
Cache Write Policies and Performance

Norman P. Jouppi
Digital Equipment Corporation Westem Research Lab

250 University Avenue
Palo Alto, CA 94301

Abstract
This paper investigates issues involving writes and caches.
First, tmdeoffs on writes that miss in the cache are inves-
tigated. In particular, whether the missed cache block is
fetched on a write miss, whether the missed cache block is
allocated in the cache, and whether the cache line is written
before hit or miss is known are considered. Depending on
the combination of these polices chosen, the entire cache
miss rate can vary by a factor of two on some applications.
The combination of no-fetch-on-write and write-allocate
can provide better performance than cache line allocation
instructions. Second, tradeoffs between write-through and
write-back caching when writes hit in a cache are con-
sidered. A mixture of these two altematives, called write
caching is proposed. Write caching places a small fully-
associative cache behind a write-through cache. A write
cache can eliminate almost as much write traffic as a write-
back cache.

1. Introduction
Most of the extensive literature on caches has con-

centrated on read issues (e.g., miss rates when rreating
stores as reads), or writes in the context of multiprocessor
cache consistency. However, uniprocessor' write issues
are in many ways more complicated than read issues, since
writes require additional work beyond that for a cache hit
(e.g., writing the data back to the memory system).

The cache write policies investigated in this paper fall
into two broad categories: write hit policies, and write miss
policies.

Unlike instruction fetches and data loads, where reduc-
ing latency is the prime goal, the primary goal for writes
that hit in the cache is reducing the bandwidth requirements
(i.e., write traffic). This is especially important if the cycle
time of the CPU is faster than that of the interface to the

'By uniprocessor we include non-coherency issues in mul-
tiprocessor cache memories, as well as uniprocessor cache
memories.

second-level cache, and if multiple instruction issue allows
store W i c approaching one per cycle to be sustained in
many applications. The write traffic into the second-level
cache primarily depends on whether the first-level cache is
write-through (also called store-through) or write-back
(also called store-in or copy-back). Write-back caches take
advantage of the temporal and spatial locality of writes
(and reads) to reduce the write traffic leaving the cache.

Write miss policies, although they do affect bandwidth,
focus foremost on latency. Write miss policies include
three semi-dependent variables. First, writes that miss in
the cache may or may not have a line allocated in the cache
(write-allocate vs. no-write-allocate). If a cache uses a
no-write-allocate policy, when reads occur to recently writ-
ten data, they must wait for the data to be fetched back
from a lower level in the memory hierarchy. Second,
writes that miss in the cache may or may not fetch the
block being written (fetch-on-write vs. no-fetch-on-write).
A cache that uses a fetch-on-write policy must wait for a
missed cache line to be fetched from a lower level of the
memory hierarchy, while a cache using no-fetch-on-write
can proceed immediately. We emphasize that write-
allocate and fetch-on-write are not synonymous as com-
monly assumed. This paper investigates the combination
of write-allocate but no-fetch-on-write which has superior
performance over other policies. A new third variable of
write policy, write-before-hit, is also investigated in this
paper. If writes use the same pipeline timing as reads to
reduce structural hazards in the pipeline, writes will occur
before hit or miss is known. Obviously write-before-hit is
only useful with write-through caches; if used with a write-
back cache unique dirty data will be overwritten. Writes
using write-before-hit that miss in the cache may simply
invalidate cache lines "erroneously" written and pass the
data written on to lower levels in the memory hierarchy.
Different combinations of these three write-miss policy
variables can result in a 2 1 range in cache miss rates for
some applications.

Out of the hundreds of papers on caches in the last 15
years [14, 151, Smith [12] was the only paper to exclusively
deal with write issues. This paper discussed write buffer

191
0884-749993 $3.00 8 1993 IEEE

I ~

T r ~~

performance for write-through caches, but did not inves-
tigate merging of pending writes to the same cache line by
a write buffer. Smith [13] and Goodman [6] both have a
section on write-back versus write-through caching, but
they study only mixed first-level caches with traces under a
million references. Among the more recent work in
uniprocessor cache issues, Agarwal [l] and Hill [7] as-
sumed write references were identical to read references in
their analysis. Przybylski [lo] includes write overheads in
his analysis, but only considers the case of write-back
caches at all levels. Write miss policies have been even
less investigated. Almost all of the known results in the
literature have been for the combination of write-allocate
and fetch-on-write. The VAX 11/780 [21 and 8800 131
were notable exceptions to this and used no-write-allocate.
An unpublished paper by Smith [16] has a section that con-
siders tradeoffs between write-allocate and no-write-
allocate. It uses traces up to ten million references, but
investigates only 4KB data caches with 16B lines.

Section 2 briefly describes the simulation environment
and benchmarks used in this study. Policies for write
misses, specifically fetch-on-write, write-allocate, and
write-before-hit are investigated in Section 3. Section 4
investigates write hit tradeoffs between write-back and
write-through caching, as well as ways of reducing write-
through traffic. Section 5 summarizes the results of the
Paper.

