
Cache Coherence Tutorial – Directory Based Protocol 11/24/2005

 1

Cache Coherence Tutorial – Part 2 Directory Based

 The snooping bus protocol tutorial was explained using a lot of detail
and I’m not going to use that approach again here. If a student is still unsure
of their grasp of the whole topic you could try the same approach for the
directory-based protocol. The directory-based protocol is similar in some
ways to the snooping bus protocol but there are some significant differences.
The main difference is in terms of scale in respect to the number of
processors involved in the multiprocessor system. In the snooping bus
protocol each memory address was sent out on a common bus and each
processor and its cache would receive and check out the address to
determine if any local actions needed to be done. So all the memory
operations, read/write/write back, would occur on the single bus for all the
processors in the system even if the one particular processor has nothing to
do with the memory location. When there are only a few processors
involved the bus bandwidth can handle the quantity, even if only a small part
of the memory addressing concerns any one processor. But when there are
massive numbers of processors like hundreds or thousands, the bus will
become very busy, often processors will be checking out addresses that have
nothing to do with them. So this means that some kind of directory memory
has to be included to keep track of which processors are concerned with
which areas of memory so that they can only talk to those caches and
memory that they are concerned with. With this approach the memory bus
can be interconnected in some way so that only the processors concerned
with the same area of memory are affected by the communication of the
data, with possibly a small number of other processors that are simply along
the path. The actual physical layout of the memory becomes a factor too,
because rather than a global memory in one location the memories can be
distributed in various locales. The snooping bus protocol could work in a
distributed environment also but in the directory-based protocol the
addresses can be directed along a path that provides the best communication
between the two points and does not affect other paths that it has no interest
in.

Cache Coherence Tutorial – Directory Based Protocol 11/24/2005

 2

 So the block diagram of figure 6.27 shows the processors with cache
combined together connected to a line that contains a memory area and a
directory area that attach to some kind of interconnection network. The
cache will contain the cache coherence bits that we saw in the snooping bus
protocol that indicated the state of the cache lines for that processor. The
directory area will contain state bits for the memory blocks for the memory
belonging to this processor and it will also keep track of which processors
are presently using a copy of any particular memory block in this
processor’s memory.

 The most significant difference with the directory-based protocol is
that the real memory has a directory block added to it that refers to the data
in the real memory distributed in every processor. This directory block
keeps track of the number of processors that are using the particular line of
real memory. It also keeps track of whether a line has been written to in
some processor and therefore the correct data now resides in that processor’s
cache line. Prof. Li showed the diagram for a transaction in this way:

Local processor

Home memory

Remote processor

Cache Coherence Tutorial – Directory Based Protocol 11/24/2005

 3

 Using the diagrams of figures 6.29 and 6.30 to follow the actions for
the cache lines and also the actions in the directory for the memory location,
we can follow a couple of situations.

Cache Coherence Tutorial – Directory Based Protocol 11/24/2005

 4

 So lets do a simple read of a memory location where all the caches are
initially empty. The local processor will get a read miss because the cache
line will be in the invalid state. This will cause a read miss message to go
out on the bus with the address on the bus address lines. Depending on the
capabilities of the interconnect network, this address will be interpreted and
the read request will go to the appropriate processor where the real memory
exists. The directory will indicate that the state of that memory location is
presently uncached. The data will be sent back to the requesting processor
and the directory will be updated to put the state of this memory line to
shared and it will also send the signal data value reply as an
acknowledgement back to the requesting processor. The id of the requesting
processor will be recorded in a sharers slack list in the directory block. The
local processor’s state for that memory location will be set to shared.

 Let’s get a little bit more complicated now. Let’s assume that one of
the processors has written to a location previously that our local processor
now wants to read. The local cache will be invalid or occupied by another
memory address. This time we will assume that it is invalid. So the read
miss signal goes out on the bus with the address and the processor id. This
will be directed to the home processor. At the home processor the state will
indicate that this location is exclusive to a remote processor. So a data fetch
signal is sent out on the bus through the interconnect network to the
processor that was specified in the home directory sharers stack list. The
remote processor will have the data in its cache and it will be in the
exclusive state. The data will be put on the bus to go back to the home
processor and the signal data write-back will be sent to the home processor.
The remote processor will finally change its state from exclusive to shared
and it is finished. The home processor will receive the data, put it in
memory and send the data on to the requestor (our local processor). It will
send the data value reply signal to the requesting processor and will finally
change its directory state from exclusive to shared. The requesting

Local processor

Home memory

Remote processor

Read miss Data value reply

Cache Coherence Tutorial – Directory Based Protocol 11/24/2005

 5

processor (our local processor) will receive the data, put it into the cache line
and update the state that was invalid to make it shared.

 Note here that we now see the 4-hop protocol that Prof. Li discussed
in class.

 Now it is interesting to note that with the atomic way that we deal
with the cache line, that is that we only have one exclusive version in any
cache or the version in memory is correct, means that in certain
circumstances a request from the local processor can bypass the rewrite into
memory on the return pass. Let’s say we are doing a write in the local
processor and another remote processor has an exclusive copy of the address
of concern. Hop 1 will occur as above except it will be a write miss, and
Hop 2 will likewise be the same. But for the return path it is unnecessary to
go back to the real memory because the local processor will end up with the
exclusive copy anyway and that data was not sent out with the original
request. So we can skip the extra hop in the return path by sending the data
directly to the original requesting processor. There are some details that
have to be attended to, though, such as updating the home directory sharers
stack list to indicate the new processor id now has the exclusive copy.

Local processor

Home memory

Remote processor

Read miss Data value reply

Data fetch Data write-back

Local processor

Home memory

Remote processor

Read miss Data value reply

Data fetch Data write-back

Hop 1

Hop 2
Hop 3

Hop 4

Cache Coherence Tutorial – Directory Based Protocol 11/24/2005

 6

 Remember that the 3-hop protocol is an experiment and not the
standard. There are things that would be different in the figures for the state
transitions. For exam questions follow the instructions specified and if
nothing is stated then the assumption would be to follow the 4-hop protocol
of the textbook. And also, just as everything else that has been covered in
this course there are no hard rules that define all computers, these are just
guidelines that introduce the students to generalities in order to develop an
understanding of the many topics.

 Assignment #5 has a cache coherence application mixed together with
an interconnect protocol. It looks like a good exam type question, I suggest
you investigate it and check the answers.

Local processor

Home memory

Remote processor

Write miss

Data
fetch/invalidate

Data value replyHop 1

Hop 2 Hop 3

