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Abstract 
This paper investigates issues involving writes and caches. 
First, tmdeoffs on writes that miss in the cache are inves- 
tigated. In particular, whether the missed cache block is 
fetched on a write miss, whether the missed cache block is 
allocated in the cache, and whether the cache line is written 
before hit or miss is known are considered. Depending on 
the combination of these polices chosen, the entire cache 
miss rate can vary by a factor of two on some applications. 
The combination of no-fetch-on-write and write-allocate 
can provide better performance than cache line allocation 
instructions. Second, tradeoffs between write-through and 
write-back caching when writes hit in a cache are con- 
sidered. A mixture of these two altematives, called write 
caching is proposed. Write caching places a small fully- 
associative cache behind a write-through cache. A write 
cache can eliminate almost as much write traffic as a write- 
back cache. 

1. Introduction 
Most of the extensive literature on caches has con- 

centrated on read issues (e.g., miss rates when rreating 
stores as reads), or writes in the context of multiprocessor 
cache consistency. However, uniprocessor' write issues 
are in many ways more complicated than read issues, since 
writes require additional work beyond that for a cache hit 
(e.g., writing the data back to the memory system). 

The cache write policies investigated in this paper fall 
into two broad categories: write hit policies, and write miss 
policies. 

Unlike instruction fetches and data loads, where reduc- 
ing latency is the prime goal, the primary goal for writes 
that hit in the cache is reducing the bandwidth requirements 
(i.e., write traffic). This is especially important if the cycle 
time of the CPU is faster than that of the interface to the 

'By uniprocessor we include non-coherency issues in mul- 
tiprocessor cache memories, as well as uniprocessor cache 
memories. 

second-level cache, and if multiple instruction issue allows 
store W i c  approaching one per cycle to be sustained in 
many applications. The write traffic into the second-level 
cache primarily depends on whether the first-level cache is 
write-through (also called store-through) or write-back 
(also called store-in or copy-back). Write-back caches take 
advantage of the temporal and spatial locality of writes 
(and reads) to reduce the write traffic leaving the cache. 

Write miss policies, although they do affect bandwidth, 
focus foremost on latency. Write miss policies include 
three semi-dependent variables. First, writes that miss in 
the cache may or may not have a line allocated in the cache 
(write-allocate vs. no-write-allocate). If a cache uses a 
no-write-allocate policy, when reads occur to recently writ- 
ten data, they must wait for the data to be fetched back 
from a lower level in the memory hierarchy. Second, 
writes that miss in the cache may or may not fetch the 
block being written (fetch-on-write vs. no-fetch-on-write). 
A cache that uses a fetch-on-write policy must wait for a 
missed cache line to be fetched from a lower level of the 
memory hierarchy, while a cache using no-fetch-on-write 
can proceed immediately. We emphasize that write- 
allocate and fetch-on-write are not synonymous as com- 
monly assumed. This paper investigates the combination 
of write-allocate but no-fetch-on-write which has superior 
performance over other policies. A new third variable of 
write policy, write-before-hit, is also investigated in this 
paper. If writes use the same pipeline timing as reads to 
reduce structural hazards in the pipeline, writes will occur 
before hit or miss is known. Obviously write-before-hit is 
only useful with write-through caches; if used with a write- 
back cache unique dirty data will be overwritten. Writes 
using write-before-hit that miss in the cache may simply 
invalidate cache lines "erroneously" written and pass the 
data written on to lower levels in the memory hierarchy. 
Different combinations of these three write-miss policy 
variables can result in a 2 1  range in cache miss rates for 
some applications. 

Out of the hundreds of papers on caches in the last 15 
years [14, 151, Smith [12] was the only paper to exclusively 
deal with write issues. This paper discussed write buffer 
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performance for write-through caches, but did not inves- 
tigate merging of pending writes to the same cache line by 
a write buffer. Smith [13] and Goodman [6] both have a 
section on write-back versus write-through caching, but 
they study only mixed first-level caches with traces under a 
million references. Among the more recent work in 
uniprocessor cache issues, Agarwal [l] and Hill [7] as- 
sumed write references were identical to read references in 
their analysis. Przybylski [lo] includes write overheads in 
his analysis, but only considers the case of write-back 
caches at all levels. Write miss policies have been even 
less investigated. Almost all of the known results in the 
literature have been for the combination of write-allocate 
and fetch-on-write. The VAX 11/780 [21 and 8800 131 
were notable exceptions to this and used no-write-allocate. 
An unpublished paper by Smith [16] has a section that con- 
siders tradeoffs between write-allocate and no-write- 
allocate. It uses traces up to ten million references, but 
investigates only 4KB data caches with 16B lines. 