2. Experimental Environment
This paper investigates write policies in the context of a

modem memory hierarchy. One or more levels of on-chip
caching are assumed, although the data in the paper is for
the effects of these policies on the first-level cache perfor-
mance. Because one or more levels of on-chip caching are
assumed, the first-level cache sizes studied are from 1KB
to 128KB. which are suitable for implementation on a
VLSI chip.

Separate instruction and data caches are assumed at the
first level, since these are necessary for superscalar and
other types of high performance machine design. Only
direct-mapped first-level data caches are studied.

The results in this paper were obtained by modifying a
simulator for the MultiTitan [8] architecture. The Mul-
tiTitan architecture does not support byte loads and stores,
so byte writes appear as word read-modify-writes.
However, the number of byte operations in the programs
studied are insignificant, so this does not significantly af-
fect the results presented. Each experiment involved
simulating the benchmarks, and not analyzing trace tapes.

The characteristics of the test programs used in this
study are given in Table 2-1. Although six is a small num-
ber of benchmarks, the programs chosen are quite diverse,
with two numeric programs, two CAD tools, and two Unix
utilities. However, operating system execution,
transaction-processing code, commercial workloads (e.g.,
COBOL), and multiprocessing were beyond the scope of

Nu ilutr. rud. w r i t e s r e f s . typr
OQQ 31.511 8.- 5.m 45.W C ccnpiler
grr 134.2N 4 2 . U 1 7 . U 193.411 PC b o d CAD
y.= 5 1 . a 12.- 3.811 6 7 . m U n i r u t i l i t y
mt 9 9 . m 36.411 13.851 149 .m PC board CAD
linruck 144.851 28.- 1 2 . U 185.511 lOOxl00
1iA-r. 23.81 5.W 2.311 31.0M loops 1-14
tot81 484.511 132.851 54.811 672.851

Table 2-1: Test program characteristics

this study. The benchmarks used are reasonably long in
comparison with most traces in use today.

3. Write Misses: Fetch-on-Write, Write-Allocate,
and Write-Before-Hit
The policy used on a write that misses in the cache (i.e.,

"write miss") can significantly affect the total amount of
cache refill traffic, as well as the amount of time spent
waiting during cache misses. The number of cache misses
due to writes varies ha t ica l ly depending on the
benchmark used. Figure 3-1 shows the percentage of
misses that are due to writes for various cache sizes with
16B lines, using write-allocate with fetch-on-write. Figure
3-2 shows the percentage of misses that are due to writes
for an 8KB cache with various line sizes. On average over
all the cache configurations, write misses account for about
one-third of all cache misses. Since loads outnumber stores
in these benchmarks by roughly 2.4 1 (see Table 2- l), this
means that stores are about as likely to cause a miss as
loads.

I

70 I / I

MI M 4

" ~~~

1 2 4 8 16 32 64 128
CacbcsiZcinKB

Figure 3-1: Write misses vs. cache size for 16B lines

There are four combinations of three write-miss policies
from which to choose (see Figure 3-3).

In systems implementing afetch-on-wn'te policy, on a
write miss the line containing the write address is fetched.
In systems implementing a write-allocate policy, the ad-
dress written to by the write miss is allocated in the cache.
Note that it is possible to have a write-allocate policy with-
out using fetch-on-write: here the data being written is writ-

90 Key: a Oyacc 4 linpack
X average B grr + met I* l iva

e. s g

Cd

3

Yes No

Fetch-on-write Write-validate NO S

Fetch-on-write Write-validate Yes
1.

$
.3 E
3
k

- - 8
Y

0
.- P
I =

E
Write-around NO

?
5 Write-invalidate Yes .a

A combination of fetch-on-write and no-write-allocate
policies is not useful, since the old data at the write miss
address is fetched but is discarded instead of being written
into the cache. When referring to caching policies, fetch-
on-write has been used to imply write-allocate in the litera-
ture. A fetch-on-write policy has the same result whether
or not write-before-hit is used. If the old data at the write
miss address is not fetched (i.e., no-fetch-on-write), three
distinct options are possible. We call the combination of
no-fetch-on-write and write-allocate write-validate. With
write-validate, the line containing the write is not fetched.
The data is written into a cache line with valid bits turned
off for all but the data which is being written. For write-
validate polices with write-before-hit, the valid bits for the
old data must be med off with an additional write opera-
tion once miss is detected. We call the combination of
no-fetch-on-write, no-write-allocate, and no-write-before-
hit write-mound, since write misses do not go into the
cache but go around it to the next lower level in the
memory hierarchy, leaving the old contents of the line in
place. Note that writes that hit in the cache still write into
the cache with a write-around policy; here we are only
considering write miss alternatives. The combination of
write-before-hit, no-fetch-on-write, and no-write-allocate
we call write-invalidate, because the line must be in-
validated on a miss. Note that this is not the same as the
write-purge of [16] which invalidates the cache line on a
write hit. As defined here, write-invalidate only invalidates
lines when it misses. Thus, write hits still write into the
cache as usual with a write-invalidate write miss policy.

