

AA P P E N D I X P P E N D I X DD

VV I C T I M I C T I M CC A C H E A C H E SS T R A T E G I E ST R A T E G I E S

William Stallings
Copyright 2009

D.1 VICTIM CACHE...2!

D.2 SELECTIVE VICTIM CACHE ..4!

Incoming Blocks from Memory...4!

Swap Between Direct-Mapped Cache and Victim Cache ...4!

 Supplement to

 Computer Organization and Architecture, Eighth Edition

 William Stallings

 Prentice Hall 2009

 ISBN-10: 0-13-607373-5

 http://williamstallings.com/COA/COA8e.html

D-2

This appendix looks at two cache strategies mentioned in Chapter 4: victim cache and selective

victim cache.

D.1 VICTIM CACHE

Recall from Chapter 4 that an advantage of the direct mapping technique is simple and

inexpensive to implement. Its main disadvantage is that there is a fixed cache location for any

given block. Thus, if a program happens to reference words repeatedly from two different blocks

that map into the same line, then the blocks will be continually swapped in the cache, and the hit

ratio will be low (a phenomenon known as thrashing). On the other hand, with fully associative

mapping, there is flexibility as to which block to replace when a new block is read into the cache.

Replacement algorithms are designed to maximize the hit ratio. The principal disadvantage of

associative mapping is the complex circuitry required to examine the tags of all cache lines in

parallel.

 The victim cache approach, proposed by Jouppi [JOUP90], is a strategy designed to

combine the fast hit time of direct mapping yet still avoid thrashing. To achieve this objective,

the direct-mapped cache is supplemented with a small associative cache known as the victim

cache. A line removed from the direct-mapped is temporarily stored in the victim cache, which

maintains a small number of lines using a FIFO (first-in-first-out) replacement strategy. Jouppi

found that a 4-line victim cache removed 20% to 95% of misses in the direct-mapped cache.

 Figure D.1 is a simple block diagram illustrating the location of the victim cache in the

overall memory hierarchy. The victim cache can be considered to be part of the L1 cache system.

The next lower level of the memory hierarchy can be an L2 cache or the main memory.

 Figure D.2 provides a more detailed look at the victim cache organization. In Jouppi's

proposal, the victim cache contains four lines of data. The L1 cache is direct-mapped, so that

each cache line consists of a block of data from memory plus a small tag (see Figures 4.9 and

4.10). The victim cache is associative, so that each line contains one block of data from memory

plus a large tag (see Figures 4.11 and 4.12). For clarity, the tag in the victim cache is depicted as

consisting of a tag equal in length to the direct-mapped cache and a comparator. In fact, looking

back at Figures 4.10 and 4.12, the comparator is equivalent to the line field in the direct-mapped

scheme. The tag plus comparator in the victim cache uniquely identify a block of memory, so

D-3

that a memory reference from the processor can do a parallel search of all entries in the

associative cache to determine if the desired line is present.

 Figure D.3 suggests the operation of the victim cache. The data is arranged in such a way

that the same line is never present in both the L1 cache and the victim cache at the same time.

There are two cases to consider for managing the movement of data between the two caches:

Case 1: Processor reference to memory misses in both the L1 cache and the victim cache.

 a. The required block is fetched from main memory (or the L2 cache if present) and placed

into the L1 cache.

 b. The replaced block in the main cache is moved to the victim cache. There is no

replacement algorithm. With a direct-mapped cache, the line to be replaced is uniquely

determined.

 c. The victim cache can be viewed as a FIFO queue or, equivalently, a circular buffer. The

item that has been in the victim cache the longest is removed to make room for the

incoming line. The replaced line is written back the main memory if it is dirty (has been

updated).

Case 2: Processor reference to memory misses the direct-mapped cache but hits the victim

cache.

 a. The block in the victim cache is promoted to the direct-mapped cache.

 b. The replaced block in the main cache is swapped to the victim cache.