Section 2 briefly describes the simulation environment 
and benchmarks used in this study. Policies for write 
misses, specifically fetch-on-write, write-allocate, and 
write-before-hit are investigated in Section 3. Section 4 
investigates write hit tradeoffs between write-back and 
write-through caching, as well as ways of reducing write- 
through traffic. Section 5 summarizes the results of the 
Paper. 

2. Experimental Environment 
This paper investigates write policies in the context of a 

modem memory hierarchy. One or more levels of on-chip 
caching are assumed, although the data in the paper is for 
the effects of these policies on the first-level cache perfor- 
mance. Because one or more levels of on-chip caching are 
assumed, the first-level cache sizes studied are from 1KB 
to 128KB. which are suitable for implementation on a 
VLSI chip. 

Separate instruction and data caches are assumed at the 
first level, since these are necessary for superscalar and 
other types of high performance machine design. Only 
direct-mapped first-level data caches are studied. 

The results in this paper were obtained by modifying a 
simulator for the MultiTitan [8] architecture. The Mul- 
tiTitan architecture does not support byte loads and stores, 
so byte writes appear as word read-modify-writes. 
However, the number of byte operations in the programs 
studied are insignificant, so this does not significantly af- 
fect the results presented. Each experiment involved 
simulating the benchmarks, and not analyzing trace tapes. 

The characteristics of the test programs used in this 
study are given in Table 2-1. Although six is a small num- 
ber of benchmarks, the programs chosen are quite diverse, 
with two numeric programs, two CAD tools, and two Unix 
utilities. However, operating system execution, 
transaction-processing code, commercial workloads (e.g., 
COBOL), and multiprocessing were beyond the scope of 

Nu ilutr. rud. w r i t e s  r e f s .  typr 
OQQ 31.511 8.- 5.m 45.W C ccnpiler 
grr 134.2N 4 2 . U  1 7 . U  193.411 PC b o d  CAD 
y.= 5 1 . a  12.- 3.811 6 7 . m  U n i r  u t i l i t y  
mt 9 9 . m  36.411 13.851 149 .m PC board CAD 
linruck 144.851 28.- 1 2 . U  185.511 lOOxl00 
1iA-r. 23.81 5.W 2.311 31.0M loops 1-14 
tot81 484.511 132.851 54.811 672.851 

Table 2-1: Test program characteristics 

this study. The benchmarks used are reasonably long in 
comparison with most traces in use today. 

3. Write Misses: Fetch-on-Write, Write-Allocate, 
and Write-Before-Hit 
The policy used on a write that misses in the cache (i.e., 

"write miss") can significantly affect the total amount of 
cache refill traffic, as well as the amount of time spent 
waiting during cache misses. The number of cache misses 
due to writes varies ha t ica l ly  depending on the 
benchmark used. Figure 3-1 shows the percentage of 
misses that are due to writes for various cache sizes with 
16B lines, using write-allocate with fetch-on-write. Figure 
3-2 shows the percentage of misses that are due to writes 
for an 8KB cache with various line sizes. On average over 
all the cache configurations, write misses account for about 
one-third of all cache misses. Since loads outnumber stores 
in these benchmarks by roughly 2.4 1 (see Table 2- l), this 
means that stores are about as likely to cause a miss as 
loads. 
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Figure 3-1: Write misses vs. cache size for 16B lines 

There are four combinations of three write-miss policies 
from which to choose (see Figure 3-3). 

In systems implementing afetch-on-wn'te policy, on a 
write miss the line containing the write address is fetched. 
In systems implementing a write-allocate policy, the ad- 
dress written to by the write miss is allocated in the cache. 
Note that it is possible to have a write-allocate policy with- 
out using fetch-on-write: here the data being written is writ- 



90 Key: a Oyacc 4 linpack 
X average B grr + met I* l iva 

e. s g  

Cd 

3 

Yes No 

Fetch-on-write Write-validate NO S 

Fetch-on-write Write-validate Yes 
1. 

