
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/332946042

RowHammer: A Retrospective

Article  in  IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems · May 2019

DOI: 10.1109/TCAD.2019.2915318

CITATIONS

137
READS

859

2 authors:

Some of the authors of this publication are also working on these related projects:

ECI-Cache View project

GRIM-Filter View project

Onur Mutlu

ETH Zurich

654 PUBLICATIONS   36,267 CITATIONS   

SEE PROFILE

Jeremie Kim

Carnegie Mellon University

49 PUBLICATIONS   3,057 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Onur Mutlu on 21 October 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/332946042_RowHammer_A_Retrospective?enrichId=rgreq-068658875224337cefcaab6b9933d504-XXX&enrichSource=Y292ZXJQYWdlOzMzMjk0NjA0MjtBUzo5NDkwODk2Mjk5MDg5OTRAMTYwMzI5MjAwOTcwNQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/332946042_RowHammer_A_Retrospective?enrichId=rgreq-068658875224337cefcaab6b9933d504-XXX&enrichSource=Y292ZXJQYWdlOzMzMjk0NjA0MjtBUzo5NDkwODk2Mjk5MDg5OTRAMTYwMzI5MjAwOTcwNQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/ECI-Cache?enrichId=rgreq-068658875224337cefcaab6b9933d504-XXX&enrichSource=Y292ZXJQYWdlOzMzMjk0NjA0MjtBUzo5NDkwODk2Mjk5MDg5OTRAMTYwMzI5MjAwOTcwNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/GRIM-Filter?enrichId=rgreq-068658875224337cefcaab6b9933d504-XXX&enrichSource=Y292ZXJQYWdlOzMzMjk0NjA0MjtBUzo5NDkwODk2Mjk5MDg5OTRAMTYwMzI5MjAwOTcwNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-068658875224337cefcaab6b9933d504-XXX&enrichSource=Y292ZXJQYWdlOzMzMjk0NjA0MjtBUzo5NDkwODk2Mjk5MDg5OTRAMTYwMzI5MjAwOTcwNQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Onur-Mutlu-4?enrichId=rgreq-068658875224337cefcaab6b9933d504-XXX&enrichSource=Y292ZXJQYWdlOzMzMjk0NjA0MjtBUzo5NDkwODk2Mjk5MDg5OTRAMTYwMzI5MjAwOTcwNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Onur-Mutlu-4?enrichId=rgreq-068658875224337cefcaab6b9933d504-XXX&enrichSource=Y292ZXJQYWdlOzMzMjk0NjA0MjtBUzo5NDkwODk2Mjk5MDg5OTRAMTYwMzI5MjAwOTcwNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/ETH-Zurich?enrichId=rgreq-068658875224337cefcaab6b9933d504-XXX&enrichSource=Y292ZXJQYWdlOzMzMjk0NjA0MjtBUzo5NDkwODk2Mjk5MDg5OTRAMTYwMzI5MjAwOTcwNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Onur-Mutlu-4?enrichId=rgreq-068658875224337cefcaab6b9933d504-XXX&enrichSource=Y292ZXJQYWdlOzMzMjk0NjA0MjtBUzo5NDkwODk2Mjk5MDg5OTRAMTYwMzI5MjAwOTcwNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jeremie-Kim-2?enrichId=rgreq-068658875224337cefcaab6b9933d504-XXX&enrichSource=Y292ZXJQYWdlOzMzMjk0NjA0MjtBUzo5NDkwODk2Mjk5MDg5OTRAMTYwMzI5MjAwOTcwNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jeremie-Kim-2?enrichId=rgreq-068658875224337cefcaab6b9933d504-XXX&enrichSource=Y292ZXJQYWdlOzMzMjk0NjA0MjtBUzo5NDkwODk2Mjk5MDg5OTRAMTYwMzI5MjAwOTcwNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Carnegie-Mellon-University?enrichId=rgreq-068658875224337cefcaab6b9933d504-XXX&enrichSource=Y292ZXJQYWdlOzMzMjk0NjA0MjtBUzo5NDkwODk2Mjk5MDg5OTRAMTYwMzI5MjAwOTcwNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jeremie-Kim-2?enrichId=rgreq-068658875224337cefcaab6b9933d504-XXX&enrichSource=Y292ZXJQYWdlOzMzMjk0NjA0MjtBUzo5NDkwODk2Mjk5MDg5OTRAMTYwMzI5MjAwOTcwNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Onur-Mutlu-4?enrichId=rgreq-068658875224337cefcaab6b9933d504-XXX&enrichSource=Y292ZXJQYWdlOzMzMjk0NjA0MjtBUzo5NDkwODk2Mjk5MDg5OTRAMTYwMzI5MjAwOTcwNQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


RowHammer: A Retrospective
Onur Mutlu§‡ Jeremie S. Kim‡§

§ETH Zürich ‡Carnegie Mellon University

Abstract—This retrospective paper describes the RowHammer
problem in Dynamic Random Access Memory (DRAM), which
was initially introduced by Kim et al. at the ISCA 2014 con-
ference [133]. RowHammer is a prime (and perhaps the first)
example of how a circuit-level failure mechanism can cause a
practical and widespread system security vulnerability. It is the
phenomenon that repeatedly accessing a row in a modern DRAM
chip causes bit flips in physically-adjacent rows at consistently
predictable bit locations. RowHammer is caused by a hardware
failure mechanism called DRAM disturbance errors, which is a
manifestation of circuit-level cell-to-cell interference in a scaled
memory technology.

Researchers from Google Project Zero demonstrated in 2015
that this hardware failure mechanism can be effectively exploited
by user-level programs to gain kernel privileges on real systems.
Many other follow-up works demonstrated other practical at-
tacks exploiting RowHammer. In this article, we comprehensively
survey the scientific literature on RowHammer-based attacks
as well as mitigation techniques to prevent RowHammer. We
also discuss what other related vulnerabilities may be lurking in
DRAM and other types of memories, e.g., NAND flash memory
or Phase Change Memory, that can potentially threaten the
foundations of secure systems, as the memory technologies scale
to higher densities. We conclude by describing and advocating a
principled approach to memory reliability and security research
that can enable us to better anticipate and prevent such vulner-
abilities.

Index Terms—DRAM, Security, Vulnerability, Technology
Scaling, Reliability, Errors, Memory Systems.

I. INTRODUCTION AND OUTLINE

Memory is a key component of all modern computing
systems, often determining the overall performance, energy
efficiency, and reliability characteristics of the entire system.
The push for increasing the density of modern memory
technologies via technology scaling, which has resulted in
higher capacity (i.e., density) memory and storage at lower
cost, has enabled large leaps in the performance of modern
computers [175]. This positive trend is clearly visible in
especially the dominant main memory and solid-state storage
technologies of today, i.e., DRAM [57, 58, 125, 146, 151] and
NAND flash memory [42, 45, 52], respectively. Unfortunately,
the same push has also greatly decreased the reliability of
modern memory technologies, due to the increasingly smaller
memory cell size and increasingly smaller amount of charge
that is maintainable in the cell, which makes the memory
cell much more vulnerable to various failure mechanisms and
noise and interference sources, both in DRAM [113, 115–
118, 133, 161, 176, 196, 203] and NAND flash nemory [42–
48, 50–53, 164, 166–168, 176].

As memory scales down to smaller technology nodes, new
failure mechanisms emerge that threaten its correct operation.
If such failure mechanisms are not anticipated and corrected,

they can not only degrade system reliability and availability
but also, perhaps even more importantly, open up new security
vulnerabilities: a malicious attacker can exploit the exposed
failure mechanism to take over the entire system. As such,
new failure mechanisms in memory can become practical and
significant threats to system security.

In this article, we provide a retrospective of one such
example failure mechanism in DRAM, which was initially
introduced by Kim et al. at the ISCA 2014 conference [133].
We provide a description of the RowHammer problem and its
implications by summarizing our ISCA 2014 paper [133], de-
scribe solutions proposed by our original work [133], compre-
hensively examine the many works that build on our original
work in various ways, e.g., by developing new security attacks,
proposing solutions, and analyzing RowHammer. What comes
next in this section provides a roadmap of the entire article.

In our ISCA 2014 paper [133], we introduce the RowHam-
mer problem in DRAM, which is a prime (and perhaps the
first) example of how a circuit-level failure mechanism can
cause a practical and widespread system security vulnerability.
RowHammer, as it is now popularly referred to, is the phe-
nomenon that repeatedly accessing a row in a modern DRAM
chip causes bit flips in physically-adjacent rows at consistently
predictable bit locations. It is caused by a hardware failure
mechanism called DRAM disturbance errors, which is a man-
ifestation of circuit-level cell-to-cell interference in a scaled
memory technology. We describe the RowHammer problem
and its root causes in Section II.

Inspired by our ISCA 2014 paper’s fundamental findings,
researchers from Google Project Zero demonstrated in 2015
that this hardware failure mechanism can be effectively ex-
ploited by user-level programs to gain kernel privileges on
real systems [215, 216]. Tens of other works since then
demonstrated other practical attacks exploiting RowHammer,
e.g., [12, 31–33, 37, 54, 66, 73, 76, 89, 90, 108, 158, 198,
199, 201, 207, 235, 236, 241, 251, 260]. These include remote
takeover of a server vulnerable to RowHammer, takeover of a
victim virtual machine by another virtual machine running on
the same system, takeover of a mobile device by a malicious
user-level application that requires no permissions, takeover of
a mobile system quickly by triggering RowHammer using a
mobile GPU, and takeover of a remote system by triggering
RowHammer on it through the Remote Direct Memory Access
(RDMA) protocol [6]. We describe the works that build on
RowHammer to develop new security attacks in Section III-A.

Our ISCA 2014 paper rigorously and experimentally ana-
lyzes the RowHammer problem and examines seven different
solutions, multiple of which are already employed in practice
to prevent the security vulnerabilities (e.g., increasing the

1



memory refresh rate). We propose a low-cost solution, Prob-
abilistic Adjacent Row Activation, which provides a strong
and configurable reliability and security guarantee; a solution
whose variants are being adopted by DRAM manufacturers
and memory controller designers [5]. We describe this solution
and the six other solutions of our original paper in Section II-E.
Many other works build on our original paper to propose and
evaluate other solutions to RowHammer, and we discuss them
comprehensively in Section III-B.