 Note that with the FIFO discipline, the victim cache achieves true LRU (least recently

used) behavior. Any reference to the victim cache pulls the referenced block out of the victim

cache; thus the LRU block in the victim cache will, by definition, be the oldest one there.

 The term victim is used for the following reason. When a new block is brought into the L1

cache, the replacement algorithm chooses a line to be replaced. That line is the "victim" of the

replacement algorithm.

Figure D.1 Position of Victim Cache

Direct-
mapped

cache

Victim
cache L2

cache
(optional)

L1 cache system

Address

Main
memory

Processor

Figure D.2 Victim Cache Organization

data

Address from

processor

Address to

next lower

cache

Data from

next lower cache

Data to

processor

tags

tag comparator one cache line of data LRU entry

Fully-associative

victim cache

tag comparator one cache line of data

tag comparator one cache line of data

tag comparator one cache line of data MRU entry

Victim cache

(fully associative)

L1 cache

(direct mapped)

Figure D.3 Victim Cache Operation

data

incoming

block from

memory

replaced

block to

memory tags

tag data

Victim cache

(fully associative)

L1 cache

(direct mapped)

compar-

ator

D-4

D.2 SELECTIVE VICTIM CACHE

[STIL94] proposes an improvement to the victim cache scheme known as selective victim cache.

In this scheme, incoming blocks into the first-level cache are placed selectively in the main cache

or the victim cache by the use of a prediction scheme based on their past history of use. In

addition, interchanges of blocks between the main cache and the victim cache are also performed

selectively.

Incoming Blocks from Memory

In the victim cache scheme, incoming blocks from memory (or L2 cache if present) are always

loaded into the direct-mapped cache, with one of the direct cache blocks being replaced and

moved to the victim cache, which in turn discards one of its blocks (writing it back to memory if

necessary). The net effect is that when a new block is brought into the L1 cache, it is a victim

cache block that is replaced in the total L1 cache system.

 With the selective victim cache, a decision is made whether to replace the corresponding

line in the direct-mapped cache (which is then moved to the victim cache) or to replace a line in

the victim cache, choosing the LRU line for replacement. A prediction algorithm is used to

determine which of the two conflicting lines is more likely to be referenced in the future. If the

incoming line is found to have a higher probability than the conflicting line in the main cache,

the latter is moved to the victim cache and the new line takes its place in the main cache;

otherwise, the incoming line is directed to the victim cache.

Swap Between Direct-Mapped Cache and Victim Cache

In the victim cache scheme, if there is a miss in the direct-mapped cache and a hit in the victim

cache, then there is a swap of lines between the direct-mapped cache and the victim cache. With

the selective victim cache the prediction algorithm is invoked to determine if the accessed block

in victim cache is more likely to be accessed in the future than the block in main cache it is

conflicting with. If the prediction algorithm decides that the block in the victim cache is more

likely to be referenced again than the conflicting block in the main cache, an interchange is

D-5

performed between the two blocks; no such interchange is performed otherwise. In both cases

the block in the victim cache is marked as the most recently used.

 The prediction algorithm used in the selective victim cache scheme is referred to as the

dynamic exclusion algorithm, proposed in [MAFA92]. Both [MAFA92] and [STIL94] have

good descriptions of the algorithm.

References

JOUP90 Jouppi, N. "Improving Direct-Mapped Cache Performance by the Addition of a

Small Fully-Associative Cache and Prefetch Buffers." Proceedings, 17th Annual

International Symposium on Computer Architecture, May 1990.

MCFA92 McFarling, S. "Cache Replacement with Dynamic Exclusion." Proceedings, 19th

Annual International Symposium on Computer Architecture, May 1992.

STIL94 Stiliadis, D., and Varma, A. "Selective Victim Caching: A Method to Improve the

Performance of Direct-Mapped Caches." Communications of the ACM, January 1987.

