
Cache Coherence Tutorial – Snoopy Bus Protocol 11/16/2005

 1

Cache Coherence Tutorial

 The cache coherence protocol described in the book is not really all
that difficult and yet a lot of people seem to have troubles when it comes to
using it or answering an assignment question. I think that it’s just because
you are given the complete picture all at once and it is discussed and
everything seems to be understandable. Then when the question comes
you’re not ready for it. So what we are going to do here is start with the
specification table of what happens for each situation and we are going to
build the diagram from scratch.

 The scenario is the snooping bus protocol. This is basically a shared
memory multiprocessor environment. Whether it is truly a shared memory
or a distributed memory environment is immaterial to the concept, the
memory is considered to be just one large memory area and addressing is
used to differentiate various separations of the memory. Each processor
includes its own cache which will contain at times copies of the data that is
or should be in real memory (by “should be” I mean that a write to a
memory location could be designed to just put the new data into a cache
location and invalidate all other copies without actually updating the real
memory location, on the assumption that it will be updated later.) So after
the system has been working for awhile we could have the situation of the
real memory having numerous locations with valid data in them with
multiple copies spread out over the various caches of the processors in the
system and also certain cache locations in various processors that have the
only valid data for a certain memory location and not even the real memory
location has a valid copy. This does not present a validity problem because
each memory address sent out on the bus is received by every single cache
in the system and the real memory as well. Either a cache will respond to the
request for a memory location or the real memory will be used to satisfy the
request.

Cache Coherence Tutorial – Snoopy Bus Protocol 11/16/2005

 2

 The cache will be set up in a standard memory hierarchy such as is
described in chapter 5 of the textbook. Whether it is directly mapped or set-
associative is not important to this discussion so we will treat it as direct-
mapped. Initially consider the size of the cache block (also called line) as
being one memory address wide so you don’t have to deal with multiple
write situations for a cache line in different processors (think about this one).
The state protocol of the book, figure 6.11, can actually be represented in the
cache by adding two bits to each cache line and these two bits will be
manipulated according to the rules set out in the table of figure 6.10. Note
that there are no extra bits attached to the real memory, only the caches.
This diagram would apply mainly to a data cache, an instruction cache
would be similar except that there would be no write operations involved.

Request Source State of addressed
cache block

Function and explanation

Read hit processor Shared or exclusive Read data in cache.

Read miss processor invalid Place read miss on bus.

Read miss processor shared Address conflict miss: place read miss
on bus.

Read miss processor exclusive Address conflict miss: write back block,
then place read miss on bus.

Write hit processor exclusive Write data in cache.

Write hit processor shared Place write miss on bus.

Write miss processor invalid Place write miss on bus.

Write miss processor shared Address conflict miss: place write miss
on bus.

Write miss processor exclusive Address conflict miss: write back block,
then place write miss on bus.

Partial copy of figure 6.10

Cache Coherence Tutorial – Snoopy Bus Protocol 11/16/2005

 3

 We will create the diagram for the processor modifications to the
cache states first and then deal with what happens at the other end, when
requests come from the bus which actually means what other processors
have sent out from their cache control to our cache control. We start with
just the three states, without any transitions.

Invalid Shared
 (read only)

Exclusive Cache state transitions
(read/write) based on requests from CPU

 This can be represented by two bits attached to the cache line. The
actual value of the bits, one or zero, is unimportant since the transitions will
know them and change them properly. We will now use the entries of the
table to build the transitions onto the diagram.

 First assume that we start with empty caches on all machines, the real
memory has a program in it that will be executed by the various processors.
So the very first request for our processor, assuming our processor will start
first and will cause the other processors to start up later, will find the cache
for the memory location to be invalid and hence will generate a Read miss
that will cause a place read miss to go out on the bus. All the other caches
will be in the invalid state so the real memory will respond with the data and
return it to this cache putting it into the cache location and the state of this
cache line will now be shared. Our diagram now looks like this:

Cache Coherence Tutorial – Snoopy Bus Protocol 11/16/2005

 4

Invalid CPU Read Shared
 Place read miss on bus (read only)

Exclusive Cache state transitions
(read/write) based on requests from CPU

 This will happen for a few locations as the program starts to execute
and continues. At some point the same data location may be requested
again. Now we left it in shared and no other processors have started
running yet. So now we will have the situation of a read hit. The request
from the processor will find the data in its own cache and it will use it
directly, no access to the bus is involved.

 CPU read hit

Invalid CPU Read Shared
 Place read miss on bus (read only)

Exclusive Cache state transitions
(read/write) based on requests from CPU

Cache Coherence Tutorial – Snoopy Bus Protocol 11/16/2005

 5

 So now we’ve done two reads to the particular location, the first time
it had to get the data from real memory, the second time it found it in the
cache. Now we will see what happens when we write to that location.
Remember the cache line presently has the location in the state of shared.
The write means that there will now be a new data value for that data
location. This means that the state of this cache line will now change from
shared to exclusive and the data will be put into the cache line. It also
means that any other cache that also had a copy of the old data will no
longer be valid so the place write miss signal goes out on the bus to inform
them of this fact.