$ 
.3 E 
3 
k 

- - 8 
Y 

0 
.- P 
I =  

E 
Write-around NO 

? 
5 Write-invalidate Yes .a 

A combination of fetch-on-write and no-write-allocate 
policies is not useful, since the old data at the write miss 
address is fetched but is discarded instead of being written 
into the cache. When referring to caching policies, fetch- 
on-write has been used to imply write-allocate in the litera- 
ture. A fetch-on-write policy has the same result whether 
or not write-before-hit is used. If the old data at the write 
miss address is not fetched (i.e., no-fetch-on-write), three 
distinct options are possible. We call the combination of 
no-fetch-on-write and write-allocate write-validate. With 
write-validate, the line containing the write is not fetched. 
The data is written into a cache line with valid bits turned 
off for all but the data which is being written. For write- 
validate polices with write-before-hit, the valid bits for the 
old data must be med off with an additional write opera- 
tion once miss is detected. We call the combination of 
no-fetch-on-write, no-write-allocate, and no-write-before- 
hit write-mound, since write misses do not go into the 
cache but go around it to the next lower level in the 
memory hierarchy, leaving the old contents of the line in 
place. Note that writes that hit in the cache still write into 
the cache with a write-around policy; here we are only 
considering write miss alternatives. The combination of 
write-before-hit, no-fetch-on-write, and no-write-allocate 
we call write-invalidate, because the line must be in- 
validated on a miss. Note that this is not the same as the 
write-purge of [16] which invalidates the cache line on a 
write hit. As defined here, write-invalidate only invalidates 
lines when it misses. Thus, write hits still write into the 
cache as usual with a write-invalidate write miss policy. 

We call write misses that that do not result in any data 
being fetched with a write-validate, write-around, or write- 
invalidate policy eliminated misses. For example, with 
write-validate if the invalid part of a line is never read, the 
fetch of the data (and the attendant stalling of the proces- 
sor) is eliminated. Only if the invalid portion of a line 
resulting from the write-validate strategy is read without 
first being written or the line being replaced, is this counted 
as a miss. Similarly, with write-invalidate only if the line 
being written or the old contents of the cache line are read 
before another address mapping to the same cache line 
misses is it counted as a miss. Finally, with write-around, 
only if the data being written is read before any other data 
which maps to the same cache line is read is the miss 
counted. This terminology neglects the time required to set 
the valid bits on an eliminated miss. However, if main- 
tenance of the valid bits cannot be done in parallel with 
other operations, it typically takes at most a cycle, which is 
insignificant compared to cache miss penalties. 

The write miss policy used is sometimes dependent on 
the write hit policy chosen. Write-around and write- 
invalidate (i.e., policies with no-write-allocate) are only 
useful with write-through caches, since writes are not en- 
tered into the cache. Fetch-on-write and write-validate can 
be used with either write-through or write-back caching. 
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Write-validate requires the addition of valid bits within a 
cache line. Valid bits could be added on a word basis, so 
that words can be written and the remainder of the line 
marked invalid. In systems that allow byte writes or un- 
aligned word writes, byte valid bits would be required for a 
pure write-validate strategy. However, the addition of byte 
valid bits is a significant overhead (one bit per byte, or 
12.5%) in comparison to a valid bit per word (3.1%). Thus, 
in practice machines with byte writes that have write- 
validate capability for aligned word and double-word 
writes would probably provide fetch-on-write for byte 
writes. Write-validate also requires that lower levels in the 
memory system support writes of partial cache lines. 

In multiprocessor systems with cache consistency, write 
misses require traffic to gain exclusive write ownership of 
the block being written. In a multiprocessor using write- 
validate with an ownership protocol, a fetch with owner- 
ship still needs to be sent to the coherency point. When the 
fetched data returns it can be merged with the cache line 
which has been allocated based on the word valid bits. 
Thus extra coherency transactions required by write- 
validate can negate its traffic advantages over fetch-on- 
write in multiprocessor configurations. However, to the 
extent that the processor can continue execution with 
relaxed consistency models, including use of data which 
has been previously written but for which the rest of the 
line has not returned, improved performance would still be 
possible with write-validate as compared to a simple fetch- 
on-write policy. 

The choice of write miss policy can make a significant 
difference in the performance of certain operations. For 
example, consider copying a block of information. If fetch- 
on-write is used, each write of the destination must hit in 
the cache. In other words, the original contents of the 
target of the copy will be fetched even though they are 
never used and are only overwritten with write data. This 
will reduce the bandwidth of the copy by wasting fetch 
bandwidth. Given a total bandwidth available for reads and 
writes, a fetch-on-write strategy would have only two- 
thirds of the performance on large block copies as a no- 
fetch-on-write policy since half of the items fetched would 
be discarded. 