Our ISCA 2014 paper leads to a new mindset that has
enabled a renewed interest in hardware security research:
general-purpose hardware is fallible, in a very widespread
manner, and this causes real security problems. We believe
the RowHammer problem will become worse over time since
DRAM cells are getting closer to each other with technology
scaling. Other similar vulnerabilities may also be lurking in
DRAM and other types of memories, e.g., NAND flash mem-
ory or Phase Change Memory, that can potentially threaten the
foundations of secure systems, as the memory technologies
scale to higher densities. Our ISCA 2014 paper advocates
a principled system-memory co-design approach to memory
reliability and security research that can enable us to bet-
ter anticipate and prevent such vulnerabilities. We describe
promising ongoing and future research directions related to
RowHammer (Section IV), including the examination of other
potential vulnerabilities in memory (in Section IV-A) and the
use of a principled approach to make memory more reliable
and more secure (in Section IV-B).

II. THE ROWHAMMER PROBLEM: A SUMMARY

Memory isolation is a key property of a reliable and secure
computing system. An access to one memory address should
not have unintended side effects on data stored in other
addresses. However, as process technology scales down to
smaller dimensions, memory chips become more vulnerable
to disturbance, a phenomenon in which different memory
cells interfere with each others’ operation. We have shown,
in our ISCA 2014 paper [133], the existence of disturbance
errors in commodity DRAM chips that are sold and used
in the field. Repeatedly reading from the same address in
DRAM could corrupt data in nearby addresses. Specifically,
when a DRAM row is opened (i.e., activated) and closed (i.e.,
precharged) repeatedly (i.e., hammered), enough times within
a DRAM refresh interval, one or more bits in physically-
adjacent DRAM rows can be flipped to the wrong value.
This DRAM failure mode is now popularly called RowHam-
mer [1, 2, 23, 37, 90, 131, 141, 207, 215, 216, 241, 246].
Using an FPGA-based experimental DRAM testing infras-
tructure, which we originally developed for testing retention
time issues in DRAM [161],1 we tested 129 DRAM modules
manufactured by three major manufacturers (A, B, C) in seven

1This infrastructure is currently released to the public, and is described
in detail in our HPCA 2017 paper [98]. The infrastructure has enabled many
studies [57, 58, 79, 98, 115–117, 133, 147, 148, 151, 161, 203] into the failure
and performance characteristics of modern DRAM, which were previously not
well understood.

recent years (2008–2014) and found that 110 of them exhibited
RowHammer errors, the earliest of which dates back to 2010.
This is illustrated in Figure 1, which shows the error rates we
found in all 129 modules we tested where modules are catego-
rized based on manufacturing date.2 In particular, all DRAM
modules from 2012–2013 were vulnerable to RowHammer,
indicating that RowHammer is a recent phenomenon affect-
ing more advanced process technology generations (as also
demonstrated repeatedly by various works that come after our
ISCA 2014 paper [12, 17, 66, 141, 198, 241]).

2008 2009 2010 2011 2012 2013 2014
Module Manufacture Date

0

100

101

102

103

104

105

106

E
rr

or
s

pe
r1

09
C

el
ls

A Modules B Modules C Modules

Fig. 1: RowHammer error rate vs. manufacturing dates of 129
DRAM modules we tested (reproduced from [133]).

A. RowHammer Mechanisms
In general, disturbance errors occur whenever there is a

strong enough interaction between two circuit components
(e.g., capacitors, transistors, wires) that should be isolated
from each other. Depending on which component interacts
with which other component and also how they interact, many
different modes of disturbance are possible.

Among them, our ISCA 2014 paper identifies one particular
disturbance mode that affects commodity DRAM chips from
all three major manufacturers. When a wordline’s voltage is
toggled repeatedly, some cells in nearby rows leak charge
at a much faster rate than others. Such vulnerable cells, if
disturbed enough times, cannot retain enough charge for even
64ms, the time interval at which they are refreshed. Ultimately,
this leads to the cells losing data and experiencing disturbance
errors.

Without analyzing existing DRAM chips at the device-
level, which is an option not available for us, we cannot
make definitive claims about how a wordline interacts with
nearby cells to increase their leakiness. Our ISCA 2014 paper
hypothesizes, based on past studies and findings, that there
may be three ways of interaction. At least two major DRAM
manufacturers have confirmed all three of these hypotheses
as potential causes of disturbance errors. First, changing the
voltage of a wordline could inject noise into an adjacent word-
line through electromagnetic coupling [60, 173, 208]. This

2Test details and experimental setup, along with a listing of all modules and
their characteristics, are reported in our original RowHammer paper [133].

2



partially enables the adjacent row of access-transistors for a
short amount of time and facilitates the leakage of charge from
vulnerable cells. Thus, if a row is hammered enough times to
disturb such vulnerable cells before they get refreshed, charge
in such cells get drained to a point that the original cell values
are not recoverable any more. Second, bridges are a well-
known class of DRAM faults in which conductive channels
are formed between unrelated wires and/or capacitors [19, 20].
One study on embedded DRAM (eDRAM) found that toggling
a wordline could accelerate the flow of charge between two
bridged cells [104]. Third, it has been reported that toggling
a wordline for hundreds of hours can permanently damage
it by hot-carrier injection [64]. If some of the hot-carriers
are injected into the neighboring rows, this could modify the
amount of charge in their cells or alter the characteristics of
their access-transistors to increase their leakiness.

Several recent works have tried to examine and model
RowHammer at the circuit level; we survey these works in
Section III-C.

B. User-Level RowHammer

Our ISCA 2014 paper also demonstrates that a very simple
user-level program [3, 133] can reliably and consistently
induce RowHammer errors in three commodity AMD and
Intel systems using vulnerable DRAM modules. We released
the source code of this program [3], which Google Project
Zero later enhanced [4]. Using our user-level RowHammer
test program, we showed that RowHammer errors violate two
invariants that memory should provide: (i) a read access should
not modify data at any address and (ii) a write access should
modify data only at the address that it is supposed to write
to. As long as a row is repeatedly opened, both read and
write accesses can induce RowHammer errors, all of which
occur in rows other than the one that is being accessed.
Since different DRAM rows are mapped (via mechanisms in
the system software and the memory controller) to different
software pages, our user-level program could reliably corrupt
specific bits in pages belonging to other programs. As a result,
RowHammer errors can be exploited by a malicious program
to breach memory protection and compromise the system.
In fact, we hypothesized, in our ISCA 2014 paper, that our
user-level program, with some engineering effort, could be
developed into a disturbance attack that injects errors into
other programs, crashes the system, or hijacks control of the
system. We left such research for the future since our primary
objective in our ISCA 2014 paper was to understand and
prevent RowHammer errors [133].

C. Characteristics of RowHammer

Our ISCA 2014 paper [133] provides a detailed exper-
imental analysis of various characteristics of RowHammer,
including its prevalence across DRAM chips, access pat-
tern dependence, data pattern dependence, temperature de-
pendence, address correlation between victim and aggressor
memory rows, number of bits in a victim row that flip due
to RowHammer in an adjacent row, number of rows that get

affected due to RowHammer in an adjacent row, relationship of
RowHammer-vulnerable cells with leaky cells that need higher
refresh rates, repeatability of RowHammer errors, the fact that
a memory row is vulnerable to RowHammer on both adjacent
wordlines, and real system demonstration of RowHammer.
We omit these analyses here in this retrospective and focus
on security vulnerabilities and prevention of RowHammer.
We refer the reader to [133] for a rigorous treatment of the
characteristics of the RowHammer phenomenon.

One of the key takeaways from our characterization is
that RowHammer-induced errors are predictably repeatable. In
other words, if a cell’s value gets corrupted via RowHammer,
the same cell’s value is very likely to get corrupted again via
RowHammer. This repeatability enables the construction of
repeatable security attacks in a controlled manner, which we
briefly discuss next and cover in detail in Section III-A.

D. RowHammer as a Security Threat

RowHammer exposes a security threat since it leads to a
breach of memory isolation, where accesses to one row (e.g.,
a user-level memory page) modifies the data stored in another
memory row (e.g., a privileged operating system page). As
indicated above, malicious software can be written to take ad-
vantage of these disturbance errors. We call these disturbance
attacks [133], or RowHammer attacks. Such attacks can be
used to corrupt system memory, crash a system, or take over
the entire system. Confirming the predictions of our ISCA
paper [133], researchers from Google Project Zero developed
a user-level attack that exploits RowHammer to gain kernel
privileges and thus take over an entire system [215, 216].
More recently, researchers showed that RowHammer can be
exploited in various ways to take over various classes of
systems. As such, the RowHammer problem has widespread
and profound real implications on system security, threatening
the foundations of memory isolation on top of which modern
system security principles are built. We survey the works that
exploit RowHammer to build many different security attacks
in Section III-A.

E. RowHammer Solutions

Our ISCA 2014 paper discusses and analyzes seven different
countermeasures to the RowHammer problem. Each solution
makes a different trade-off between feasibility, cost, perfor-
mance, power, and reliability. Among them, we believe our
seventh and last solution, called PARA, to be the most efficient
with the lowest overhead.

The first six solutions are: 1) manufacturing better DRAM
chips that are not vulnerable, 2) using (strong) error correcting
codes (ECC) to correct RowHammer-induced errors, 3) in-
creasing the refresh rate for all of memory, 4) statically remap-
ping/retiring RowHammer-prone cells via a one-time post-
manufacturing analysis, 5) dynamically remapping/retiring
RowHammer-prone cells during system operation, 6) accu-
rately identifying hammered rows during runtime and refresh-

3



ing their neighbors.3 We will not go into significant detail
in this summary and retrospective, but none of these first
six solutions are very desirable as they come at significant
power, performance or cost overheads, as we describe in our
original work [133]. We will revisit some of these solutions
in Section III-B of this article, when we survey related work
that builds on RowHammer.

Our ISCA 2014 paper’s main proposal to prevent RowHam-
mer is a low-overhead mechanism called PARA (probabilistic
adjacent row activation). The key idea of PARA is simple:
every time a row is opened and closed, one or more of its
adjacent rows are also opened (i.e., refreshed) with some
low probability p (by the memory controller or the DRAM
chip). If one particular row happens to be opened and closed
repeatedly, then it is statistically certain that the row’s adjacent
rows will eventually be opened as well, as we show in our
original work, assuming p is chosen intelligently and carefully.
The main advantages of PARA are that 1) it is stateless in
the sense that it does not require expensive hardware data-
structures to count the number of times that rows have been
opened or to store the addresses of the aggressor/victim rows,
2) its performance and power consumption overheads are
very low due to the infrequent activation of only adjacent
rows of a closed row. Our ISCA 2014 paper provides a
memory-controller-based implementation of PARA, evaluates
its reliability guarantee against adversarial access patterns, and
empirically examines its performance overhead. We show that
by setting the probability of refresh of adjacent rows p to a
reasonable yet very low value (e.g., 0.001 or 0.005), PARA
provides a strong guarantee against RowHammer and leads
to a very small performance overhead of less than 0.75%.
More detailed discussion of the implementation and evaluation
of PARA can be found in our original work. We will revisit
PARA in Section III-B of this article.