We call write misses that that do not result in any data
being fetched with a write-validate, write-around, or write-
invalidate policy eliminated misses. For example, with
write-validate if the invalid part of a line is never read, the
fetch of the data (and the attendant stalling of the proces-
sor) is eliminated. Only if the invalid portion of a line
resulting from the write-validate strategy is read without
first being written or the line being replaced, is this counted
as a miss. Similarly, with write-invalidate only if the line
being written or the old contents of the cache line are read
before another address mapping to the same cache line
misses is it counted as a miss. Finally, with write-around,
only if the data being written is read before any other data
which maps to the same cache line is read is the miss
counted. This terminology neglects the time required to set
the valid bits on an eliminated miss. However, if main-
tenance of the valid bits cannot be done in parallel with
other operations, it typically takes at most a cycle, which is
insignificant compared to cache miss penalties.

The write miss policy used is sometimes dependent on
the write hit policy chosen. Write-around and write-
invalidate (i.e., policies with no-write-allocate) are only
useful with write-through caches, since writes are not en-
tered into the cache. Fetch-on-write and write-validate can
be used with either write-through or write-back caching.

193

Write-validate requires the addition of valid bits within a
cache line. Valid bits could be added on a word basis, so
that words can be written and the remainder of the line
marked invalid. In systems that allow byte writes or un-
aligned word writes, byte valid bits would be required for a
pure write-validate strategy. However, the addition of byte
valid bits is a significant overhead (one bit per byte, or
12.5%) in comparison to a valid bit per word (3.1%). Thus,
in practice machines with byte writes that have write-
validate capability for aligned word and double-word
writes would probably provide fetch-on-write for byte
writes. Write-validate also requires that lower levels in the
memory system support writes of partial cache lines.

In multiprocessor systems with cache consistency, write
misses require traffic to gain exclusive write ownership of
the block being written. In a multiprocessor using write-
validate with an ownership protocol, a fetch with owner-
ship still needs to be sent to the coherency point. When the
fetched data returns it can be merged with the cache line
which has been allocated based on the word valid bits.
Thus extra coherency transactions required by write-
validate can negate its traffic advantages over fetch-on-
write in multiprocessor configurations. However, to the
extent that the processor can continue execution with
relaxed consistency models, including use of data which
has been previously written but for which the rest of the
line has not returned, improved performance would still be
possible with write-validate as compared to a simple fetch-
on-write policy.

The choice of write miss policy can make a significant
difference in the performance of certain operations. For
example, consider copying a block of information. If fetch-
on-write is used, each write of the destination must hit in
the cache. In other words, the original contents of the
target of the copy will be fetched even though they are
never used and are only overwritten with write data. This
will reduce the bandwidth of the copy by wasting fetch
bandwidth. Given a total bandwidth available for reads and
writes, a fetch-on-write strategy would have only two-
thirds of the performance on large block copies as a no-
fetch-on-write policy since half of the items fetched would
be discarded.

Some architectures have added instructions to allocate a
cache line in cases where programmer directives specify or
the compiler can guarantee that the entire cache line will be
written and the old contents of the corresponding memory
locations will not be read [l 1,8,4]. These instructions are
limited to situations where new data spaces are being al-
located, such as a new activation record on a process stack,
or a new output buffer is obtained from the operating sys-
tem. Unfortunately there are a number of problems that
prevent broader application of software cache line alloca-
tion:
1. The entire cache line must be known to be written at

compile time, or if some of the line is not written its old
contents must not need to be saved. (In contrast, write-
validate can allow partial lines to written, and is not

subject to optimization limitations such as incomplete
alias information, etc.)

2.Cache line sizes vary from implementation to im-
plementation, limiting object code using these instruc-
tions to the machines with cache line sizes equal to or
smaller than that assumed in the allocate instructions.

3.Context switches after a line has been allocated and
partially written but before it has been completely writ-
ten result in dirty and incorrect cache lines. (One way
around this would be to add valid bits to each write
quantum in the line, but this provides the hardware sup-
port needed for write-validate).

4.There is extra instruction execution overhead for the
cache allocation instructions, or extra opcode space is
used if they are merged with store instructions.

Thus, the use of cache line allocation instructions is limited
to situations such as new data allocation and buffer copies.
Write-validate can provide better performance than cache
line allocation instructions since it is also applicable in
cases where only part of a line is being written or it is not
possible to guarantee that an entire line is written at com-
pile time. Write-validate works for machines with various
line sizes, and does not add instruction execution overhead
to the program. Finally, since write-validate has word valid
bits there are no problems with cache lines being left in an
incorrect state on context switches.

A technique that has recently become popular in the
literature is non-blocking (also called lock-up-free)
caches [17]. Typically a cache with non-blocking writes
implements what we have called a write-around policy.
Some practical implementations of non-blocking writes
may need to use write-invalidate, however, for timing
reasons.