There’s a complication that has to be mentioned at this point, when
the cache line is actually larger than one memory address which would
normally be realistic, then another cache in another processor may have
modified another part of that cache line. This means that the data we are
writing has to be merged with the data written from the other processor.
This means that the data from the other cache has to be read into our cache
before we update our part of the line. Putting the signal place write miss on
bus will cause this to happen and then the data that we are writing will be
put into its part of the cache line and our cache becomes the exclusive owner
of the memory location. The real memory may or may not have been
updated during this process but the end result will be sure; all the other
caches will have invalidated any copies of the location and we will now have
the only good copy in our cache.

 CPU read hit

Invalid CPU Read Shared
 Place read miss on bus (read only)

Exclusive Cache state transitions
(read/write) based on requests from CPU

Cache Coherence Tutorial – Snoopy Bus Protocol 11/16/2005

 6

 If the state on our cache for the memory location had been invalid this
does not means that other caches were invalid also. It is possible that other
caches could have been in the exclusive or shared state for the memory
location. This means that the same effect would have had to be initiated.
The place write miss on bus signal would have had to be sent out, any
exclusive copies would have had to be transferred to our cache and all
shared copies would have to have been invalidated and then our new copy
of the cache line would be updated with the new value and the state would
become exclusive.

 If the state on our cache for the memory location had been exclusive,
then it would be easy. We would have a cache write hit on the location we
are writing and the data would just need to be replaced with the new data
from the processor. We are already in the exclusive state so we know that
the cache line that we have has the most valid data of all the caches and
memory in the system.

 The same thing is true if we have a read hit when the cache state is
exclusive for the particular memory location requested. We will stay in the
exclusive state for this cache line and just use the data from the hit. Now the
state diagram looks like this:

 CPU read hit

Invalid CPU Read Shared
 Place read miss on bus (read only)

Exclusive Cache state transitions
(read/write) based on requests from CPU

CPU write

CPU write hit
CPU read hit

Cache Coherence Tutorial – Snoopy Bus Protocol 11/16/2005

 7

 So far we have done two reads and one write to the same memory
location and possibly we have done other reads and writes to other memory
locations also. We have also looked at other situations involving the
exclusive state that were fairly simple. Now we have to consider the
problem of what happens when the line that is in the cache is not the one that
the processor wants. This raises two possibilities, either we have to save the
old contents before we use the cache location or else we just throw the old
data away.

If we have the exclusive copy of the old data then it must be put back
into real memory before we can use the cache line for the new data. This is
done by doing a write-back block operation and then doing a place write
miss on bus operation or a place read miss on bus operation depending on
whether the data is being written or read. This will cause the old data to be
put into real memory in both cases, read or write. Then the new data has to
be obtained and put into the cache line and finally the state of the cache line
has to be set according to whether the operation was a write (exclusive) or a
read (shared). When the cache line desired is already occupied by another
memory location data value then this is what is considered an address
conflict miss. The old data has to go (without losing it) and the new data has
to come in. The diagram now looks like this:

 CPU read hit

Invalid CPU Read Shared
 Place read miss on bus (read only)

Exclusive Cache state transitions
(read/write) based on requests from CPU

CPU write

CPU write hit
CPU read hit

CPU write miss

Write-back cache block
Place write miss on bus

Cache Coherence Tutorial – Snoopy Bus Protocol 11/16/2005

 8

 Remember that place write miss on bus and place read miss on bus
cause different things to happen. The read miss will just cause the contents
of real memory or the contents of some cache somewhere that has the
exclusive state set for the particular address to be returned back to our cache.
The place write miss on bus will not cause the old data to be written back,
this is done by the write-back block operation beforehand. The place write
miss on bus will cause the same thing as mentioned previously for the write
miss operation on the shared or invalid states. It will go search for an
exclusive copy in another cache and retrieve that or it will retrieve the block
from memory and put it into our cache and it will invalidate any other cache
lines that have that memory location marked as shared.

There is only one transition left that we have not mentioned. This is

when the cache line is in the shared state but the address that we want needs
to go into the same cache location because the memory addressing overlaps.
In a direct mapped cache this always causes a replacement, in a set-
associative cache there is an algorithm that determines which line in the set
will be replaced. The old data does not need to be retained because it was
already shared in other caches (by virtue of this cache having it in the
shared state) and real memory. So all that is required is that the new data
value be obtained from real memory or another cache that has that memory
location marked as exclusive (remember that the old cache line was shared
but the new cache line we have to snoop to find out where it is. But the state
stays shared because the new line will become shared everywhere by the
nature of the fact that we did a read of the memory address. The final
diagram is the same as figure 6.11 in the textbook.