III. SURVEY OF WORKS THAT BUILD ON ROWHAMMER

RowHammer has spurred a significant amount of research
since its publication in 2014. In this section, we provide a
categorical survey of the array of works that build off of our
original paper that introduces the concept of RowHammer and
disturbance attacks [133]. We describe seven different types of
works: (1) security attacks that exploit the RowHammer vul-
nerability, (2) defense and mitigation mechanisms against the
RowHammer phenomenon and the security attacks, (3) circuit-
level studies that aim to understand and model the RowHam-
mer phenomenon, (4) other works that exploit RowHammer
for various purposes, (5) works that build platforms to study
RowHammer, (6) pop culture references to RowHammer,
and (7) works that show that the RowHammer phenomenon
continues to exist in future generation DRAM chips younger
than the ones we examined in our original ISCA 2014 paper.

3Several early patent applications propose to maintain an array of counters
(“detection logic”) in either the memory controller [25, 27, 88] or in the
DRAM chips themselves [26, 28, 87]. If the counters are tagged with the
addresses of only the most recently activated rows, the number of required
counters can be significantly reduced [88].

While we describe the works, we also point out the potential
for future research in each topic area.

A. Exploits using RowHammer

Inspired by our ISCA 2014 paper’s fundamental findings,
researchers from Google Project Zero demonstrated in 2015
that RowHammer can be effectively exploited by user-level
programs to gain kernel privileges on real systems [215, 216].
Google Project Zero presented two exploits using RowHam-
mer. The first exploit runs as a Native Client (NaCl) program
and escalates privilege to escape from the x86-64 sandbox
environment. Since NaCl statically validates code before run-
ning it, Google Project Zero simply shows that an attacker
can modify safe instructions to become unsafe. The second
exploit, which is even more powerful, runs as a normal x86-
64 process on Linux and escalates privilege to gain access to
all of physical memory and thus take over the entire system.
The attacker hammers a page table entry (PTE) such that
it changes the PTE to point to a page table owned by the
attacking process. This gives the attacking process full read-
write access to its own page table and hence to all of physical
memory, which enables the attacking process to take over the
entire system.

Tens of other works since then demonstrated other attacks
exploiting RowHammer and we explain several of them in
some detail here. One involves the takeover of a victim
virtual machine (VM) by another attacker VM running on
the same system [207]. In [207], the attacker VM writes a
memory page that it knows exists in the victim VM at a
RowHammer-vulnerable memory location. If memory dedupli-
cation merges the victim VM’s and attacker VM’s duplicate
pages to the attacker VM page’s location, the attacker can
then induce RowHammer failures in the deduplicated page’s
data, which is shared by both the attacker and the victim.
Since RowHammer attacks modify memory without writes,
the deduplication engine does not detect the modification to
memory, and the victim VM continues to use the corrupted
page. The authors show two attacks using this method. The
first attack compromises OpenSSH [10] by modifying the
public keys in a victim VM such that the attacker can easily
generate a private key that matches the modified public key. It
is easier to generate a private key when a public key becomes
easily factorable. The second attack compromises the Linux
package installation tool, apt-get [8] using two steps. First,
the attacker flips a bit in the apt-get domain name of the
victim, such that the victim’s apt-get requests are redirected
to a malicious repository. Second, the attacker flips a bit in
the page containing the Ubuntu Archive Signing Keys, which
are used to check the validity of packages before installation.
Thus, this work exploits the RowHammer vulnerability to
break both OpenSSH public key authentication and install
malicious software via widely-used installation tools.

The Drammer work [241] demonstrates an attack that
exploits RowHammer on a mobile device using a malicious
user-level application that requires no permissions. This is
the first demonstration of RowHammer attacks on ARM-

4



based systems. The work takes advantage of the deterministic
memory allocation patterns in the Android Linux Operating
System. By exploiting these deterministic memory allocation
patterns, the authors present a methodology for forcing a vic-
tim process to allocate its page table entry in a RowHammer-
vulnerable region of memory. To do this, the attacker process
must essentially allocate all possible memory regions for a
page table allocation and then release the page table allocation
that contains the RowHammer-vulnerable DRAM cells at bit
offsets that enable exploitation. Because of the use of Buddy
Allocation [135] (an allocation scheme that forces allocations
to the smallest available contiguous region of memory) in
Linux platforms, the attacker does not need to allocate all of
memory and risk crashing the system. The researchers found
18 out of 27 phone models to be vulnerable to RowHammer
and have since released a mobile application that tests memory
for RowHammer-vulnerable cells and aggregates statistics on
how widespread the RowHammer phenomenon is on mobile
devices. This work shows that existing mobile systems are
widely vulnerable to RowHammer attacks.

[90] demonstrates a remote takeover of a server vulner-
able to RowHammer via JavaScript code execution. Since
JavaScript is present and enabled by default in every modern
browser, this work demonstrates the proof-of-concept that the
RowHammer attack can be launched by a website to gain root
privileges on a system that visits the website.

Other works that have demonstrated attacks exploiting
RowHammer include takeover of a mobile system by trig-
gering RowHammer using the WebGL interface on a mobile
GPU [76, 89], takeover of a remote system by triggering
RowHammer through the Remote Direct Memory Access
(RDMA) protocol [158, 235], and various other attacks [12,
31–33, 37, 54, 66, 73, 89, 108, 198, 199, 201, 236, 251, 260].
Thus, RowHammer has widespread and profound real impli-
cations on system security, as it breaks memory isolation on
top of which modern system security principles are built.

Our work has inspired many researchers to exploit
RowHammer to devise new attacks. As mentioned earlier,
tens of papers were written in top security venues that
demonstrate various practical attacks exploiting RowHammer
(e.g., [12, 31–33, 37, 54, 66, 73, 76, 89, 90, 108, 158,
198, 199, 201, 207, 215, 216, 235, 236, 241, 251, 260]).
These attacks started with Google Project Zero’s first work
in 2015 [215, 216] and they continue to this date, with the
latest ones that we know of being published in late 2018 [31,
33, 54, 158, 199, 235, 236, 260] and mid 2019 [66]. We
believe there is a lot more to come in this direction: as systems
security researchers understand more about RowHammer, and
as the RowHammer phenomenon continues to fundamentally
affect memory chips due to technology scaling problems [176],
researchers and practitioners will develop different types of
attacks to exploit RowHammer in various contexts and in
many more creative ways. Various recent reports suggest that
new-generation DDR4 DRAM and other DRAM chips are
vulnerable to RowHammer [12, 17, 66, 141, 198], as we
examine further in Section III-G, so the fundamental security

research on RowHammer is likely to continue into the future.

B. Defenses against RowHammer

Our work also inspired many solution and mitigation tech-
niques for RowHammer from both researchers and industry
practitioners. Apple publicly mentioned, in their critical secu-
rity release for RowHammer, that they increased the memory
refresh rates due to the “original research by Yoongu Kim et
al. (2014)” [21]. The industry-standard Memtest86 program,
which is used to test deployed memory chips for errors, was
updated, including a RowHammer test, acknowledging our
ISCA 2014 paper [194]. Many academic works developed
solutions to RowHammer, working from our original research
(e.g., [23, 38, 40, 81, 106, 120, 152, 190, 222, 226, 242]).
Additionally, many patents for solutions to RowHammer have
been filed [25–28, 30, 88]. We believe such solutions will
continue to be generated in both academia and industry,
extending RowHammer’s impact into the very long term. We
cover some of these solutions in this section.

Given that RowHammer is such a critical vulnerability, it
is important to find both immediate and long-term solutions
to the RowHammer problem (as well as related problems that
might cause similar vulnerabilities). The goal of the immediate
solutions is to ensure that existing systems are patched such
that the vulnerable DRAM devices that are already in the field
cannot be exploited. The goal of the long-term solutions is
to ensure that future DRAM devices do not suffer from the
RowHammer problem when they are released into the field.

Given that immediate solutions require mechanisms that
already exist in systems operating in the field, they are
fundamentally more limited. A popular immediate solution,
described and analyzed by our ISCA 2014 paper [133], is to
increase the refresh rate of memory such that the probability
of inducing a RowHammer error before DRAM cells get
refreshed is reduced. Several major system manufacturers
(including Apple, HP, Cisco, Lenovo, and IBM) have adopted
this solution and released security patches that increased
DRAM refresh rates (e.g., [21, 75, 100, 154]) in the memory
controllers. While this solution might be practical and effective
in reducing the vulnerability, it has the significant drawbacks
of increasing energy/power consumption, reducing system
performance, and degrading quality of service experienced
by user programs. Our paper shows that the refresh rate
needs to be increased by 7.8X its nominal value today, if
we want to eliminate all RowHammer-induced errors we saw
in our tests of 129 DRAM modules! Figure 2 demonstrates
this study: if we examine the most RowHammer-vulnerable
module that we test from each manufacturer A, B, C, we
find that completely eliminating the RowHammer-induced
errors requires us to reduce the refresh interval from the
nominal 64ms to 8.2ms, leading to a 7.8X increase in the
refresh rate. Since DRAM refresh is already a significant
burden [59, 113, 115, 160, 196, 203] on energy consumption,
performance, and quality of service, increasing it by any
significant amount would only exacerbate the problem. Yet,
increased refresh rate is likely the most practical immediate

5



solution to RowHammer that does not require any significant
change to the system.

0 16 32 48 64 80 96 112 128
Refresh Interval (ms)

0
100
101
102
103
104
105
106
107
108

E
rr

or
s

A1240
23 B1146

11 C1223
19

yA = 4.39e-6× x6.23

yB = 1.23e-8× x7.3

yC = 8.11e-10× x7.3

Fig. 2: Number of RowHammer-induced errors observed on
the most RowHammer-vulnerable module of each DRAM
manufacturer A, B, C, as the refresh interval is varied from
8ms to 128ms (reproduced from [133]).

