processor architecture to the user or the 
compiler. The user must declare data ele- 
ments as shared or nonshared if a concur- 
rent language such as Ada, Modula-2, or 
Concurrent Pascal is used.13 Alterna- 
tively, a multiprocessing compiler, such as 
Parafrase,” can classify data as shared or 
nonshared automatically. The efficiency 
of these approaches depends respectively 
on the ability of the language to specify 
data structures (or parts thereof) that are 
shared and writable and of the compiler to 
detect the subset of shared writable data. 
Since in practical implementations a whole 
page must be declared as cachable or not, 
internal fragmentation may result, or 
more data than the shared writable data 
may become noncachable. 

Tagging shared writable data also fails 
to alleviate the coherence problem caused 
by I/O accesses. Either caches must be 
flushed before I/O is allowed to proceed, 
or all data subject to I/O must be tagged 
as noncachable as well. Depending on the 
frequency of I/O operations, both 
approaches reduce the overall hit rate of 
the caches and hence the speedup obtained 
by using caches. 

Another common drawback of tagging 
shared writable data rather than maintain- 
ing coherence on the fly is the inefficiency 
caused by process migration. Caches must 
be flushed before each migration or pro- 
cess migration must be disallowed at the 
cost of limiting scheduling flexibility. 

Scheme 3-flushing caches only when 
synchronization variables are accessed- 
has performance problems. In practice the 
whole cache has to be flushed, or else the 
data accessed in a critical section must be 
tagged in the cache. I/O must also be 
preceded by cache flushing. Note that the 
programmer must be aware that coherence 
is restored only at synchronization points. 

Scheme 3 appears to be attractive only for 
small caches. 

Scheme 4 solves the problems caused by 
I/O accesses and process migration. HOW- 
ever, a global table that must be accessed 
by all cache controllers can become a bot- 
tleneck, even when XIs are filtered by 
hardware. But the main problem of this 
coherence scheme is the distance between 
the processors and the global table. AS 
processors become faster, the access 
latency of the table becomes a limiting fac- 
tor of system performance; in particular, 
when cache access times are very fast, the 
time penalty for a miss (misspenalty) must 
be minimized. 

By distributing the table among the 
caches, the last scheme partly solves the 
problems of table access contention and 
latency. HoweJer, the complexity of the 
bus interface unit is increased because it 
has to “watch” the bus. Furthermore, 
since the scheme relies on a broadcast bus, 
the number of processors that can be inter- 
connected is limited by the bus bandwidth. 

Ping-pong effect. In systems with 
caches employing scheme 4 or 5, the exe- 
cution of synchronization primitives, such 
as atomic read-modify-write memory 
cycles, can create additional access penal- 
ties. If two or more processors are spinning 
on a lock, RMW cycles that cause the lock 
variable to bounce repeatedly from one 
cache to another are generated. This can 
be aggravated by clustering different locks 
into a given block of memory. However, 
if RMW operations are implemented care- 
fully, spin-locks can be efficient. 

Let us illustrate the ping-pong problem 
by an example and discuss techniques for 
reducing system performance degrada- 
tions. In this example we will assume the 
use of the Test&Set(lock) instruction; 
however, the problem can occur with other 
primitives. The traditional segment of 
code executed to acquire access to a criti- 
cal section via a spin-lock is the following: 

while (TEST&SET(lock) = 1) do nothing; 
/* spin-lock with RMW cycles */ 

<execute critical section > 
RESET(lock); 

/* exit critical section */ 
Assume that each processor has a private 
write-back cache and that three or more 
processors attempt to access the critical 
section concurrently. If processor PO suc- 
ceeds in acquiring the lock, the other 
processors (PI and P2) will spin-lock and 
cause the modified lock variable to be 
invalidated in the other processors’ caches 
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for each access to the lock. As a result of 
the invalidation of the modified lock var- 
iable, the block is transferred to the 
requesting cache-a significant penalty. 
The modification is a result of the writing 
in the last part of the RMW memory cycle. 

One technique for avoiding the ping- 
pong effect is to use the following segment 
of code in place of the while statement in 
the previous code segment: 

repeat 
while (LOAD(lock) = 1) do nothing; 

/* spin without modification */ 
until (TEST&SET(lock) = 0); 

In this segment of code the lock is first 
loaded to test its status. If available, a 
Test&Set is used to attempt acquisition. 
However, while a processor is attempting 
to acquire the lock, it “spins” locally in its 
cache, repeating the execution of a tight 
loop made of a Load followed by a Test. 
This spinning causes no invalidation traf- 
fic on the bus. On a subsequent release of 
the lock, the processors contend for the 
lock, and only one of them will succeed. 
The ping-pong problem is solved; spin- 
locks can therefore be implemented effi- 
ciently in cache-based systems. 