Figure 3-4 shows the reduction in write misses for write-
validate, write-around, and write-invalidate for caches with
16B lines. We define the reduction in misses as a percent-
age of write misses (M%WM) for a policy X as follows:

Missesfetckon-wri,e - Missesx

WriteMissesf,lck,,ri,~
M%WMre&,,, = 100 x

Note that we take the difference in total misses (both read
and write) and divide it by the number of write misses of
fetch-on-write. When policies other than fetch-on-write are
used this takes into account extra read misses that occur as
a result of not using fetch-on-write. Since fetch-on-write
fetches a cache line on every write miss, it corresponds to
the X axis (0% reduction) in Figure 3-4. In general write-
validate performs the best, averaging more than a 90%
reduction in misses as a percentage of write misses. The
two no-write-allocate strategies, write-around and write-
invalidate, have an average reduction in misses as a per-
centage of write misses of 40-65% and 30-50% respec-
tively. Write-around has a greater than 100% reduction in
misses as a percentage of write misses for 32KB and 64KB
caches when running liver, because it saves read misses as
well. liver is a synthetic benchmark made from a series of
loop kernels, and the results of loop kernels are not read by

194

successive kernels. However, successive loop kernels read
the original matrices again. The range of cache sizes from
32KB to 64KB is big enough to hold the initial inputs, but
not the results too. Since write-around does not place the
results in the cache but keeps the old contents of the cache
line unchanged, it can also result in fewer read misses since
the initial data is not replaced with write data or in-
validated.

130

120

110

100

90
I
I
3

.! 8o
'CI

h 70
9
B.
; 6o
2

E 50
I
I ' 40

30

20

10

Key: 0 ccomo yam 4 linpack X average

grr + met b liver

- 0 write-validate - - I

v - ;
write-around

write-invalidate ,'

- - - - - , I
I

I

I
I

I

- -

I

'(3- - \ !

0 ~ ~~

1 2 4 8 16 32 64 128
Cache size in KB

Figure 3-4: Miss reduction as % of write misses, 16B l i e s

195

-1

100

90

80

70

2
B
E 6 0

p

5
9

" 50 ;
40

b a
30

20

lol
4

0

Key: 0 ccomo yaw 4 linpack X average

[3 grr + met Er liver

write-around - - _ - -

- - +- - - -b ' .d
- -P -v

1 2 4 8 16 32 64 128
Cache size in KB

Figure 3-5: Total miss rate reductions for 16B lines

Figure 3-5 shows the reduction in data cache misses (in-
cluding both read and write) for write-validate, write-
around, and write-invalidate for caches with 16B lines.
The overall reduction in miss rate (Moverall) is computed
as folows:

Missesfetch-on-write - Missesx
MOverall ,e~tion = 100 x

MiSSeSfetch-on-write
Figure 3-5 is basically Figure 3-4 multiplied by Figure 3-1.
ccom and liver benefit the most from a write-validate
policy. This can be explained as follows. Many of the
operations in ccom and liver are similar to copies: data is
read but other data is written. For example, array opera-
tions of the form "for j := 1 to lo00 do Aljl := Bljl + Cljl"
only write data which is never read before being written.
Similarly, write-validate would be useful for a compiler if
it has a number of sequential passes, each one reading the
data structure written by the last pass and writing a dif-

.

I

ferent one. The other programs have more read-modify-
write behavior. The best example of this is linpuck. The
inner loop of linpack, saxpy, loads a matrix row and adds to
it another row multiplied by a scalar. The result of this
computation is placed into the old row. Here write-validate
would be of very little benefit since almost all writes are
preceded by reads of the data anyway. On average over the
six programs write-validate reduced the total number of
data cache misses (over both read and write) by 31% for an
8KB data cache with 16B line size.

Write-around performs well when the data being written
by the processor is not read by it soon or ever. This is the
situation in liver with a 32KB or 64KB cache, the only
benchmark that performs becter with write-around than
write-validate. In general, however, most programs are
more likely to read what they have just written than they
are to re-read the old contents of a cache line. For all other
cases the performance of write-around is worse than that of
write-validate.

Write-invalidate does not show as much improvement
over fetch-on-write as the other two strategies, but it still
performs surprisingly well. livermore has about a 40%
reduction in misses, and the six benchmarks on average
have a 10-20% total reduction in misses compared to fetch-
on-write. Moreover, write-invalidate is very simple to im-
plement. In a write-through cache using write-invalidate
the data can be written at the same time the tags are probed.
If the access misses, the line has been corrupted so it can be
simply marked invalid, often without inserting any machine
stall cycles.