Other immediate solutions modify the software [38, 106,
107, 137, 190, 215, 242, 250]. For example, ANVIL pro-
poses software-based detection of RowHammer attacks by
monitoring via hardware performance counters and selec-
tive explicit refreshing of victim rows that are found to be
under attack [23]. One short-term approach to mitigating
RowHammer attacks is intelligently allocating and physically
isolating pages such that RowHammer cannot affect important
pages [38, 137, 242]. [38] extends the physical memory
allocator of the Operating System to allocate memory in
such a way that isolates memory pages of different system
entities. [242] prevents DMA-based attacks by isolating DMA
buffers with additional buffer rows (i.e., guard rows) that do
not store data. This ensures that any DMA-based attack can
only induce RowHammer bit flips in the guard rows without
affecting rows containing important data. Another approach
for mitigating RowHammer statically analyzes code to iden-
tify code segments that are probably RowHammer attacks
and prevents them prior to execution [106]. ZebRAM [137]
reserves odd rows as “safe” rows and even rows as “unsafe”
rows such that hammering a safe row should never result in a
RowHammer failure in another safe row. The unsafe rows are
used as swap space and a portion of safe rows are used as a
cache for data in the unsafe-row swap space. Whenever data
in unsafe rows is migrated to safe rows, ZebRAM performs
software integrity checks and error correction. Unfortunately,
such software-based solutions usually 1) require modifications
to system software, 2) might be intrusive to system operation,
and/or 3) might cause significant performance or memory
space overheads (yet they are still promising to research).

As briefly discussed in Section II-E, our ISCA 2014 pa-
per [133] discusses and analyzes seven short-term and long-
term countermeasures to the RowHammer problem. The first
six solutions are: 1) making better DRAM chips that are not

vulnerable, 2) using (strong) error correcting codes (ECC)
to correct RowHammer-induced errors, 3) increasing the re-
fresh rate for all of memory, 4) statically remapping/retiring
RowHammer-prone cells via a one-time post-manufacturing
analysis, 5) dynamically remapping/retiring RowHammer-
prone cells during system operation, 6) accurately identifying
hammered rows during runtime and refreshing their neighbors.
Our work shows that the first six solutions are not very
desirable as they come at significant power, performance
or cost overheads. We already discussed the overheads of
increasing the refresh rates across the board. Similarly, the
use of simple SECDED (single-error correcting double-error
detecting) error correcting codes (ECC), as employed in many
server and datacenter systems, is not enough to prevent all
RowHammer errors, as some cache blocks experience two
or more bit flips, which are not correctable by SECDED
ECC, as we have shown in our ISCA 2014 paper [133].
Table I demonstrates this by showing how many 64-bit words
in the full address-space (0–2GB) of the most RowHammer-
vulnerable DRAM modules of the three major DRAM manu-
facturers contain 1, 2, 3, or 4 victim cells. While most words
have just a single victim, there are also some words with
multiple victims. Thus, stronger ECC is very likely required
to correct RowHammer errors, which comes at the cost of
additional energy, performance, cost, and DRAM capacity
overheads.4 Alternatively, the sixth solution described above,
i.e., accurately identifying a row as a hammered row requires
keeping track of access counters for a large number of rows
in the memory controller [120], potentially leading to very
large hardware area and power consumption, and performance,
overheads.

Module
Number of 64-bit words with X errors

X = 1 X = 2 X = 3 X = 4

A23 9,709,721 181856 2248 18
B11 2,632,280 13638 47 0
C19 141,821 42 0 0

TABLE I: Uncorrectable multi-bit RowHammer errors (in
bold) observed on the most RowHammer-vulnerable module
of each DRAM manufacturer A, B, C (reproduced from [133])

There are many other works that propose long-term solu-
tions [28, 30, 40, 68, 81, 82, 88, 111, 128, 134, 152, 213,
222, 226, 243, 245], building on our original work. [226] uses
a probabilistic mechanism similar to PARA in the original
RowHammer paper in addition to a small stack for maintaining
access history information to determine whether adjacent rows
need to be refreshed to avoid bit flips. [152, 222, 243, 245] are
counter-based defenses that rely on maintaining access counts

4Note that protecting all memory rows with strong ECC is likely a wasteful
solution for RowHammer because RowHammer-induced bit-flips are access-
pattern dependent; they are not randomly-occurring bit-flips. Since only a
small number of rows can be hammered at a given time, paying the capacity,
cost, and energy overheads of extra redundancy required for strong ECC for
all memory rows, solely to protect them against RowHammer, is likely not
an efficient solution to the RowHammer problem.

6



to DRAM rows and refreshing adjacent rows when the access
count of a row exceeds a pre-determined threshold. These
works focus on reducing the overhead of counting accesses
to DRAM addresses to enable a viable implementation of the
sixth soution we described above.

We believe the long-term solution to RowHammer can actu-
ally be very simple and low cost: when the memory controller
closes a row (after it was activated), it, with a very low
probability, refreshes the adjacent rows. The probability value
is a parameter determined by the system designer or provided
programmatically, if needed, to trade off between performance
overhead and vulnerability protection guarantees. We show
that this probabilistic solution, called PARA (Probabilistic Ad-
jacent Row Activation), is extremely effective: it eliminates the
RowHammer vulnerability, providing much higher reliability
guarantees than modern hard disks today, while requiring no
storage cost and having negligible performance and energy
overheads [133].

PARA is not immediately implementable in an existing
system because it requires changes to either the memory
controllers or the DRAM chips, depending on where it is
implemented. If PARA is implemented in the memory con-
troller, the memory controller needs to obtain information on
which rows are adjacent to each other in a DRAM bank. This
information is currently unknown to the memory controller
as DRAM manufacturers can internally remap rows to other
locations [116, 117, 133, 151, 161] for various reasons,
including for tolerating various types of faults. However, this
information can be simply provided by the DRAM chip to the
memory controller using the serial presence detect (SPD) read-
only memory present in modern DRAM modules, as described
in our ISCA 2014 paper [133]. It appears that some very
recent Intel memory controllers implement a limited variant
of PARA, whose adjacent-row activation probability can be
chosen by the user via modifications in the BIOS [5]. If
PARA is implemented in the DRAM chip, then the hardware
interface to the DRAM chip should be such that it allows
DRAM-internal refresh operations that are not initiated by
an external memory controller. This could be achieved with
the addition of a new DRAM command, like the targeted
refresh command proposed in a patent by Intel [29]. In 3D-
stacked memory technologies [130, 150], e.g., HBM (High
Bandwidth Memory) [109, 150] or HMC (Hybrid Memory
Cube) [7], which combine logic and memory in a tightly
integrated fashion, the logic layer can be easily modified to
implement PARA.5 Alternatively, if the memory interface is

5Alternatively, for a solution like PARA to be implemented in the DRAM
chip, without modifying the hardware interface to the DRAM chip, one
can exploit the timing slack in the DRAM timing parameters that already
exist under various conditions. For example, the timing slack in the specified
precharge timing parameter or the refresh latency parameter can be exploited
by the DRAM chip itself to internally issue refresh operations to targeted rows
with some probability. Even though such timing slack exists in DRAM chips,
as shown by many recent experimental studies [57, 69, 125, 147, 151], we do
not believe this is a robust solution since 1) the timing slack may not exist
under all operating conditions or for all chips, 2) many studies would like to
reduce the timing slack as much as possible to improve DRAM performance
and energy [57, 69, 125, 147, 151].

asynchronous with the processor, a simple controller that is
tightly coupled with the memory chip can freely and easily
implement PARA internally to the memory chip.

All these implementations of the promising PARA solution
are examples of much better cooperation between memory
controller and the DRAM chips. Regardless of the exact
implementation, we believe RowHammer, and other upcoming
reliability vulnerabilities like RowHammer, can be much more
easily found, mitigated, and prevented with better cooper-
ation between and co-design of system and memory, i.e.,
system-memory co-design [175]. System-memory co-design
is explored by recent works for mitigating various DRAM-
based security and DRAM scaling issues, including retention
failures and performance problems (e.g., [56, 57, 59, 97, 113–
117, 125–127, 129, 133, 146, 147, 149, 151, 160, 161, 165,
175, 183, 203, 205, 217–219, 231–233, 237, 238, 252]). Tak-
ing the system-memory co-design approach further, providing
more intelligence and configurability/programmability/patch-
ability in the memory controller can greatly ease the tolerance
to errors like RowHammer: when a new failure mechanism
in memory is discovered, the memory controller can be con-
figured/programmed/patched to execute specialized functions
to profile and correct for such mechanisms. We believe this
direction is very promising, and several works have explored
online profiling mechanisms for fixing retention errors [115–
118, 196, 203], reducing latency [151], and reducing energy
consumption [58]. These works provide examples of how
an intelligent memory controller can alleviate the retention
failures, and thus the DRAM refresh problem [160, 161], as
well as the DRAM latency problem [146, 147].

C. Circuit-level Studies of RowHammer

A very recent work [254] presents evidence via 3D CAD
simulations with single charge traps, that the RowHammer
effect is governed by the charge pumping process. The
RowHammer effect is exacerbated when charge is captured
around an aggressor wordline and carriers migrate to victim
wordlines. The authors also find that feature size scaling
aggravates the RowHammer effect, which could make it more
difficult to mitigate in future DRAM generations.

[257] provides a study of the effects of irradiating DRAM
on the RowHammer phenomenon, with two major findings.
First, the study finds that irradiating DRAM with gamma rays
increases the number of DRAM rows that are vulnerable to
RowHammer. Second, the authors correlate the cells that are
vulnerable to RowHammer with those that have low data reten-
tion times and they find almost no correlation, corroborating
the results of our ISCA 2014 paper.

[157] also irradiates DRAM with gamma rays, which results
in cells with lower data retention times and cells with a higher
susceptibility to RowHammer failures. The authors then per-
form temperature annealing (i.e., a method for baking DRAM
at a high temperature to “repair” retention-weak cells) on the
DRAM devices and find that cells that experience a higher
susceptibility to RowHammer after irradiation maintain the

7



higher susceptibility to RowHammer even after temperature
annealing.

[210] presents evidence that hydrogen (H2) annealing of
cell-transistors during the dry etch process shows a reduction
in interface trap density. Since the RowHammer failure is
mainly caused by the traps in the interface (according to the
authors’ hypotheses), the authors show that this technique can
help to improve DRAM reliability against crosstalk and thus
alleviate RowHammer attacks.