Ping-ponging also occurs for shared 
writable variables. A typical example is the 
index N in the Doall loop described 
earlier, in the section on hardware-level 
synchronization mechanisms. Unless the 
implementation of Fetch&Add is carefully 
designed, accesses to the index Ncreate a 
“hot spot,“g which in a cache-based sys- 
tem results in intense ping-ponging 
between the caches. The careful imple- 
mentation of synchronization primitives 
and the creation of hot spots in cache- 
based systems are research topics that 
deserve more attention. 

Strong and weak 
ordering of events 

The mapping of an algorithm as con- 
ceived and understood by a human pro- 
grammer into a list of machine instructions 
that correctly implement that algorithm is 
a complex process. Once the translation 
has been accomplished, however, it is rela- 
tively easy in the case of a uniprocessor to 
understand what modifications of the 
machine code can be made without alter- 
ing the outcome of the execution. A com- 
piler, for example, can resequence 
instructions to boost performance, or the 
processor itself can execute instructions 

Local dependency 
checking is necessary, 

but it may not 
preserve the intended 

outcome of a 
concurrent execution. 

out of order if it is pipelined. This is allow- 
able in uniprocessors, provided that hard- 
ware mechanisms (interlocks) exist to 
check data and control dependencies 
between instructions to be executed con- 
currently or out of program order. 

dependencies 
instructions, 

exist 
then 

among reordered 
the interleaving 

b,d,f,e,a,cis possible and would yield the 
output OOOOOO. Note that this outcome is 
not possible if processors execute instruc- 
tions in program order only. 

If a processor is a part of a multiproces- 
sor that executes a concurrent program, 
then such local dependency checking is still 
necessary but may not be sufficient to pre- 
serve the intended outcome of a concur- 
rent execution. Maintaining correctness 
and predictability of the execution of con- 
current programs is more complex for 
three reasons: 

(1) The order in which instructions 
belonging to different instruction streams 
are executed is not fixed in a concurrent 
program. If no synchronization among 
instruction streams exists, then a very large 
number of different instruction interleav- 
ings is possible. 

Of the 720 (6!) possible execution inter- 
leavings, 90 preserve the individual pro- 
gram order. We have already pointed out 
that of the 90 program-order interleavings 
not all six-tuple combinations can result 
(i.e., 000000 is not possible). The question 
remains whether out of the 720 non- 
program-order interleavings all six-tuple 
combinations can result. So far we have 
assumed that the memory system of the 
example multiprocessor is access atomic; 
this means that memory updates affect all 
processors at the same time. In a cache- 
based system such as depicted in Figure 1, 
this may not be the case; such a system 
be nonatomic if an invalidation does 

can 
not 

(2) If for performance reasons the order 
of execution of instructions belonging to 
the same instruction stream is different 
from the order implied by the program, 
then an even larger number of instruction 
interleavings is possible. 

reach all caches at the same time. 

(3) If accesses are not atomic (for exam- 
ple, if multiple copies of the same data 
exist), as is the case in a cache-based sys- 
tem, and if not all copies are updated at the 
same time, then different processors can 
individually observe different interleav- 
ings during the same execution. In this case 
the total number of possible execution 
instantiations of a program becomes still 
larger. 

TO illustrate the possible types of inter- 
leavings, we examine the following three 
program segments to be executed concur- 
rently by three processors (initially 
A = B = C = 0, and we assume that a Print 
statement reads both variables indivisibly 
during the same cycle): 

In an atomic system it is easy to show 
that, indeed, not all six-tuple combinations 
are possible, even if processors need not 
adhere to program order. For example, the 
outcome 011001 implies the following: 
Processor Pl observes that C has been 
updated and B has not been updated yet. 
This implies that P3 must have executed 
statement e before P2 executed statement 
c. Processor P2 observes that A has been 
updated before C has been updated. This 
implies that Pl must have executed state- 
ment a before P3 executed statement e. 
Processor P3 observes that B has been 
updated but A has not been updated. This 
implies that P2 must have executed state- 
ment c before PI executed statement a. 
Hence, e occurred before c, a occurred 
before e, and c occurred before a. Since 
this ordering is plainly impossible, we can 
conclude that in an atomic system, the out- 
come 011001 cannot occur. 