Figure 3-6 shows the reduction in misses as a percentage
of write misses for write-validate, write-around, and write-
invalidate for 8KB caches with various line sizes. Since
fetch-on-write fetches a cache line on every write miss, it
corresponds to the X axis (0% reduction) in Figure 3-6.
Write-validate, write-around, and write-invalidate have the
highest benefit for small lines. If the line size is the same
as the item being written, any old data fetched by fetch-on-
write is merely discarded when the write occurs. As the
line size gets larger, the odds that some old data on the line
will be needed increases, so the advantage of write-validate
decreases. The miss rate reduction of write-around also
decreases with increasing line size for similar reasons. The
performance advantage of write-invalidate decreases with
increasing line sizes because more information is being
thrown away. Again write-validate performs the best,
averaging more than a 90% reduction in misses as a per-
centage of write misses except at the longest line sizes.
The two newrite-allocate strategies, write-around and
write-invalidate, have an average reduction in misses as a
percentage of write misses of 40-70% and 3550% respec-
tively.

Figure 3-7 shows the overall reduction in total misses for
write-validate, write-around, and write-invalidate for 8KB
caches. (This graph is basically Figure 3-6 multiplied by
Figure 3-2.) Again write-around generally performs worse

Key: Occom @yacC 4 finpack

X avemge C!l grr + met F* liver

writevalidate

- - - write-invalidate

A\%/-

- - - - - a _ _ _ _ - - . I _ _ _ _ _ _ -e------- e- - _ .
I ' . ' --

--,A q " - I----
"
4 8 16 32 64

Cache line size in Bytes
Figure 3-6 Miss reduction as % of write misses, 8KB caches

than write-validate, because most programs are more likely
to read the data that was just written than the old contents
of the cache line. Both write-validate and write-around
perform better than write-invalidate, but again write-
invalidate performs surprisingly well.

We can generate a partial order of the relative total read
and write miss traffic between these four write-miss policy
combinations (see Figure 3-8). Fetch-on-write always has
the most lines fetched, since it fetches a line on every miss.

7

196

Key: Occom +yaw Qlinpack

X average Cl grr + met 0 liver

write-validate

- - - - - _ _ - - writearound

write-invalidate

4 8 16 32 64
Cache l i e size in Bytes

Figure 3-7: Total miss rate reduction for 8KB caches

Write-invalidate avoids misses in the case where neither
the line containing the data being written nor the old con-
tents of the cache line are read before some other line map-
ping to the same location in the cache is read. This saves
some misses over fetch-on-write. Write-around and write-
validate always have fewer misses than write-invalidate.
Write-around avoids fetching data in the same cases as
write-invalidate, as well as cases where the old contents of
the cache line are accessed next. Writevalidate avoids
fetching data in the same cases as write-invalidate, as well
as cases where the data just written is accessed next.
Usually the data just written (i.e., write-validate) is more
useful than the old contents of the cache line (i.e., write-
around), but this is not always the case. Also, the ratio of
miss rate reduction of write-validate to write-around
decreases as the line size increases since write-validate in-
validates an increasing number of bytes while write-around
leaves all the bytes on the line valid.

Least traffic

T
Fetdr-
on-write Most traffic

Figure 34k Relative order of total fetch traffic

4. Write Hits: Write-Through vs. Write-Back
When a write hits in a cache, two possible policy choices

exist. First, the data can be written both into the cache and
passed on to the next lower level in the memory hierarchy.
This policy is called write-through. A second possible
policy on write hits is to only write the data to the fmt-
level cache. Only when a dirty line (i.e., a line that has
been wrimn to) is replaced in the cache is the data trans-
ferred to a lower level in the memory hierarchy. This
policy is called write-back. Write-back caching takes ad-
vantage of the locality of reference of writes to reduce the
amount of write MIC going to the next lower level in the
memory hierarchy.

Although the conventional wisdom may be that write-
back caching is always preferred over write-through cach-
ing, in multilevel cache hierarchies there are a number of
significant advantages of write-through caching for fmt-
level caches. In the common case where the first-level
caches are on-chip, the second-level cache is typically

One advantage of write-through caching is the write
bandwidth into the cache (i.e., the number of cycles re-
quired per write). A write-back cache must p b e the tag
store for a hit before the corresponding data is written.
This is because if the write access misses and the victim is
dirty, unique dirty data will be lost if the cache line is
written before the probe. However, a direct-mapped write-
through cache can always write a cache line of data at the
same time as probing the address tag for a hit. If the access
misses, the line is never dirty and will be replaced anyway
so there is no problem. If the data cache is set-associative,
the probe must occur before the write whether the cache is
write-back or write-through. However, a large and increas-
ing number of first-level data caches are direct-mapped, for
reasons discussed in[7, IO]. The two-cycle access of
straightforward write-back and set-associative cache im-

write-back.