Some architectures have added instructions to allocate a 
cache line in cases where programmer directives specify or 
the compiler can guarantee that the entire cache line will be 
written and the old contents of the corresponding memory 
locations will not be read [l  1,8,4]. These instructions are 
limited to situations where new data spaces are being al- 
located, such as a new activation record on a process stack, 
or a new output buffer is obtained from the operating sys- 
tem. Unfortunately there are a number of problems that 
prevent broader application of software cache line alloca- 
tion: 
1. The entire cache line must be known to be written at 

compile time, or if some of the line is not written its old 
contents must not need to be saved. (In contrast, write- 
validate can allow partial lines to written, and is not 

subject to optimization limitations such as incomplete 
alias information, etc.) 

2.Cache line sizes vary from implementation to im- 
plementation, limiting object code using these instruc- 
tions to the machines with cache line sizes equal to or 
smaller than that assumed in the allocate instructions. 

3.Context switches after a line has been allocated and 
partially written but before it has been completely writ- 
ten result in dirty and incorrect cache lines. (One way 
around this would be to add valid bits to each write 
quantum in the line, but this provides the hardware sup- 
port needed for write-validate). 

4.There is extra instruction execution overhead for the 
cache allocation instructions, or extra opcode space is 
used if they are merged with store instructions. 

Thus, the use of cache line allocation instructions is limited 
to situations such as new data allocation and buffer copies. 
Write-validate can provide better performance than cache 
line allocation instructions since it is also applicable in 
cases where only part of a line is being written or it is not 
possible to guarantee that an entire line is written at com- 
pile time. Write-validate works for machines with various 
line sizes, and does not add instruction execution overhead 
to the program. Finally, since write-validate has word valid 
bits there are no problems with cache lines being left in an 
incorrect state on context switches. 

A technique that has recently become popular in the 
literature is non-blocking (also called lock-up-free) 
caches [17]. Typically a cache with non-blocking writes 
implements what we have called a write-around policy. 
Some practical implementations of non-blocking writes 
may need to use write-invalidate, however, for timing 
reasons. 

Figure 3-4 shows the reduction in write misses for write- 
validate, write-around, and write-invalidate for caches with 
16B lines. We define the reduction in misses as a percent- 
age of write misses (M%WM) for a policy X as follows: 

Missesfetckon-wri,e - Missesx 

WriteMissesf,lck,,ri,~ 
M%WMre&,,, = 100 x 

Note that we take the difference in total misses (both read 
and write) and divide it by the number of write misses of 
fetch-on-write. When policies other than fetch-on-write are 
used this takes into account extra read misses that occur as 
a result of not using fetch-on-write. Since fetch-on-write 
fetches a cache line on every write miss, it corresponds to 
the X axis (0% reduction) in Figure 3-4. In general write- 
validate performs the best, averaging more than a 90% 
reduction in misses as a percentage of write misses. The 
two no-write-allocate strategies, write-around and write- 
invalidate, have an average reduction in misses as a per- 
centage of write misses of 40-65% and 30-50% respec- 
tively. Write-around has a greater than 100% reduction in 
misses as a percentage of write misses for 32KB and 64KB 
caches when running liver, because it saves read misses as 
well. liver is a synthetic benchmark made from a series of 
loop kernels, and the results of loop kernels are not read by 
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successive kernels. However, successive loop kernels read 
the original matrices again. The range of cache sizes from 
32KB to 64KB is big enough to hold the initial inputs, but 
not the results too. Since write-around does not place the 
results in the cache but keeps the old contents of the cache 
line unchanged, it can also result in fewer read misses since 
the initial data is not replaced with write data or in- 
validated. 
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Figure 3-4: Miss reduction as % of write misses, 16B l i e s  
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Figure 3-5: Total miss rate reductions for 16B lines 

Figure 3-5 shows the reduction in data cache misses (in- 
cluding both read and write) for write-validate, write- 
around, and write-invalidate for caches with 16B lines. 
The overall reduction in miss rate (Moverall) is computed 
as folows: 

Missesfetch-on-write - Missesx 
MOverall ,e~tion = 100 x 

MiSSeSfetch-on-write 
Figure 3-5 is basically Figure 3-4 multiplied by Figure 3-1. 
ccom and liver benefit the most from a write-validate 
policy. This can be explained as follows. Many of the 
operations in ccom and liver are similar to copies: data is 
read but other data is written. For example, array opera- 
tions of the form "for j := 1 to lo00 do Aljl := Bljl + Cljl" 
only write data which is never read before being written. 
Similarly, write-validate would be useful for a compiler if 
it has a number of sequential passes, each one reading the 
data structure written by the last pass and writing a dif- 
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ferent one. The other programs have more read-modify- 
write behavior. The best example of this is linpuck. The 
inner loop of linpack, saxpy, loads a matrix row and adds to 
it another row multiplied by a scalar. The result of this 
computation is placed into the old row. Here write-validate 
would be of very little benefit since almost all writes are 
preceded by reads of the data anyway. On average over the 
six programs write-validate reduced the total number of 
data cache misses (over both read and write) by 31% for an 
8KB data cache with 16B line size. 