The above conclusion does not hold true 

Pl P2 P3 
a:A+l c: B+l e: C-1 
b: Print BC d: Print AC f: Print AB 

If the outputs of the processors are con- 
catenated in the order Pl, P2, and P3, then 
the output forms a six-tuple. There are 64 
possible output combinations. For exam- 
ple, if processors execute instructions in 
program order, then the execution inter- 
leaving a, b,c,d,e,f is possible and would 
yield the output 001011. Likewise, the 
interleaving a,c,e, b,df is possible and 
would yield the output 111111. If proces- 
sors are allowed to execute instructions out 
of program order, assuming that no data 
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in a nonatomic multiprocessor. Let us 
assume that the actual execution interleav- 
ing of instructions is a,c,e,b,d,f. Let us 
further assume the following sequence of 
events: When PI executes b, Pl’s own 
copy of B has not been updated, but PI’s 
own copy of C has been updated. Hence, 
Pl prints the tuple 01. When P2 executes 
d, P2’s own copy of A has been updated, 
but P2’s own copy of C has not been 
updated. Hence, P2 prints the tuple 10. 
When P3 executes f, P3’s own copy of A 
has not been updated, but P3’s own copy 
of B has been updated. Hence, P3 prints 
the tuple 01. The resulting six-tuple is 
indeed 011001. Note that all instructions 
were executed in program order, but other 
processors did not observe them in pro- 
gram order. 

We might ask ourselves whether a multi- 
processor functions incorrectly if it is capa- 
ble of generating any or all of the 
above-mentioned six-tuple outputs. This 
question does not have a definitive answer; 
rather the answer depends on the expecta- 
tions of the programmer. A programmer 
who expects a system to behave in a 
sequentially consistent manner will per- 
ceive the system to behave incorrectly if it 
allows its processors to execute accesses 
out of program order. The programmer 
will likely find that synchronization pro- 
tocols using shared variables will not func- 
tion. The difficulty of concurrent 
programming and parallel architectures 
stems from the effort to disallow all inter- 
leavings that will result in incorrect out- 
comes while not being overly restrictive. 

Systems with atomic accesses. We have 
shown in an earlier worki that a neces- 
sary and sufficient condition for a system 
with atomic memory accesses to be 
sequentially consistent (the strongest con- 
dition for logical behavior) is that memory 
accesses must be performed in the order 
intended by the programmer-i.e., in pro- 
gram order. (A Load is considered per- 
formed at a point in time when the issuing 
of a Store from any processor to the same 
address cannot affect the value returned by 
the Load. Similarly, a Store on X by 
processor i is considered performed at a 
point in time when an issued Load from 
any processor to the same address cannot 
return a value of X preceding the Store.) 
In a system where such a condition holds, 
we say that storage accesses are strong/y 
ordered. 

In a system without caches a memory 
access is performed when it reaches the 
memory system or at any point in time 
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Processor 1 Processor 2 Processor 3 

S,(A) 

Figure 10. Concurrent program for three processors accessing shared variables. 

when the order of all preceding accesses to 
memory has become fixed. For example, 
if accesses are queued in a FIFO (first in, 
first out) buffer at the memory, then an 
access is performed once it is latched in the 
buffer. When a private cache is added to 
each processor, Stores can also be atomic 
in the case of a bus system because of the 
simultaneous broadcast capability of the 
buses; in such systems the invalidations 
generated by a Store and the Load requests 
broadcast by a processor are latched simul- 
taneously by all the controllers (including 
possibly the memory controllers). As soon 
as each controller has taken the proper 
action on the invalidation, the access can 
be considered performed. 

Buffering of access requests and invali- 
dations also become possible if the rules 
governing sequential consistency are care- 
fully observed. With extensive buffering at 
all levels, and provided that the intercon- 
nection and the memory system have suffi- 
cient bandwidth, the efficiency of all 
processors may be very high, even if the 
memory access latency is large compared 
to the processor cycle time. Two articles 
present more detailed discussions of the 
buffering of accesses and invalidations in 
cache-based multiprocessors.7~‘5 