[192] and [193] experimentally test DDR3 devices for
RowHammer susceptibility, show statistical distributions of
RowHammer failures across many devices, and present evi-
dence that the root cause of the RowHammer phenomenon
is charge recombination of the victim cell with electrons
from the current channels between neighboring cells and their
corresponding bitlines.

D. Other Works Exploiting RowHammer

There are other papers that build upon RowHammer but do
not necessarily show a RowHammer attack or defense. One
work shows that the RowHammer phenomenon can be used
as a security primitive. [212] shows that RowHammer can be
used as an effective Physical Unclonable Function (PUF), a
function that generates unique identifiers (i.e., fingerprints) of
a device based on the unique properties of the device due to
manufacturing variation. The authors experimentally show that
by reserving a region of memory and inducing RowHammer
failures in each of the rows of the region, they can generate bit
flips in the region whose locations are unique to the device and
can be used to identify the device. A more recent work [258]
presents an attack on the RowHammer-based PUF [212] by
effectively showing that hammering on rows surrounding the
region reserved by the RowHammer-based PUF causes the
rows at the edges of the reserved DRAM region to have an
increased number of bit flips. This results in a modification of
the resulting fingerprint, which then results in an unidentifiable
device.

E. Platforms for Studying RowHammer

Many prior works present ways to make studying RowHam-
mer easier. [74] describes their Raspberry Pi Operating System
for exploring memory concepts simply due to a direct linear
mapping between virtual addressses to physical addresses.
This mitigates the difficulty of determining which DRAM
rows are physically adjacent. SoftMC [98, 225] is an FPGA-
based memory controller implementation that enables testing
custom DRAM timing parameter values with direct access to
DRAM physical addresses. Drammer [70, 71] is an open-
source Android application that tests mobile devices for
vulnerability to the RowHammer exploit and gathers data
from users to determine how widespread the RowHammer
vulnerability is across many generations of mobile devices.
MemTest86 [194] is software that tests DRAM for many types
of reliability issues. As described above, after our original
ISCA 2014 paper, MemTest86 developers added RowHammer
testing to their suite, which enables users to test their system

for the RowHammer vulnerability. [31, 107, 190] provide
methods for reverse engineering DRAM address mapping such
that attackers can determine the two rows that surround a
victim row and hammer the victim row more effectively for
causing RowHammer failures. [244] provides an algorithm for
determining the eviction set of cache lines in linear time such
that an attacker can maximize accesses to DRAM even when
caching is unavoidable. [17] repurposes a DDR protocol ana-
lyzer with a DIMM interposer to count the activations to each
row within a 64 ms interval to detect whether RowHammer
occurs in any application.

F. Media References to RowHammer

Our ISCA 2014 work also turned RowHammer into a
popular phenomenon (e.g., [1, 2, 16, 39, 65, 83–85, 94, 105,
119, 139, 141, 187–189, 194, 211, 216, 239, 240, 246]),
which, in turn, has helped make hardware security even
more ”mainstream” in popular media and the broader security
community. It showed that hardware reliability problems can
be very serious security threats that have to be defended
against. A well-read article from the Wired magazine, all about
RowHammer, is entitled “Forget Software – Now Hackers
are Exploiting Physics!” [86], indicating the shift of mindset
towards very low-level hardware security vulnerabilities in the
popular mainstream security community. Many other popular
articles in press have been written about RowHammer, many
of which pointing to our ISCA 2014 work [133] as the first
demonstration and scientific analysis of the RowHammer prob-
lem. Showing that hardware reliability problems can be serious
security threats and pulling them to the popular discussion
space, and thus influencing the mainstream discourse, creates
a very long term impact for the RowHammer problem and
thus our original ISCA 2014 paper.

G. Persistence of RowHammer Failures in Modern DRAM

Unfortunately, despite the many proposals in industry and
academia to fix the RowHammer issue, RowHammer failures
still seem to be observable in state-of-the-art DRAM devices
in a variety of generations and standards (e.g., DDR4 [12,
17, 141, 198], ECC DRAM [66], LPDDR3 and LPDDR2
DRAM [241]). This persisting phenomenon suggests that the
security vulnerabilities might continue in the current genera-
tion of DRAM chips as well. As such, it is critical to continue
to investigate solutions to the RowHammer vulnerability.

H. RowHammer in a Broader Context

Springing off from the stir created by RowHammer, we take
a step back and argue that there is little that is surprising
about the fact that we are seeing disturbance errors in the
heavily-scaled DRAM chips of today. Disturbance errors are a
general class of reliability problems that is present in not only
DRAM, but also other memory and storage technologies. All
scaled memory technologies, including SRAM [62, 93, 121],
flash [42, 45, 46, 50–53, 67, 167, 168, 171, 214], and hard disk
drives [110, 234, 249], exhibit such disturbance problems. In

8



fact, two of our works experimentally examine read disturb er-
rors in flash memory: 1) our original work in DATE 2012 [42]
that provides a rigorous experimental study of error patterns
in modern MLC NAND flash memory chips demonstrates the
importance of read disturb error patterns, 2) our recent work at
DSN 2015 [51] experimentally characterizes the read disturb
errors in flash memory, shows that the problem is widespread
in recent flash memory chips, and develops mechanisms to
correct such errors in the flash memory controller. Even though
the mechanisms that cause the bit flips are different in different
technologies, the high-level root cause of the problem, cell-to-
cell interference, due to the fact that the memory cells are too
close to each other, is a fundamental issue that appears and will
likely continue to appear in any technology that scales down
to small enough technology nodes [53, 254]. Thus, we should
expect such problems to continue as we scale any memory
technology, including emerging ones, to higher densities.

What sets DRAM disturbance errors apart from other tech-
nologies’ disturbance errors is that 1) DRAM is exposed to the
user-level programs and manipulated directly by a program’s
load and store instructions (which we do not anticipate to
change any time soon, since direct data manipulation in
main memory is a fundamental component of programming
languages and systems), and 2) in modern DRAM, as opposed
to other technologies, strong error correction mechanisms
are not commonly employed (either in the memory con-
troller or the memory chip). The success of DRAM scaling
until recently has not relied on a memory controller that
corrects errors (other than performing periodic refresh and
more recently employing very simple single-error correcting
codes [9, 113, 185, 186, 191, 195]). Instead, DRAM chips
were implicitly assumed to be error-free and did not require
the help of the controller to operate correctly. Thus, such
errors were perhaps not as easily anticipated and corrected
within the context of DRAM. In contrast, the success of other
technologies, e.g., flash memory and hard disks, has heavily
relied on the existence of an intelligent controller that plays
a key role in correcting errors and making up for reliability
problems of the memory chips themselves [52]. This has not
only enabled the correct operation of assumed-faulty memory
chips but also enabled a mindset where the controllers are co-
designed with the chips themselves, covering up the memory
technology’s deficiencies and hence perhaps enabling better
anticipation of errors with technology scaling. This approach
is very prominent in modern SSDs (solid state drives), for
example, where the flash memory controller employs a wide
variety of error mitigation and correction mechanisms [42–
48, 50–53, 166], including not only sophisticated strong ECC
mechanisms but also targeted voltage optimization, retention
mitigation and disturbance mitigation techniques. We believe
changing the mindset in modern DRAM to a similar mindset
of assumed-faulty memory chip and an intelligent memory
controller that makes it operate correctly can not only en-
able better anticipation and correction of future issues like
RowHammer but also better scaling of DRAM into future
technology nodes [175].

IV. ONGOING AND FUTURE WORK

We believe there is a lot more research to come that will
build on RowHammer, from at least three perspectives: 1) the
security attack perspective, 2) the defense/mitigation perspec-
tive, 3) a broader understanding, modeling, and prevention
perspective.

As systems security researchers understand more about
RowHammer, and as the RowHammer phenomenon continues
to fundamentally affect memory chips due to technology scal-
ing problems [176], researchers and practitioners will develop
different types of attacks to exploit RowHammer in various
contexts and in many more creative ways. RowHammer is a
critical problem that manifests in the difficulties in DRAM
scaling and is expected to only become worse in the fu-
ture [177, 182, 183]. As we discussed, some recent reports
suggest that new-generation DRAM chips are vulnerable to
RowHammer (e.g., DDR4 [12, 17, 141, 198], ECC [66, 133],
LPDDR3 and LPDDR2 [241]). This indicates that effectively
mitigating the RowHammer problem with low overhead is
difficult and becomes more difficult as process technology
scales further. Even with the wide array of works that build
on top of RowHammer, we believe that these papers have yet
to scratch the surface of this field of reliability and security,
especially as manufacturing technology scaling continues in all
technologies. It is critical to deeply understand the underlying
factors of the RowHammer problem (and more generally
the crosstalk problem) such that we can effectively prevent
these issues across all technologies with minimal overhead.
As DRAM cells become even smaller and less reliable, it is
likely for them to become even more vulnerable to complicated
and different modes of failure that are sensitized only under
specific access-patterns and/or data-patterns. As a scalable
solution for the future, our ISCA 2014 paper argues for
adopting a system-level approach [175] to DRAM reliability
and security, in which the DRAM chips, the memory con-
troller, and perhaps the operating system collaborate together
to diagnose/treat emerging DRAM failure modes.

We believe that more and more researchers will focus
on providing security in all aspects of computing so that
such hardware faults that are exposed to the software (and
thus the public) are minimized. RowHammer enabled a shift
of mindset among mainstream security researchers: general-
purpose hardware is fallible (in a very widespread manner)
and its problems are actually exploitable. This shift of mind-
set enabled many systems security researchers to examine
hardware in more depth and understand its inner workings
and vulnerabilities better. We believe it is no coincidence that
two of the groups that concurrently discovered the heavily-
publicized Meltdown [159] and Spectre [136] vulnerabilities
(Google Project Zero and TU Graz InfoSec) have heavily
worked on RowHammer attacks before. We believe this shift in
mindset, enabled in good part by the existence and prevalence
of RowHammer, will continue to be very be important for
discovering and solving other potential vulnerabilities that may
rise as a result of both technology scaling and hardware design.