Write-around performs well when the data being written 
by the processor is not read by it soon or ever. This is the 
situation in liver with a 32KB or 64KB cache, the only 
benchmark that performs becter with write-around than 
write-validate. In general, however, most programs are 
more likely to read what they have just written than they 
are to re-read the old contents of a cache line. For all other 
cases the performance of write-around is worse than that of 
write-validate. 

Write-invalidate does not show as much improvement 
over fetch-on-write as the other two strategies, but it still 
performs surprisingly well. livermore has about a 40% 
reduction in misses, and the six benchmarks on average 
have a 10-20% total reduction in misses compared to fetch- 
on-write. Moreover, write-invalidate is very simple to im- 
plement. In a write-through cache using write-invalidate 
the data can be written at the same time the tags are probed. 
If the access misses, the line has been corrupted so it can be 
simply marked invalid, often without inserting any machine 
stall cycles. 

Figure 3-6 shows the reduction in misses as a percentage 
of write misses for write-validate, write-around, and write- 
invalidate for 8KB caches with various line sizes. Since 
fetch-on-write fetches a cache line on every write miss, it 
corresponds to the X axis (0% reduction) in Figure 3-6. 
Write-validate, write-around, and write-invalidate have the 
highest benefit for small lines. If the line size is the same 
as the item being written, any old data fetched by fetch-on- 
write is merely discarded when the write occurs. As the 
line size gets larger, the odds that some old data on the line 
will be needed increases, so the advantage of write-validate 
decreases. The miss rate reduction of write-around also 
decreases with increasing line size for similar reasons. The 
performance advantage of write-invalidate decreases with 
increasing line sizes because more information is being 
thrown away. Again write-validate performs the best, 
averaging more than a 90% reduction in misses as a per- 
centage of write misses except at the longest line sizes. 
The two newrite-allocate strategies, write-around and 
write-invalidate, have an average reduction in misses as a 
percentage of write misses of 40-70% and 3550% respec- 
tively. 

Figure 3-7 shows the overall reduction in total misses for 
write-validate, write-around, and write-invalidate for 8KB 
caches. (This graph is basically Figure 3-6 multiplied by 
Figure 3-2.) Again write-around generally performs worse 
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than write-validate, because most programs are more likely 
to read the data that was just written than the old contents 
of the cache line. Both write-validate and write-around 
perform better than write-invalidate, but again write- 
invalidate performs surprisingly well. 

We can generate a partial order of the relative total read 
and write miss traffic between these four write-miss policy 
combinations (see Figure 3-8). Fetch-on-write always has 
the most lines fetched, since it fetches a line on every miss. 

7 
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Figure 3-7: Total miss rate reduction for 8KB caches 

Write-invalidate avoids misses in the case where neither 
the line containing the data being written nor the old con- 
tents of the cache line are read before some other line map- 
ping to the same location in the cache is read. This saves 
some misses over fetch-on-write. Write-around and write- 
validate always have fewer misses than write-invalidate. 
Write-around avoids fetching data in the same cases as 
write-invalidate, as well as cases where the old contents of 
the cache line are accessed next. Writevalidate avoids 
fetching data in the same cases as write-invalidate, as well 
as cases where the data just written is accessed next. 
Usually the data just written (i.e., write-validate) is more 
useful than the old contents of the cache line (i.e., write- 
around), but this is not always the case. Also, the ratio of 
miss rate reduction of write-validate to write-around 
decreases as the line size increases since write-validate in- 
validates an increasing number of bytes while write-around 
leaves all the bytes on the line valid. 