In a weakly ordered system the condi- 
tion of strong ordering is relaxed to include 
accesses to synchronization variables only. 
Synchronization variables must be 
hardware-recognizable to enforce the spe- 
cific conditions of strong ordering on 
them. Moreover, before a lock access can 
proceed, all previous accesses to nonsyn- 
chronization data must be allowed to “set- 
tle.” This means that all shared memory 
accesses made before the lock operation 
was encountered must be completed 
before the lock operation can proceed. In 
systems that synchronize very infre- 
quently, the relaxation of strong ordering 

to weak ordering of data accesses can 
result in greater efficiency. For example, 
if the interconnection network is buffered 
and packet-switched, the interface 
between the processor and the network can 
send global memory requests only one at 
a time to the memory if strong ordering is 
to be enforced. The reason for this is that 
in such a network the access time is vari- 
able and unpredictable because of con- 
flicts; in many cases waiting for an 
acknowledgment from the memory con- 
troller is the only way to ensure that global 
accesses are performed in program order. 
In the case of weak ordering the interface 
can send the next global access directly 
after the current global access has been 
latched in the first stage of the interconnec- 
tion network, resulting in better processor 
efficiency. However, the frequency of lock 
operations will be higher in a program 
designed for a weakly ordered system. 

Systems with nonatomic accesses. In a 
multiprocessor system with nonatomic 
accesses, it has been shown that the previ- 
ous condition for strong ordering of stor- 
age accesses (and sequential consistency) 
is not sufficient.14 

Example I. In a system with a recombin- 
ing network’ the network can provide for 
access short-circuiting, which combines 
Loads and Stores to the same address 
within the network, before the Store 
reaches its destination memory module. 
For the parallel program in Figure 
IO--S;(X) and L,(X) represent global 
accesses “Store into location Xby proces- 
sor i” and “Load from location X by 
processor i, ” respectively-such short- 
circuiting can result in the following 
sequence of events: 

(I) Processor I issues a command to 
store a value at memory location A. 
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(2) Processor 2 reads the value written 
by processor 1 “on the fly” before A is 
updated. 

(3) Because of the successful read of A 
in step 2, processor 2 issues a command to 
write a value at memory location B. 

(4) Processor 3 reads the value written 
by processor 2; it reflects the updated B. 

(5) Processor 3 reads memory location 
A and an old value for A is returned 
because the write to A by processor 1 has 
not propagated to A yet. 

Each processor performs instructions in 
the order specified by the programmer, but 
sequential consistency is violated. Proces- 
sor 2 implies that step 1 has been com- 
pleted by processor 1 when it initiates step 
3. In step 4 processor 3 recognizes that 
implication by successfully reading B. But 
when processor 3 then reads A, it does not 
find the implied new value but rather the 
old value. Consequently, processor 3 
observes an effect of step 1 before it is 
capable of observing step 1 itself. 

Example 2. In a cache-based system 
where memory accesses and invalidations 
are propagated one by one through a 
packet-switched (but not recombining) 
network, the same problem as in the previ- 
ous example may occur. Initially, all 
processors have an RO copy of A in their 
cache. 

(1) Processor 1 issues a command to 
store a value at memory location A. Invali- 
dations are sent to each processor with a 
copy of A in its cache. (For simplicity we 
assume that the size of a cache block is one 
word.) 

(2) Processor 2 reads the value of A as 
updated by processor 1, because the invali- 
dation has reached its cache; processor 1 
writes the data back to main memory and 
forwards a copy to processor 2. 

(3) Because of the successful read of A 
in step 2, processor 2 issues a command to 
write a value at memory location B, send- 
ing invalidations for copies of B. 

(4) Processor 3 reads the value written 
by processor 2; it reflects the updated B, 
because the associated invalidations have 
propagated to processor 3. 

(5) Processor 3 reads memory location 
A and an old value for A is returned 
because the invalidation for A caused by 
processor 1 has not yet propagated to the 
third processor’s cache. 

Again each processor executes all 
instructions in program order. Further- 
more, a processor does not proceed to 
issue memory accesses before all previous 

invalidations broadcast by the processor 
have been acknowledged. Yet t.he same 
problem occurs as in the previous example; 
sequential consistency is violated. This is 
the case because invalidations are essen- 
tially memory accesses. Because invalida- 
tions are not atomic, the system is not 
strongly ordered. 

User interface 

The discussion in this article shows that 
the issues of synchronization, communi- 
cation, coherence, and ordering of events 
in multiprocessors are intricately related 
and that design decisions must be based on 
the environment for which the machine is 
destined. Coherence depends on synchro- 
nization in some coherence protocols 
because the user has to be aware that syn- 
chronization points are the only points in 
time at which coherence is restored. Strict 
ordering of events may be enforced all the 
time (strong ordering) or at synchroniza- 
tion points only (weak ordering). 