9



A. Other Potential Vulnerabilities

We believe that, as memory technologies scale to higher
densities, other problems may start appearing (or may al-
ready be going unnoticed) that can potentially threaten the
foundations of secure systems. There have been recent large-
scale field studies of memory errors showing that both DRAM
and NAND flash memory technologies are becoming less
reliable [42, 50, 52, 53, 167, 168, 171, 172, 175, 176, 183,
196, 214, 227–229]. As detailed experimental analyses of real
DRAM and NAND flash chips show, both technologies are
becoming much more vulnerable to cell-to-cell interference
effects [42, 45–48, 51–53, 133, 166, 175, 176, 178, 183],
data retention is becoming significantly more difficult in
both technologies [42–44, 46, 50, 52, 53, 59, 113, 115–
117, 160, 161, 164, 167–169, 175, 178, 183, 203], and
error variation within and across chip, and across operating
conditions, is increasingly prominent [42, 46, 55, 57, 125–
127, 147, 151, 161]. Emerging memory technologies [170,
175], such as Phase-Change Memory [142–144, 202, 204,
206, 247, 255, 256, 261], STT-MRAM [61, 138], and
RRAM/ReRAM/memristors [248] are likely to exhibit similar
and perhaps even more exacerbated reliability issues. We
believe, if not carefully accounted for and corrected, these
reliability problems may surface as security problems as well,
as in the case of RowHammer, especially if the technology is
employed as part of the main memory system that is directly
exposed to user-level programs.

We briefly examine two example potential vulnerabilities.
We believe future work examining these vulnerabilities, among
others, are promising for both fixing the vulnerabilities and
enabling the effective scaling of memory technology.

1) Data Retention Failures: Data retention is a fundamen-
tal reliability problem, and hence a potential vulnerability,
in especially charge-based memories like DRAM and flash
memory. This is because charge leaks out of the charge storage
unit (e.g., the DRAM capacitor or the NAND flash floating
gate) over time. As such memories become denser, three major
trends make data retention more difficult [50, 113, 160, 161].
First, the number of memory cells increases, leading to the
need for more refresh operations to maintain data correctly.
Second, the charge storage unit (e.g., the DRAM capacitor)
becomes smaller and/or morphs in structure, leading to poten-
tially lower retention times. Third, the voltage margins that
separate one data value from another become smaller (e.g.,
the same voltage window gets divided into more “states” in
NAND flash memory, to store more bits per cell), and, as a
result, the same amount of charge loss is more likely to cause
a bit error in a smaller technology node than in a larger one.

DRAM Data Retention Issues
Data retention issues in DRAM are a fundamental scaling

limiter of the DRAM technology [113, 161, 175]. We have
shown, in recent works based on rigorous experimental anal-
yses of modern DRAM chips [115, 117, 118, 161, 196, 203],
that determining the minimum retention time of a DRAM cell
is getting significantly more difficult. Thus, determining the

correct rate at which to refresh DRAM cells has become more
difficult, as also indicated by industry [113]. This is due to
two major phenomena, both of which get worse (i.e., become
more prominent) with technology scaling. First, Data Pattern
Dependence (DPD): the retention time of a DRAM cell is
heavily dependent on the data pattern stored in itself and in
the neighboring cells [161]. Second, Variable Retention Time
(VRT): the retention time of some DRAM cells can change
drastically over time, due to a memoryless random process
that results in very fast charge loss via a phenomenon called
trap-assisted gate-induced drain leakage [161, 209, 253]. These
phenomena greatly complicate the accurate determination of
minimum data retention time of DRAM cells. In fact, VRT,
as far as we know, is very difficult to test for because there
seems to be no way of determining that a cell exhibits VRT
until that cell is observed to exhibit VRT and the time scale
of a cell exhibiting VRT does not seem to be bounded,
given the current experimental data [115, 161, 196, 203].
As a result, some retention errors can easily slip into the
field because of the difficulty of the retention time testing.
Therefore, data retention in DRAM is a vulnerability that can
greatly affect both reliability and security of current and future
DRAM generations. We encourage future work to investigate
this area further, from both reliability and security, as well
as performance and energy efficiency perspectives. Various
works in this area provide insights about the retention time
properties of modern DRAM devices based on experimental
data [98, 115, 117, 118, 161, 196, 203], develop infrastructures
to obtain valuable experimental data [98], and provide poten-
tial solutions to the DRAM retention time problem [59, 115–
118, 160, 161, 196, 203], all of which the future works can
build on.

Note that data retention failures in DRAM are likely to be
investigated heavily to ensure good performance and energy
efficiency. And, in fact they already are being investigated for
this purpose (see, for example, [59, 115–118, 160, 196, 203]).
We believe it is important for such investigations to ensure no
new vulnerabilities (e.g., side channels) open up due to the
solutions developed.

NAND Flash Data Retention Issues
Experimental analysis of modern flash memory devices

show that the dominant source of errors in flash memory
are data retention errors [42, 52]. As a flash cell wears out,
its charge retention capability degrades [42, 50, 52, 53, 167,
168, 171, 214] and the cell becomes leakier. As a result, to
maintain the original data stored in the cell, the cell needs to
be refreshed [43, 44]. The frequency of refresh increases as
wearout of the cell increases. We have shown that performing
refresh in an adaptive manner greatly improves the lifetime of
modern MLC (multi-level cell) NAND flash memory while
causing little energy and performance overheads [43, 44].
Most high-end SSDs today employ such adaptive refresh
mechanisms.

As flash memory scales to smaller manufacturing tech-
nology nodes and even more bits per cell, data retention
becomes a bigger problem. As such, it is critical to understand

10



the issues with data retention in flash memory. Our recent
work provides detailed experimental analysis of data retention
behavior of planar and 3D MLC NAND flash memory [50,
52, 53, 167, 168]. We show, among other things, that there
is a wide variation in the leakiness of different flash cells:
some cells leak very fast, some cells leak very slowly. This
variation leads to new opportunities for correctly recovering
data from a flash device that has experienced an uncorrectable
error: by identifying which cells are fast-leaking and which
cells are slow-leaking, one can probabilistically estimate the
original values of the cells before the uncorrectable error
occurred. This mechanism, called Retention Failure Recovery,
leads to significant reductions in bit error rate in modern MLC
NAND flash memory [50, 52, 53] and is thus very promising.
Unfortunately, it also points to a potential security and privacy
vulnerability: by analyzing data and cell properties of a failed
device, one can potentially recover the original data. We
believe such vulnerabilities can become more common in the
future and therefore they need to be anticipated, investigated,
and understood.

2) Other Vulnerabilities in NAND Flash Memory: We be-
lieve other sources of error (e.g., cell-to-cell interference) and
cell-to-cell variation in flash memory can also lead various
vulnerabilities. For example, another type of variation (that
is similar to the variation in cell leakiness that we described
above) exists in the vulnerability of flash memory cells to read
disturbance [51]: some cells are much more prone to read
disturb effects than others. This wide variation among cells
enables one to probabilistically estimate the original values of
cells in flash memory after an uncorrectable error has occurred.
Similarly, one can probabilistically correct the values of cells
in a page by knowing the values of cells in the neighboring
page [47]. These mechanisms [47, 51] are devised to improve
flash memory reliability and lifetime, but the same phenomena
that make them effective in doing so can also lead to potential
vulnerabilities, which we believe are worthy of investigation
to ensure security and privacy of data in flash memories.

As an example, we have recently shown [48] that it is
theoretically possible to exploit vulnerabilities in flash mem-
ory programming operations on existing solid-state drives
(SSDs) to cause (malicious) data corruption. This particular
vulnerability is caused by the two-step programming method
employed in dense flash memory devices, e.g., MLC NAND
flash memory. An MLC device partitions the threshold voltage
range of a flash cell into four distributions. In order to
reduce the number of errors introduced during programming
of a cell, flash manufacturers adopt a two-step programming
method, where the least significant bit of the cell is partially
programmed first to some intermediate threshold voltage, and
the most significant bit is programmed later to bring the
cell up to its full threshold voltage. We find that two-step
programming exposes new vulnerabilities, as both cell-to-
cell program interference and read disturbance can disrupt
the intermediate value stored within a multi-level cell before
the second programming step completes. We show that it is
possible to exploit these vulnerabilities on existing solid-state

drives (SSDs) to alter the partially-programmed data, causing
(malicious) data corruption. We experimentally characterize
the extent of these vulnerabilities using contemporary 1X-
nm (i.e., 15-19nm) flash chips [48]. Building on our exper-
imental observations, we propose several new mechanisms for
MLC NAND flash that eliminate or mitigate disruptions to
intermediate values, removing or reducing the extent of the
vulnerabilities, mitigating potential exploits, and increasing
flash lifetime by 16% [48]. We believe investigation of such
vulnerabilities in flash memory will lead to more robust flash
memory devices in terms of both reliability and security, as
well as performance. In fact, a recent work from IBM builds
on our work [48] to devise a security attack at the file system
level [140].

B. Prevention

Various reliability problems experienced by scaled memory
technologies, if not carefully anticipated, accounted for, and
corrected, may surface as security problems as well, as in
the case of RowHammer. We believe it is critical to develop
principled methods to understand, anticipate, and prevent such
vulnerabilities. In particular, principled methods are required
for three major steps in the design process.

First, it is critical to understand the potential failure mecha-
nisms and anticipate them beforehand. To this end, developing
solid methodologies for failure modeling and prediction is
critical. To develop such methodologies, it is essential to
have real experimental data from past and present devices.
Data available both at the small scale (i.e., data obtained
via controlled testing of individual devices, as in, e.g., [42–
53, 57, 115, 125–127, 147, 161, 166–168, 195, 196]) as well
as at the large scale (i.e., data obtained during in-the-field
operation of the devices, under likely-uncontrolled conditions,
as in, e.g., [171, 172]) can enable accurate models for failures,
which could aid many purposes, including the development
of better reliability mechanisms and prediction of problems
before they occur.

Second, it is critical to develop principled architectural
methods that can avoid, tolerate, or prevent such failure mech-
anisms that can lead to vulnerabilities. For this, we advocate
co-architecting of the system and the memory together, as
we described earlier. Designing intelligent, flexible, config-
urable, programmable, patch-able memory controllers that can
understand and correct existing and potential failure mecha-
nisms can greatly alleviate the impact of failure mechanisms
on reliability, security, performance, and energy efficiency.
A system-memory co-design approach can also enable new
opportunities, like performing effective processing near or in
the memory device (e.g., [13–15, 18, 22, 24, 34–36, 56, 63,
72, 77, 78, 80, 91, 92, 95, 96, 99, 101–103, 112, 122–124,
153, 155, 156, 162, 163, 174, 180, 181, 184, 197, 200, 217–
221, 223, 224, 230, 259, 262]). In addition to designing the
memory device together with the controller, we believe it is
important to investigate mechanisms for good partitioning of
duties across the various levels of transformation in computing,

11



including system software, compilers, and application soft-
ware.