197

plementations (i.e., a probe cycle followed by a write
cycle) provides more limited store bandwidth at the input to
the cache than a direct-mapped write-through cache, in or-
der to reduce the write bandwidth required on the output
side of the cache. In machines that can issue multiple
instructions per cycle, the incoming lodstore bandwidth
of the cache can be a limiting factor to machine perfor-
mance. Although stores are about half as frequent as loads
on average, if each store requires two cycles this will result
in a 33% reduction in effective first-level cache bandwidth

store timing
load w r i t e - w r i t e -

pipestage timing through$ back*
ins tr fetch
register fetch
address calc .
cache read data write data read tags
access read tags read tags
w r i t e w r i t e data
registers i f tags h i t

scope of this work.
A second advantage of write-through caching overwrite-

back caching is the ease with which stores and their atten-
dant writes are integrated into the machine pipeline (see
Figure 4-1). In a direct-mapped write-through cache writes
can always be performed in the pipestage where loads read
the cache. If the access turns out to be a miss the conven-
tional miss-recovery hardware provided for load misses can
be used, and the store write cycle is simply repeated.
However, a simple write-back or set-associative write-
through cache can require two cycles of cache access per
store: the first cycle probes the cache tags, and the second
sets the appropriate dirty bits and writes the data. This will
require interlocks when loads immediately follow stores,
since the stores would be accessing the data section at the
same time as the next (load) instruction is accessing the
data section of the cache (i.e., without interlocks the WB
pipestage of the store would be at the same time as the
MEM pipestage of the load.) Note that if load latency
weren't important, loads could delay their data access until
WB after hit or miss were already known. Then stores and
loads would access the cache with the same timing and
could be issued one per cycle in any order. However, since
load latency is of critical importance in machine design,
this is not a viable option. Although in Figure 4-1 stores
into a write-through cache would commit a pipestage ear-
lier than loads or other operations (which commit in WB),
the cache line written by the store can be flushed a pipes-
tage after its write without adverse consequences. This
allows exceptions to be handled precisely. Similarly, data
going into the write buffer in the MEM pipestage of Figure
4-1 can be aged one cycle until the instruction is known to
have completed without exception.

A third advantage of write-through caching over write-
back caching is error-tolerance, for both manufacturing or
hard defects and soft defects. A write-through cache can
function with either hard or soft single-bit errors, if parity is
provided. This is because the write-through cache contains
no unique dirty data, and reads of data with errors can be
turned into cache misses. A write-back cache can not
tolerate a single-bit error of any type unless ECC is
provided. ECC must usually be computed on at least a 32

bit data word to be economical. For example, single bit
detection and correction (but not double detection) ECC
requires 6 bits per 32 bit word versus 4 bits per 8 bit byte
giving 16 bits per 4 bytes. Thus operations like byte store
must first read and ECC-decode a word before being able
to write a byte. Moreover, byte parity on a four-byte word
would allow four single-bit errors to be corrected by
refetching a write-through line in comparison to only one
error for an ECC-protected write-back cache word. This is
true even though byte parity requires only two-thirds of the
overhead of word ECC. Thus write-through caches with
parity have better error-tolerance at a smaller cost than
write-back caches with ECC.

The primary problem with write-through caches is their
higher write traffic as compared to write-back caches. One
way to reduce this traffic is to use a coalescing write buffer,
where writes to addresses already in the write buffer are
combined.

Figure 4-2 shows the simulation results for an 8-entry
coalescing write buffer. Each write buffer entry is a cache
line (16B) wide. The data presented are the results of the
six benchmarks averaged together. Simulations were per-
formed where the write buffer emptied out an entry every n
cycles, with n varying from 0 to 48 cycles. In practice the
number of cycles between retirement of write buffer entries
will depend on intervening cache miss service and other
system factors. However, as on-chip processor cycle times
become much faster than the off-chip cycle times, and
processors issue more than one instruction per cycle, the
number of off-chip cycles between writes can become very
large (e.g., more than 12). Since cache miss service effec-
tively stops processor execution in many processors, cache
misses were ignored in Figure 4-2. This allows a fixed
time between writes to be used as a reasonable model of the
write buffer operation. If duly write buffer entries are writ-
ten back quickly, they do not stay in the write buffer for
many cycles and hence relatively little merging takes place.
For example, if write buffer entries are retired every 5
cycles, the write traffic is reduced by only 10%. The only
way that a significant number of writes are merged (e.g.,
50% or more) is if the write buffer is almost always full.
But in this case stores almost always stall because no write

198

buffer entries are available. For example, to attain a write
traffic reduction of 50%, writes must be retired no more
frequently than every 38 cycles, resulting in a CPI burden
of 7! Since much of current computer research is focused
on achieving machines with CPIs of less than one, write
buffer stalls should be well under 0.1 CPI. This means that
only a small percentage of writes (e.g., less than 20%) can
be merged with simple coalescing write buffers. The extra
traffic resulting from this lack of coalescing wastes cache
bandwidth that could otherwise be used for prefetching or
other uses.