Least traffic 

T 
Fetdr- 
on-write Most traffic 

Figure 34k Relative order of total fetch traffic 

4. Write Hits: Write-Through vs. Write-Back 
When a write hits in a cache, two possible policy choices 

exist. First, the data can be written both into the cache and 
passed on to the next lower level in the memory hierarchy. 
This policy is called write-through. A second possible 
policy on write hits is to only write the data to the fmt- 
level cache. Only when a dirty line (i.e., a line that has 
been wrimn to) is replaced in the cache is the data trans- 
ferred to a lower level in the memory hierarchy. This 
policy is called write-back. Write-back caching takes ad- 
vantage of the locality of reference of writes to reduce the 
amount of write MIC going to the next lower level in the 
memory hierarchy. 

Although the conventional wisdom may be that write- 
back caching is always preferred over write-through cach- 
ing, in multilevel cache hierarchies there are a number of 
significant advantages of write-through caching for fmt- 
level caches. In the common case where the first-level 
caches are on-chip, the second-level cache is typically 

One advantage of write-through caching is the write 
bandwidth into the cache (i.e., the number of cycles re- 
quired per write). A write-back cache must p b e  the tag 
store for a hit before the corresponding data is written. 
This is because if the write access misses and the victim is 
dirty, unique dirty data will be lost if the cache line is 
written before the probe. However, a direct-mapped write- 
through cache can always write a cache line of data at the 
same time as probing the address tag for a hit. If the access 
misses, the line is never dirty and will be replaced anyway 
so there is no problem. If the data cache is set-associative, 
the probe must occur before the write whether the cache is 
write-back or write-through. However, a large and increas- 
ing number of first-level data caches are direct-mapped, for 
reasons discussed in[7, IO]. The two-cycle access of 
straightforward write-back and set-associative cache im- 

write-back. 
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plementations (i.e., a probe cycle followed by a write 
cycle) provides more limited store bandwidth at the input to 
the cache than a direct-mapped write-through cache, in or- 
der to reduce the write bandwidth required on the output 
side of the cache. In machines that can issue multiple 
instructions per cycle, the incoming lodstore bandwidth 
of the cache can be a limiting factor to machine perfor- 
mance. Although stores are about half as frequent as loads 
on average, if each store requires two cycles this will result 
in a 33% reduction in effective first-level cache bandwidth 

store timing 
load w r i t e -  w r i t e -  

pipestage timing through$ back* 
ins tr  fetch 
register fetch 
address calc .  
cache read data write data read tags 
access read tags read tags 
w r i t e  w r i t e  data 
registers i f  tags h i t  

scope of this work. 
A second advantage of write-through caching overwrite- 

back caching is the ease with which stores and their atten- 
dant writes are integrated into the machine pipeline (see 
Figure 4-1). In a direct-mapped write-through cache writes 
can always be performed in the pipestage where loads read 
the cache. If the access turns out to be a miss the conven- 
tional miss-recovery hardware provided for load misses can 
be used, and the store write cycle is simply repeated. 
However, a simple write-back or set-associative write- 
through cache can require two cycles of cache access per 
store: the first cycle probes the cache tags, and the second 
sets the appropriate dirty bits and writes the data. This will 
require interlocks when loads immediately follow stores, 
since the stores would be accessing the data section at the 
same time as the next (load) instruction is accessing the 
data section of the cache (i.e., without interlocks the WB 
pipestage of the store would be at the same time as the 
MEM pipestage of the load.) Note that if load latency 
weren't important, loads could delay their data access until 
WB after hit or miss were already known. Then stores and 
loads would access the cache with the same timing and 
could be issued one per cycle in any order. However, since 
load latency is of critical importance in machine design, 
this is not a viable option. Although in Figure 4-1 stores 
into a write-through cache would commit a pipestage ear- 
lier than loads or other operations (which commit in WB), 
the cache line written by the store can be flushed a pipes- 
tage after its write without adverse consequences. This 
allows exceptions to be handled precisely. Similarly, data 
going into the write buffer in the MEM pipestage of Figure 
4-1 can be aged one cycle until the instruction is known to 
have completed without exception. 

A third advantage of write-through caching over write- 
back caching is error-tolerance, for both manufacturing or 
hard defects and soft defects. A write-through cache can 
function with either hard or soft single-bit errors, if parity is 
provided. This is because the write-through cache contains 
no unique dirty data, and reads of data with errors can be 
turned into cache misses. A write-back cache can not 
tolerate a single-bit error of any type unless ECC is 
provided. ECC must usually be computed on at least a 32 

bit data word to be economical. For example, single bit 
detection and correction (but not double detection) ECC 
requires 6 bits per 32 bit word versus 4 bits per 8 bit byte 
giving 16 bits per 4 bytes. Thus operations like byte store 
must first read and ECC-decode a word before being able 
to write a byte. Moreover, byte parity on a four-byte word 
would allow four single-bit errors to be corrected by 
refetching a write-through line in comparison to only one 
error for an ECC-protected write-back cache word. This is 
true even though byte parity requires only two-thirds of the 
overhead of word ECC. Thus write-through caches with 
parity have better error-tolerance at a smaller cost than 
write-back caches with ECC. 