Third, it is critical to develop principled methods for elec-
tronic design, automation and testing, which are in harmony
with the failure modeling/prediction and system reliability
methods, which we mentioned in the above two paragraphs.
Design, automation and testing methods need to provide
high and predictable coverage of failures and work in con-
junction with architectural and across-stack mechanisms. For
example, enabling effective and low-cost online profiling of
DRAM [115–117, 151, 161, 196, 203] in a principled manner
requires cooperation of failure modeling mechanisms, archi-
tectural methods, and design, automation and testing methods.

V. CONCLUSION

We provided a retrospective on the RowHammer problem
and our original ISCA 2014 paper [133] that introduced
the problem, and a survey of many flourishing works that
have built on RowHammer. It is clear that the reliability of
memory technologies we greatly depend on is reducing, as
these technologies continue to scale to ever smaller technology
nodes in pursuit of higher densities. These reliability problems,
if not anticipated and corrected, can also open up serious
security vulnerabilities, which can be very difficult to defend
against, if they are discovered in the field. RowHammer is an
example, likely the first one, of a hardware failure mechanism
that causes a practical and widespread system security vulnera-
bility. As such, its implications on system security research are
tremendous and exciting. We hope the summary, retrospective,
and commentary we provide in this paper on the RowHammer
phenomenon are useful for understanding the RowHammer
problem, its context, mitigation mechanisms, and the large
body of work that has built on it in the past five years.

We believe that the need to prevent such reliability and
security vulnerabilities at heavily-scaled memory technologies
opens up new avenues for principled approaches to 1) under-
standing, modeling, and prediction of failures and vulnerabil-
ities, and 2) architectural as well as design, automation and
testing methods for ensuring reliable and secure operation. We
believe the future is very bright for research in reliable and
secure memory systems, and many discoveries abound in the
exciting yet complex intersection of reliability and security
issues in such systems.

ACKNOWLEDGMENTS

This paper is based on two previous papers we have written
on RowHammer, one that first scientifically introduced and
analyzed the phenomenon in ISCA 2014 [133] and the other
that provided an analysis and future outlook on RowHam-
mer [176]. The presented work is a result of the research
done together with many students and collaborators over the
course of the past eight years. In particular, three PhD theses
have shaped the understanding that led to this work. These
are Yoongu Kim’s thesis entitled ”Architectural Techniques
to Enhance DRAM Scaling” [132], Yu Cai’s thesis entitled
”NAND Flash Memory: Characterization, Analysis, Modeling

and Mechanisms” [49] and his continued follow-on work after
his thesis, summarized in [52, 53], and Donghyuk Lee’s thesis
entitled ”Reducing DRAM Latency at Low Cost by Exploiting
Heterogeneity” [145]. We also acknowledge various funding
agencies (NSF, SRC, ISTC, CyLab) and industrial partners
(AliBaba, AMD, Google, Facebook, HP Labs, Huawei, IBM,
Intel, Microsoft, Nvidia, Oracle, Qualcomm, Rambus, Sam-
sung, Seagate, VMware) who have supported the presented
and other related work in our group generously over the years.

The first version of the talk associated with this paper was
delivered at a CMU CyLab Partners Conference in September
2015. Other versions of the talk were delivered as part of
an Invited Session at DAC 2016, with a collaborative accom-
panying paper entitled ”Who Is the Major Threat to Tomor-
row’s Security? You, the Hardware Designer” [41], at DATE
2017 [176], and at the Top Picks in Hardware and Embedded
Security workshop, co-located with ICCAD 2018 [11], where
RowHammer was selected as a Top Pick among hardware and
embedded security papers published between 2012-2017. The
most recent version of the associated talk was delivered at
COSADE 2019 [179].

REFERENCES
[1] “RowHammer Discussion Group,” https://groups.google.com/forum/\#!forum/

rowhammer-discuss.
[2] “RowHammer on Twitter,” https://twitter.com/search?q=rowhammer.
[3] “Rowhammer: Source Code for Testing the Row Hammer Error Mechanism in

DRAM Devices.” https://github.com/CMU-SAFARI/rowhammer.
[4] “Test DRAM for Bit Flips Caused by the RowHammer Problem,” https://github.

com/google/rowhammer-test.
[5] “Tweet about RowHammer Mitigation on x210,” https://twitter.com/isislovecruft/

status/1021939922754723841.
[6] “RDMA Consortium,” http://www.rdmaconsortium.org, 2009.
[7] Hybrid Memory Consortium, 2012, http://www.hybridmemorycube.org.
[8] “apt-get Linux man page,” https://linux.die.net/man/8/apt-get, 2017.
[9] “ECC Brings Reliability and Power Efficiency to Mobile Devices,” Micron

Technology inc., Tech. Rep., 2017.
[10] “OpenSSH,” https://www.openssh.com/, 2017.
[11] “Top Picks in Hardware and Embedded Security - Workshop Collocated with

ICCAD 2018,” https://wp.nyu.edu/toppicksinhardwaresecurity/, 2017.
[12] M. T. Aga et al., “When Good Protections go Bad: Exploiting anti-DoS Measures

to Accelerate Rowhammer Attacks,” in HOST, 2017.
[13] S. Aga et al., “Compute caches,” in HPCA, 2017.
[14] J. Ahn et al., “A Scalable Processing-in-Memory Accelerator for Parallel Graph

Processing,” in ISCA, 2015.
[15] J. Ahn et al., “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware

Processing-in-Memory Architecture,” in ISCA, 2015.
[16] B. Aichinger, “The Known Failure Mechanism in DDR3 Memory re-

ferred to as Row Hammer,” http : / / ddrdetective . com / files / 6414 / 1036 /
5710/The Known Failure Mechanism in DDR3 memory referred to as Row
Hammer.pdf, September 2014.

[17] B. Aichinger, “DDR Memory Errors Caused by Row Hammer,” in HPEC, 2015.
[18] B. Akin et al., “Data Reorganization in Memory using 3D-stacked DRAM,” in

ISCA, 2015.
[19] Z. Al-Ars et al., “DRAM-Specific Space of Memory Tests,” in ITC, 2006.
[20] Z. Al-Ars, “DRAM Fault Analaysis and Test Generation,” Ph.D. dissertation, TU

Delft, 2005.
[21] Apple Inc., “About the security content of Mac EFI Security Update 2015-001,”

https://support.apple.com/en-us/HT204934, June 2015.
[22] H. Asghari-Moghaddam et al., “Chameleon: Versatile and Practical Near-DRAM

Acceleration Architecture for Large Memory Systems,” in MICRO, 2016.
[23] Z. B. Aweke et al., “Anvil: Software-based protection against next-generation

rowhammer attacks,” in ASPLOS, 2016.
[24] O. O. Babarinsa and S. Idreos, “JAFAR: Near-data Processing for Databases,” in

SIGMOD, 2015.
[25] K. Bains et al., “Row Hammer Refresh Command,” US Patent App. 14/068,677,

Feb. 27 2014.
[26] K. Bains et al., “Method, Apparatus and System for Providing a Memory Refresh,”

US Patent App. 13/625,741, Mar. 27 2014.
[27] K. Bains et al., “Row Hammer Refresh Command,” US Patent App. 13/539,415,

Jan. 2 2014.
[28] K. Bains and J. Halbert, “Distributed Row Hammer Tracking,” US Patent App.

13/631,781, Apr. 3 2014.

12



[29] K. Bains et al., “Row hammer refresh command,” U.S. Patent Number 9117544
B2, 2015.

[30] K. S. Bains and J. B. Halbert, “Row Hammer Monitoring Based on Stored Row
Hammer Threshold Value,” uS Patent 9,032,141. May 12 2015.

[31] A. Barenghi et al., “Software-only Reverse Engineering of Physical DRAM
Mappings for Rowhammer Attacks,” in IVSW, 2018.

[32] S. Bhattacharya and D. Mukhopadhyay, “Curious Case of RowHammer: Flipping
Secret Exponent Bits using Timing Analysis,” in CHES, 2016.

[33] S. Bhattacharya and D. Mukhopadhyay, “Advanced Fault Attacks in Software: Ex-
ploiting the Rowhammer Bug,” in Fault Tolerant Architectures for Cryptography
and Hardware Security, 2018.

[34] A. Boroumand et al., “LazyPIM: An Efficient Cache Coherence Mechanism for
Processing-in-Memory,” IEEE CAL, 2016.

[35] A. Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data
Movement Bottlenecks,” in ASPLOS, 2018.

[36] A. Boroumand et al., “CoNDA: Enabling Efficient Near-Data Accelerator Com-
munication by Optimizing Data Movement,” ISCA, 2019.

[37] E. Bosman et al., “Dedup Est Machina: Memory Deduplication as an Advanced
Exploitation Vector,” S&P, 2016.

[38] F. Brasser et al., “Can’t Touch This: Practical and Generic Software-only Defenses
Against RowHammer Attacks,” USENIX Sec., 2017.

[39] S. Brown, “Rowhammer: The Evolution of a New Generation of Attacks,” https:
//cyware.com/news/rowhammer- the-evolution-of-a-new-generation-of-attacks-
7baa0a3c, December 2018.

[40] L. Bu et al., “SRASA: a Generalized Theoretical Framework for Security and
Reliability Analysis in Computing Systems,” Journal of Hardware and Systems
Security, 2018.

[41] W. Burleson et al., “Who Is the Major Threat to Tomorrow’s Security? You, the
Hardware Designer,” DAC, 2016.

[42] Y. Cai et al., “Error Patterns in MLC NAND Flash Memory: Measurement,
Characterization, and Analysis,” in DATE, 2012.

[43] Y. Cai et al., “Flash Correct-and-Refresh: Retention-Aware Error Management for
Increased Flash Memory Lifetime,” in ICCD, 2012.

[44] Y. Cai et al., “Error Analysis and Retention-Aware Error Management for NAND
Flash Memory,” ITJ, 2013.

[45] Y. Cai et al., “Program Interference in MLC NAND Flash Memory: Characteri-
zation, Modeling, and Mitigation,” in ICCD, 2013.

[46] Y. Cai et al., “Threshold Voltage Distribution in MLC NAND Flash Memory:
Characterization, Analysis and Modeling,” in DATE, 2013.