Cycles per write retire

0 4 8 12 16 20 24 28 32 36 40 44 482.0

1.8

1.6

60

30

20

10

-. 1.2

write-buffer _. 0.6

-. 0.4

-. 0.2

0 : 0.0
0 4 8 12 16 20 24 28 32 36 40 44 48

Figure 4-2: Coalescing write buffer merges vs. CPI

Instead of having writes enter and leave the write buffer
as soon as possible, we can add a write cache in front of the
write buffer and behind the data cache. A write cache is a
small fully-associative cache (see Figure 4-3). With a
small number of entries we can try to coalesce the majority
of writes and decrease the write traffic exiting the chip.
When a write misses in the write cache, the LRU entry is
transferred to the write buffer to make m m for the current
write. In actual implementation, the write cache can be
merged with a coalescing write buffer. Here a write buffer
of m entries would only empty an entry if it has more than
n valid entries, where n is the number of entries concep-
tually in the write cache (with m > n). A write cache can
also be implemented with the additional functionality of a
victim cache [9], in which case not all entries in the small
fully-associative cache would be dirty. Note that whereas a
fist-level data cache which can probed and written in one
cycle is very difficult to achieve (for an interesting cycle
time), a several-entry fully-associative write-cache could be
easily implemented within a machine cycle. This is be-
cause each tag in the write cache must has its own com-
parator. Thus there is no tag RAM access time before the
tag comparisons can begin, as would be the case in a or-
dinary data cache.

Cycles per write retire

Addressfrom processor Data from processor

Data
C a C b

.. _.

88 of data Fully.
assoC*tive
W f h
C p C h

BB of data

.3/
To next lower cache

\L
To next lower cache

Figure 4-3: Write cache organization

Figure 4-4 gives the number of writes removed by a
write cache with varying numbers of 8B lines. (8B was
chosen as the write cache line size since no writes larger
than 8B exist in most architectures, and write paths leaving
chips are often 8B.) A write cache of only five 8B lines
can eliminate 50% of the writes for most programs. Two
notable exceptions to this are l i n p c k and liver. Because
these programs sequentially travel through large mays,
even a write-back cache of modest size (less than 32KB)
removes very few writes. In order to get a better idea of
how write caches compare with write-back caches, the
write traffic reduction of a write cache is given relative to a
4KB write-back cache in Figure 4-5. In Figure 4-5 a write
cache of only four 8B entries removes over 50% of the
writes removed by a 4KB write-back cache on all of the
benchmarks except met. Another interesting result is that a
write cache with eight or more 8B entries actually outper-
forms a 4KB direct-mapped write-back cache on liver.
This is because mapping conflicts within the write refer-
ence stream prevent a direct-mapped write-back cache from
being as effective at removing write traffic as the fully-
associative write cache.

Figures 4-4 and 4-5 also give the average traffic reduc-
tion of write caches in absolute terms and relative to a
write-back cache. The two most interesting points on these
curves are probably a fiveentry write cache, since it seems
to be at the knee of the traffic reduction curve, and a one-
entry write cache, since it is the simplest to implement.
The five-entry write cache can remove 40% of all writes, or
63% of those removed by a 4KB write-back cache. The
singleentry write cache can remove 16% of all writes on
average, which is 21% of the writes removed by a write-
back cache.

Of course the relative traffic reduction of a write cache
varies as the size of the write-back cache used in the com-
parison varies (see Figure 4-6). Compared to a 1KB write-
back cache, a five-entry write cache removes 72% of the

199

I

90
Key:

Ocunn

0 yaw
+ met
4 linpack

90
a

x

15 entry write cache
5 entry write cache

--- --. - - - - 1 entry write cache

Key: - - - - - - . ---.

I
0 1 2 3 4 5 6 7 8 9 10111213141516

Number of write<ache entries

Figure 4-4: Write cache absolute traffic reduction

o Yaw I + met

i l
01 I
0 1 2 3 4 5 6 7 8 9 10111213141516

Number of writecache entries

Figure 4-5: Write cache traffic relative to 4KB write-back

write traffic but compared to a 32KB write-back cache it
only removes 49% of the write traffic. This change is
surprisingly small considering the 321 ratio in write-back
cache size, and is due to the write cache’s good absolute
traffic reduction. The reduction in write cache relative ef-
fectiveness is fairly uniform as the write-back cache size
used for comparison increases in size.

- - - - - fj 201-
d

-
1 2 4 8 16 32 64

Direct-mapped cache size in KB
Figure 46: Write cache traffic reduction vs. cache size