The primary problem with write-through caches is their 
higher write traffic as compared to write-back caches. One 
way to reduce this traffic is to use a coalescing write buffer, 
where writes to addresses already in the write buffer are 
combined. 

Figure 4-2 shows the simulation results for an 8-entry 
coalescing write buffer. Each write buffer entry is a cache 
line (16B) wide. The data presented are the results of the 
six benchmarks averaged together. Simulations were per- 
formed where the write buffer emptied out an entry every n 
cycles, with n varying from 0 to 48 cycles. In practice the 
number of cycles between retirement of write buffer entries 
will depend on intervening cache miss service and other 
system factors. However, as on-chip processor cycle times 
become much faster than the off-chip cycle times, and 
processors issue more than one instruction per cycle, the 
number of off-chip cycles between writes can become very 
large (e.g., more than 12). Since cache miss service effec- 
tively stops processor execution in many processors, cache 
misses were ignored in Figure 4-2. This allows a fixed 
time between writes to be used as a reasonable model of the 
write buffer operation. If duly write buffer entries are writ- 
ten back quickly, they do not stay in the write buffer for 
many cycles and hence relatively little merging takes place. 
For example, if write buffer entries are retired every 5 
cycles, the write traffic is reduced by only 10%. The only 
way that a significant number of writes are merged (e.g., 
50% or more) is if the write buffer is almost always full. 
But in this case stores almost always stall because no write 
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buffer entries are available. For example, to attain a write 
traffic reduction of 50%, writes must be retired no more 
frequently than every 38 cycles, resulting in a CPI burden 
of 7! Since much of current computer research is focused 
on achieving machines with CPIs of less than one, write 
buffer stalls should be well under 0.1 CPI. This means that 
only a small percentage of writes (e.g., less than 20%) can 
be merged with simple coalescing write buffers. The extra 
traffic resulting from this lack of coalescing wastes cache 
bandwidth that could otherwise be used for prefetching or 
other uses. 
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Figure 4-2: Coalescing write buffer merges vs. CPI 

Instead of having writes enter and leave the write buffer 
as soon as possible, we can add a write cache in front of the 
write buffer and behind the data cache. A write cache is a 
small fully-associative cache (see Figure 4-3). With a 
small number of entries we can try to coalesce the majority 
of writes and decrease the write traffic exiting the chip. 
When a write misses in the write cache, the LRU entry is 
transferred to the write buffer to make m m  for the current 
write. In actual implementation, the write cache can be 
merged with a coalescing write buffer. Here a write buffer 
of m entries would only empty an entry if it has more than 
n valid entries, where n is the number of entries concep- 
tually in the write cache (with m > n). A write cache can 
also be implemented with the additional functionality of a 
victim cache [9], in which case not all entries in the small 
fully-associative cache would be dirty. Note that whereas a 
fist-level data cache which can probed and written in one 
cycle is very difficult to achieve (for an interesting cycle 
time), a several-entry fully-associative write-cache could be 
easily implemented within a machine cycle. This is be- 
cause each tag in the write cache must has its own com- 
parator. Thus there is no tag RAM access time before the 
tag comparisons can begin, as would be the case in a or- 
dinary data cache. 
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Figure 4-3: Write cache organization 

Figure 4-4 gives the number of writes removed by a 
write cache with varying numbers of 8B lines. (8B was 
chosen as the write cache line size since no writes larger 
than 8B exist in most architectures, and write paths leaving 
chips are often 8B.) A write cache of only five 8B lines 
can eliminate 50% of the writes for most programs. Two 
notable exceptions to this are l i n p c k  and liver. Because 
these programs sequentially travel through large mays, 
even a write-back cache of modest size (less than 32KB) 
removes very few writes. In order to get a better idea of 
how write caches compare with write-back caches, the 
write traffic reduction of a write cache is given relative to a 
4KB write-back cache in Figure 4-5. In Figure 4-5 a write 
cache of only four 8B entries removes over 50% of the 
writes removed by a 4KB write-back cache on all of the 
benchmarks except met. Another interesting result is that a 
write cache with eight or more 8B entries actually outper- 
forms a 4KB direct-mapped write-back cache on liver. 
This is because mapping conflicts within the write refer- 
ence stream prevent a direct-mapped write-back cache from 
being as effective at removing write traffic as the fully- 
associative write cache. 