At the user level most features of the 
physical (hardware) architecture are not 
visible. The instruction set of each proces- 
sor and the virtual memory are the most 
important system features visible to the 
programs. Depending on the features of 
the physical architecture that are visible to 
the programmer, the task of programming 
the machine may be more difficult, and it 
may be more difficult to share the machine 
among different users. 

Nontransparent coherence or ordering 
schemes. A sophisticated compiler may 
succeed in efficiently detecting and tagging 
the shared writable data to avoid the 
coherence problem. Such a compiler may 
also be able to make efficient use of syn- 
chronization primitives provided at differ- 
ent levels. The compiler may be aware of 
access ordering on a specific machine and 
generate code accordingly. It is not clear 
that compiler technology will improve to 
a point where efficient code can be gener- 
ated for these different options. 

If a program is written in a high-level 
concurrent language, the facility to specify 
shared writable data may not exist in the 
language, in which case we must still rely 
on the compiler for detecting the minimum 
set of data to tag as noncachable. It should 
be emphasized that perfectly legal pro- 
grams in concurrent languages that allow 
the sharing of data, generally will not exe- 
cute correctly in a system where events are 
weakly ordered. 

User access to synchronization primi- 
tives. Programmers of concurrent applica- 
tions may have in their repertoires 
different hardware- or software-controlled 
synchronization primitives. For perfor- 
mance reasons it may be advisable to let 
basic hardware-level synchronization 
instructions be directly accessible to users, 
who know their applications and can tai- 
lor the synchronization algorithm to their 
own needs. The basic drawback of such a 
policy is the increased possibility of dead- 
locks, resulting from programming errors 
or processor failure. Spin-locks and 
suspend-locks consume processor cycles 
and bus cycles. Therefore, such locks 
should never be held for a long time. 
Ideally, a processor should not be inter- 
ruptible during the time that it owns a lock; 
for example, one or several processors may 
spin forever on a lock if the process that 
“owns” the lock has to be aborted because 
of an exception. In a virtual-machine envi- 
ronment the user process does not have 
any control over the interruptibility of the 
processor, and thus a process can be 
preempted while it is owning a lock. This 
will result in unnecessary, resource- 
consuming spinning from all other 
processes attempting to obtain the lock. 

A solution to this problem is the task- 
force scheduling strategy,’ in which all 
active processes of a multitask are always 
scheduled and preempted together. 
Another solution is the implementation of 
some kind of time-out on spinning. The 
drastic solution to all these problems is to 
involve the operating system in every syn- 
chronization or communication, so that it 
can include these mechanisms in its 
scheduling policy to maximize per- 
formance. 

M aking a multiprocessor func- 
tion correctly can be a simple 
or an extremely difficult 

task. Basic synchronization mechanisms 
can be primitive or complex, wasteful of 
processor cycles or highly efficient. In any 
case the underlying hardware must sup- 
port the basic assumptions of the logical 
model expected by the user. In a strongly 
ordered system such an assumption 
usually is that the system behaves in a 
sequentially consistent manner. 

Increased transparency comes at the 
cost of efficiency and increased hardware 
complexity. But traditional and significant 
advantages such as the ability to protect 
users against themselves and other users, 
ease of programming, portability of pro- 
grams, and efficient management of 
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shared resources by multiple users are 
strong arguments for the designers of 
general-purpose computers to accept the 
hardware complexity and the negative 
effect on performance. The designers of 
general-purpose machines will probably 
prefer coherence enforcement on the fly in 
hardware, strong ordering of memory 
accesses, and restricted access to synchro- 
nization primitives by the user. 

On the other hand, for machines with 
limited access by sophisticated users, such 
as supercomputers and experimental 
multiprocessor systems, the performance 
of each individual task may be of prime 
importance, and the increased cost of 
transparency may not be justified. 

The challenge of the future lies in the 
ability to control interprocess communi- 
cation and synchronization in systems 
without rigid structures. Efficient multi- 
processing will be provided by systems 
in H hich synchronization, coherence, and 
logical ordering of events are carefully 
analyzed and blended together harmoni- 
ously in the context of efficient hardware 
implementations. It is necessary, however, 
to provide the programmer with a simple 
logical model of concurrency behavior. 
When multiprocessors do not conform to 
the concept of a single logical model, but 
rather must be viewed as a dynamic pool 
of processing, storage, and connection 
resources, the control in software over 
communication and synchronization 
becomes a truly formidable task. The con- 
cepts of strong and weak ordering as 
defined in this article correspond to two 
widely accepted models of multiprocessor 
behavior, and we believe that future 
designs will conform to one of the two 
models. 0 
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