5. Conclusions
An important performance issue involving writes is the

policy for handling write data on a write miss. Four op-
tions exist: either fetch the line before writing (i.e., fetch-
on-write), allocate a cache line and write the data while
turning off valid bits for the remainder of the line (i.e.,
write-validate), just write the data into the next lower level
of the memory hierarchy leaving the old contexts of the
cache line intact (i.e., write-around), or invalidate the cache
line and pass the data on to the next lower level in the
memory hierarchy (i.e., write-invalidate). Write-invalidate
is useful when writes occur in a direct-mapped write-
through cache before hit or miss is known, and the line is
corrupted on a miss. Of course if a write hits in the cache,
the cache is written into as usual independent of the write
miss policy. Systems with lock-up-free caches in the litera-
ture typically provide a write-around policy, although
write-invalidate may need to be implemented in some
machines due to timing constraints. Write-validate and
write-around always outperform fetch-on-write. In general
write-validate outperforms write-around since data just
written is more likely to be accessed soon again than data
read previously. Write-invalidate always performs worse
than write-validate or write-around, but always outperfoms
fetch-on-write. For systems with caches in the range of
8KB to 128KB with 16B lines, write validate reduced the
total number of misses by 30 to 35% on average over the
six benchmarks studied as compared to fetch-on-write,
write-around reduced the total number of misses by 15 to
25%, and write-invalidate reduced the total number of
misses by 10 to 20%. Unlike cache line allocation instruc-
tions, write-validate is applicable to all write operations.

200

Moreover, it does not require compiler analysis or program
directives, works with various line sizes, does not add any
instruction execution overhead, and through the use of
word valid bits allows a consistent and correct view of
memory to be maintained.

An important write policy issue for writes that hit in a
cache is write-through versus write-back caching. Write
caching, a technique for reducing the traffic of write-
through caches, was studied. It was found that a small
fully-associative write cache of five 8B entries could
remove 40% of the write traffic on average. This compares
favorably to the 58% reduction obtained by a 4KB write-
back cache. Since write-through caches have the advantage
of only requiring parity for fault tolerance and recovery,
while write-back caches require ECC, write-through caches
seem preferable for small and moderate sized on-chip
caches. Only when cache sizes reach 32KB does the ad-
ditional traffk reduction provided by write-back caches
over write-through caches become significant.

Acknowledgments
The author would like to thank the referees for their

helpful comments, and those at DECWRL who had helpful
comments on early drafts of this paper.

References
1. Agarwal, Anant. Analysis of Cache Performance for
Operating Systems and Multiprogramming. Ph.D. Th.,
Stanford University, 1987.

2. Clark, Douglas W. "Cache Performance in the VAX
1 1/780". ACM Transactions on Computer Systems I , 1
(February 1983), 24-37.

3. Clark, Douglas W., Bannon, Peter J., and Keller, James
B. Measuring VAX 8800 Performance with a Histogram
Hardware Monitor. The 15th Annual Symposium on Com-
puter Architecture, IEEE Computer Society Press, June,

4. DeLano, Eric, Walker, Will, Yetter, Jeff, and Forsyth,
Mark. A High-speed Superscalar PA-RISC b e s s o r .
Compcon Spring, IEEE Computer Society P~ess, February,

5. Fu, John, Keller, James B., and Haduch, Kenneth J.
"Aspects of the VAX 8800 C Box Design". Digital Tech-
nical Journal I , 6 (February 1987),41-51.

6. Goodman, James R. Using Cache Memory to Reduce
Processor-Memory Traffic. The loth Annual Symposium
on Computer Architecture, IEEE Computer Society Press,
June, 1983, pp. 124-131.

7. Hill, Mark D. Aspects of Cache Memory and Instruc-
tion B&er Performance. Ph.D. Th., University of Cali-
fomia, Berkeley, 1987.

1988; pp. 176-185.

1992, pp. 116-121.

8. Jouppi, Norman P. Architectural and Organizational
Tradeoffs in the Design of the MultiTitan CPU. The 16th
Annual Symposium on Computer Architecture, IEEE Com-
puter Society Press, May, 1989, pp. 281-289.

9. Jouppi, Norman P. Improving Direct-Mapped Cache
Performance by the Addition of a Small Fully-Associative
Cache and Prefetch Buffers . The 17th Annual Symposium
on Computer Architecture, IEEE Computer Society Press,
May, 1990, pp. 364-373.

10. Pnybylski, S.A. Cache Design: A Performance-
Directed Approach. Morgan-Kaufmann, San Mateo, CA,
1990.

11. Radin, George. The 801 Minicomputer. (The First)
Symposium on Architectural Support for Programming
Languages and Operating Systems, IEEE Computer
Society Press, March, 1982, pp. 39-47.

12. Smith, Alan J. "Characterizing the Storage Process
and Its Effect on the Update of Main Memory by Write-
Through. Journal of the ACM 26,l (January 1979), 6-27.

13. Smith, Alan J. "Cache Memories". Computing Sur-
veys I4,3 (September 1982), 473-530.

14. Smith, Alan J. "Bibliography and Readings on CPU
Cache Memories". Computer Architecture News 14.1
(January 1986), 2242.

15. Smith, Alan J. "Second Bibliography on Cache
Memories". Computer Architecture News 19,4 (June

16. Smith, Alan J. CPU Cache Memories. unpublished,
draft of April 24,1984.

17. Sohi, Gurindar, and Franklin, Manoj. High-Bandwidth
Data Memory Systems for Superscalar Processors. Fourth
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, IEEE Com-
puter Society Press, April, 1991, pp. 53-62.

1991). 154-182.

201