Cache Coherence Tutorial – Snoopy Bus Protocol 11/16/2005

 9

 The diagram on the left is the part that we have done. This is
the transitions that occurred in the cache line states from the requests of the
processor. We took the viewpoint of our processor and cache and all the
other ones were outside on the bus somewhere. Now we are going to take
the viewpoint as one of the caches out there on the bus. Now our cache,
we’re still the same cache just on the other end of the requests, will receive a
request from the bus and do the transitions based on these requests.

I suggest as an exercise that the student tries to build the right hand

diagram from the table before continuing. Then use the rest of this tutorial
to confirm your results.

Request Source State of addressed
cache block

Function and explanation

Read miss processor invalid Place read miss on bus.

Read miss processor shared Address conflict miss: place read miss
on bus.

Write miss processor invalid Place write miss on bus.

Write miss processor shared Address conflict miss: place write miss
on bus.

The rest of figure 6.10 for requests originating from the bus

Invalid Shared
 (read only)

Exclusive Cache state transitions
(read/write) based on requests from the bus

Cache Coherence Tutorial – Snoopy Bus Protocol 11/16/2005

 10

 Note that we are still dealing with the same two bits that are attached
to each cache line in our processor’s cache. Now we only deal with three
types of requests occurring from the bus, a read miss, a write miss and a
write-back block. Be aware also that when these signals appear on the bus
there is also the address that exists on the address lines of the bus. This
address is compared to the address identified in the cache line to see if this
cache is actively concerned with the present transaction.

 The first situation is if the cache line concerned with the address
presently on the bus is invalid. This is easy, because you will never get a
match and nothing will happen in our cache. The second situation, similar to
this, is if the cache line concerned with the address presently on the bus is in
the shared or exclusive state but the address does not match the address of
the cache line presently resident. This will also not have anything happen.

 So the next situation is what will happen when our cache is in the
shared state. If a read miss is requested and the address matches that which
is on the bus, then not much happens. The data will be obtained from real
memory for the other processor (unless some more elaborate data acquisition
scheme is devised where it can obtain the data from a nearby processors’
cache, but we won’t consider that) so this cache will not have to provide
anything. This cache will just remain in the shared state and that’s all.
Same thing for a read miss on bus request but the address on the bus does
not match the address in the cache line that it is associated with, the cache
line just stays as it is and the state remains as shared.

For a write miss being on the bus with the address matching one of
our cache lines then a very simple transition occurs. The signal means that
another processor is doing a write to the memory location so the data in our
cache line will no longer match the data for that address. The cache line will
be changed to the invalid state and nothing more needs to be done. So the
diagram now looks like this:

Cache Coherence Tutorial – Snoopy Bus Protocol 11/16/2005

 11

Invalid Write miss for this block Shared
 (read only)

Exclusive Cache state transitions
(read/write) based on requests from the bus

 When the cache line state is exclusive and the address on the bus
matches the address of the cache line then a little bit more happens. The
exclusive state designation indicates that this cache line in this processor has
the most up-to-date data in the cache line. This is only of concern if the
address on the bus matches the cache line address because we need to put
the data onto the bus. If the address is different then even if the cache line is
where the address would go, we leave the cache line alone, because the
address on the bus is being requested for the purposes of another processor
and our processor doesn’t need to get involved. But if the addresses do
match then the data has to be put out on the bus and the state of this cache
line has to be changed. A read miss indicates that another processor needs to
use the data. This means to our cache; share it. So the data will be put out
onto the bus and the real memory and the requesting processor will obtain a
copy. Our cache will still have a valid copy but now it is shared so the
transition will be to the shared state. Note in the diagram of figure 6.11 it
states “Write-back block; abort memory access”, the abort memory access
refers to the fact that the data in memory is not valid because the data in this
cache is the most up-to-date. What is aborted is the corresponding read of
the memory location that now turns out to be useless. But the write-back
block operation does put the valid data back into the real memory location.

CPU read miss

Cache Coherence Tutorial – Snoopy Bus Protocol 11/16/2005

 12

 On a write miss where the address on the bus matches the address of
one of our cache lines then our cache has to go into action again. First it
must put the valid data from the cache line on to the bus so that the other
processor can get it and maybe also the real memory can make a copy
although it is not really necessary since the other processor will have the
data marked as exclusive. Then the state will transition to invalid which
marks this cache line as invalid. The reason for this is that the write miss
signal being on the bus means that another processor is doing a write to the
memory location within the cache line range of addresses. We have to send
all the data we have for the cache line over to the other processor so that it
can add its portion and keep the new data as its own exclusive copy. Now
the diagram of figure 6.11 is complete for both sides.

 The two sides are joined together in figure 6.12 and it looks very
complicated and easy to misinterpret. But having built the table into a
diagram it should be an easy process to reconstruct it if necessary.