Figures 4-4 and 4-5 also give the average traffic reduc- 
tion of write caches in absolute terms and relative to a 
write-back cache. The two most interesting points on these 
curves are probably a fiveentry write cache, since it seems 
to be at the knee of the traffic reduction curve, and a one- 
entry write cache, since it is the simplest to implement. 
The five-entry write cache can remove 40% of all writes, or 
63% of those removed by a 4KB write-back cache. The 
singleentry write cache can remove 16% of all writes on 
average, which is 21% of the writes removed by a write- 
back cache. 

Of course the relative traffic reduction of a write cache 
varies as the size of the write-back cache used in the com- 
parison varies (see Figure 4-6). Compared to a 1KB write- 
back cache, a five-entry write cache removes 72% of the 

199 



I 

90 
Key: 

Ocunn 

0 yaw 
+ met 
4 linpack 

90 
a 

x 

15 entry write cache 
5 entry write cache 

--- --. - - - -  1 entry write cache 

Key: - - - - - - .  ---. 

I 
0 1 2  3 4 5 6 7 8 9 10111213141516 

Number of write<ache entries 

Figure 4-4: Write cache absolute traffic reduction 

o Yaw I + met 

i l  
01 I 
0 1 2  3 4 5 6 7 8 9 10111213141516 

Number of writecache entries 

Figure 4-5: Write cache traffic relative to 4KB write-back 

write traffic but compared to a 32KB write-back cache it 
only removes 49% of the write traffic. This change is 
surprisingly small considering the 321 ratio in write-back 
cache size, and is due to the write cache’s good absolute 
traffic reduction. The reduction in write cache relative ef- 
fectiveness is fairly uniform as the write-back cache size 
used for comparison increases in size. 
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Figure 46: Write cache traffic reduction vs. cache size 

5. Conclusions 
An important performance issue involving writes is the 

policy for handling write data on a write miss. Four op- 
tions exist: either fetch the line before writing (i.e., fetch- 
on-write), allocate a cache line and write the data while 
turning off valid bits for the remainder of the line (i.e., 
write-validate), just write the data into the next lower level 
of the memory hierarchy leaving the old contexts of the 
cache line intact (i.e., write-around), or invalidate the cache 
line and pass the data on to the next lower level in the 
memory hierarchy (i.e., write-invalidate). Write-invalidate 
is useful when writes occur in a direct-mapped write- 
through cache before hit or miss is known, and the line is 
corrupted on a miss. Of course if a write hits in the cache, 
the cache is written into as usual independent of the write 
miss policy. Systems with lock-up-free caches in the litera- 
ture typically provide a write-around policy, although 
write-invalidate may need to be implemented in some 
machines due to timing constraints. Write-validate and 
write-around always outperform fetch-on-write. In general 
write-validate outperforms write-around since data just 
written is more likely to be accessed soon again than data 
read previously. Write-invalidate always performs worse 
than write-validate or write-around, but always outperfoms 
fetch-on-write. For systems with caches in the range of 
8KB to 128KB with 16B lines, write validate reduced the 
total number of misses by 30 to 35% on average over the 
six benchmarks studied as compared to fetch-on-write, 
write-around reduced the total number of misses by 15 to 
25%, and write-invalidate reduced the total number of 
misses by 10 to 20%. Unlike cache line allocation instruc- 
tions, write-validate is applicable to all write operations. 
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Moreover, it does not require compiler analysis or program 
directives, works with various line sizes, does not add any 
instruction execution overhead, and through the use of 
word valid bits allows a consistent and correct view of 
memory to be maintained. 

An important write policy issue for writes that hit in a 
cache is write-through versus write-back caching. Write 
caching, a technique for reducing the traffic of write- 
through caches, was studied. It was found that a small 
fully-associative write cache of five 8B entries could 
remove 40% of the write traffic on average. This compares 
favorably to the 58% reduction obtained by a 4KB write- 
back cache. Since write-through caches have the advantage 
of only requiring parity for fault tolerance and recovery, 
while write-back caches require ECC, write-through caches 
seem preferable for small and moderate sized on-chip 
caches. Only when cache sizes reach 32KB does the ad- 
ditional traffk reduction provided by write-back caches 
over write-through caches become significant. 
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