[47] Y. Cai et al., “Neighbor-Cell Assisted Error Correction for MLC NAND Flash
Memories,” in SIGMETRICS, 2014.

[48] Y. Cai et al., “Vulnerabilities in MLC NAND Flash Memory Programming:
Experimental Analysis, Exploits, and Mitigation Techniques,” in HPCA, 2017.

[49] Y. Cai, “NAND flash memory: Characterization, Analysis, Modeling and Mech-
anisms,” Ph.D. dissertation, Carnegie Mellon University, 2012.

[50] Y. Cai et al., “Data Retention in MLC NAND Flash Memory: Characterization,
Optimization and Recovery,” in HPCA, 2015.

[51] Y. Cai et al., “Read Disturb Errors in MLC NAND Flash Memory: Characteriza-
tion, Mitigation, and Recovery,” in DSN, 2015.

[52] Y. Cai et al., “Error Characterization, Mitigation, and Recovery in Flash-memory-
based Solid-state Drives,” Proceedings of the IEEE, 2017.

[53] Y. Cai et al., “Errors in Flash-Memory-Based Solid-State Drives: Analysis,
Mitigation, and Recovery,” arXiv preprint arXiv:1711.11427, 2017.

[54] S. Carre et al., “OpenSSL Bellcore’s Protection Helps Fault Attack,” in DSD,
2018.

[55] K. Chandrasekar et al., “Exploiting Expendable Process-margins in DRAMs for
Run-time Performance Optimization,” in DATE, 2014.

[56] K. Chang et al., “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-
Subarray Data Movement in DRAM,” in HPCA, 2016.

[57] K. Chang et al., “Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization,” SIGMETRICS, 2016.

[58] K. Chang et al., “Understanding Reduced-Voltage Operation in Modern DRAM
Devices: Experimental Characterization, Analysis, and Mechanisms,” in SIGMET-
RICS, 2017.

[59] K. Chang et al., “Improving DRAM Performance by Parallelizing Refreshes with
Accesses,” in HPCA, 2014.

[60] M.-T. Chao et al., “Fault Models for Embedded-DRAM Macros,” in DAC, 2009.
[61] E. Chen et al., “Advances and Future Prospects of Spin-Transfer Torque Random

Access Memory,” IEEE Transactions on Magnetics, 2010.
[62] Q. Chen et al., “Modeling and Testing of SRAM for New Failure Mechanisms

Due to Process Variations in Nanoscale CMOS,” in VTS, 2005.
[63] P. Chi et al., “Prime: A Novel Processing-in-memory Architecture for Neural

Network Computation in Reram-based Main Memory,” in ISCA, 2016.
[64] P.-F. Chia et al., “New DRAM HCI Qualification Method Emphasizing on

Repeated Memory Access,” in Integrated Reliability Workshop, 2010.
[65] C. Cimpanu, “Rowhammer Attacks can now Bypass ECC Memory Protec-

tions,” https://www.zdnet.com/article/rowhammer-attacks-can-now-bypass-ecc-
memory-protections/, November 2018.

[66] L. Cojocar et al., “Exploiting Correcting Codes: On the Effectiveness of ECC
Memory Against RowHammer Attacks,” in S&P, 2019.

[67] J. Cooke, “The Inconvenient Truths of NAND Flash Memory,” in Flash Memory
Summit, 2007.

[68] J.-L. Danger et al., “CCFI-Cache: A Transparent and Flexible Hardware Protection

for Code and Control-Flow Integrity,” in DSD, 2018.
[69] A. Das et al., “VRL-DRAM: Improving DRAM Performance via Variable Refresh

Latency,” in DAC, 2018.
[70] Drammer App Source Code, https://github.com/vusec/drammer-app.
[71] Drammer Source Code, https://github.com/vusec/drammer.
[72] A. Farmahini-Farahani et al., “NDA: Near-DRAM Acceleration Architecture

Leveraging Commodity DRAM Devices and Standard Memory Modules,” in
HPCA, 2015.

[73] A. P. Fournaris et al., “Exploiting Hardware Vulnerabilities to Attack Embedded
System Devices: A Survey of Potent Microarchitectural Attacks,” Electronics,
2017.

[74] P. Francis-Mezger and V. M. Weaver, “A Raspberry Pi Operating System for
Exploring Advanced Memory System Concepts,” in Memsys, 2018.

[75] T. Fridley and O. Santos, “Mitigations Available for the DRAM Row Hammer
Vulnerability,” http://blogs.cisco.com/security/mitigations-available-for-the-dram-
row-hammer-vulnerability, March 2015.

[76] P. Frigo et al., “Grand Pwning Unit: Accelerating Microarchitectural Attacks with
the GPU,” IEEE S&P, 2018.

[77] M. Gao et al., “Practical Near-data Processing for in-memory Analytics Frame-
works,” in PACT, 2015.

[78] M. Gao and C. Kozyrakis, “HRL: Efficient and Flexible Reconfigurable Logic for
Near-data Processing,” in HPCA, 2016.

[79] S. Ghose et al., “What Your DRAM Power Models Are Not Telling You: Lessons
from a Detailed Experimental Study,” in SIGMETRICS, 2018.

[80] S. Ghose et al., “The Processing-in-Memory Paradigm: Mechanisms to Enable
Adoption,” Beyond-CMOS Technologies for Next Generation Computer Design,
2019.

[81] H. Gomez et al., “DRAM Row-hammer Attack Reduction using Dummy Cells,”
in NORCAS, 2016.

[82] S.-L. Gong, “Memory Protection Techniques for DRAM Scaling-induced Errors,”
Ph.D. dissertation, 2018.

[83] D. Goodin, “Cutting-edge hack gives super user status by exploiting DRAM
weakness,” https://arstechnica.com/information-technology/2015/03/cutting-edge-
hack-gives-super-user-status-by-exploiting-dram-weakness/, 2016.

[84] D. Goodin, “Once thought safe, DDR4 memory shown to be vulnerable to
Rowhammer,” https: / /arstechnica.com/information- technology/2016/03/once-
thought-safe-ddr4-memory-shown-to-be-vulnerable-to-rowhammer/, 2016.

[85] D. Goodin, “Using Rowhammer bitflips to root Android phones is now a thing,”
https : / / arstechnica . com / information - technology / 2016 / 10 / using - rowhammer-
bitflips-to-root-android-phones-is-now-a-thing/, 2016.

[86] A. Greenberg, “Forget Software – Now Hackers are Exploiting Physics,” https:
//www.wired.com/2016/08/new- form- hacking- breaks- ideas- computers- work/,
2016.

[87] Z. Greenfield et al., “Method, Apparatus and System for Determining a Count of
Accesses to a Row of Memory,” US Patent App. 13/626,479, Mar. 27 2014.

[88] Z. Greenfield et al., “Row Hammer Condition Monitoring,” US Patent
App. 13/539,417, Jan. 2, 2014.

[89] D. Gruss et al., “Another Flip in the Wall of Rowhammer Defenses,” IEEE S&P,
2018.

[90] D. Gruss et al., “Rowhammer.js: A remote software-induced fault attack in
javascript,” CoRR, vol. abs/1507.06955, 2015.

[91] B. Gu et al., “Biscuit: A Framework for Near-data Processing of Big Data
Workloads,” in ISCA, 2016.

[92] Q. Guo et al., “3D-stacked Memory-side Acceleration: Accelerator and System
Design,” in WoNDP, 2014.

[93] Z. Guo et al., “Large-Scale SRAM Variability Characterization in 45 nm CMOS,”
JSSC, 2009.

[94] R. Harris, “Flipping DRAM Bits - Maliciously,” http://www.zdnet.com/article/
flipping-dram-bits-maliciously/, December 2014.

[95] M. Hashemi et al., “Accelerating Dependent Cache Misses with an Enhanced
Memory Controller,” in ISCA, 2016.

[96] M. Hashemi et al., “Continuous Runahead: Transparent Hardware Acceleration
for Memory Intensive Workloads,” in MICRO, 2016.

[97] H. Hassan et al., “ChargeCache: Reducing DRAM Latency by Exploiting Row
Access Locality,” in HPCA, 2016.

[98] H. Hassan et al., “SoftMC: A Flexible and Practical Open-Source Infrastructure
for Enabling Experimental DRAM Studies,” in HPCA, 2017.

[99] S. M. Hassan et al., “Near Data Processing: Impact and Optimization of 3D
Memory System Architecture on the Uncore,” in Memsys, 2015.

[100] Hewlett-Packard Enterprise, “HP Moonshot Component Pack Version 2015.05.0,”
http : / / h17007 . www1 . hp . com / us / en / enterprise / servers / products / moonshot /
component-pack/index.aspx, 2015.

[101] K. Hsieh et al., “Accelerating Pointer Chasing in 3D-Stacked Memory: Chal-
lenges, Mechanisms, Evaluation,” ICCD, 2016.

[102] K. Hsieh et al., “Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU Systems,” ISCA, 2016.

[103] K. Hsieh et al., “Accelerating Pointer Chasing in 3D-stacked Memory: Challenges,
Mechanisms, Evaluation,” in ICCD, 2016.

[104] R.-F. Huang et al., “Alternate Hammering Test for Application-Specific DRAMs
and an Industrial Case Study,” in DAC, 2012.

[105] I. Ilascu, “ECC Memory Vulnerable to Rowhammer Attack,” https : / /www.
bleepingcomputer.com/news/security/ecc- memory- vulnerable- to- rowhammer-
attack/, November 2018.

13



[106] G. Irazoqui et al., “MASCAT: Stopping Microarchitectural Attacks Before Exe-
cution,” IACR Cryptology ePrint Archive, 2016.

[107] N. Izzo, “Reliably Achieving and Efficiently Preventing Rowhammer Attacks,”
Ph.D. dissertation, Politecnico Milano, 2017.

[108] Y. Jang et al., “SGX-Bomb: Locking Down the Processor via Rowhammer
Attack,” in SysTEX, 2017.

[109] JEDEC, “JESD235 High Bandwidth Memory (HBM) DRAM,” 2013.
[110] W. Jiang et al., “Cross-Track Noise Profile Measurement for Adjacent-Track

Interference Study and Write-Current Optimization in Perpendicular Recording,”
Journal of Applied Physics, 2003.

[111] A. K. Jones et al., “Holistic Energy Efficient Crosstalk Mitigation in DRAM,” in
IGSC, 2017.

[112] M. Kang et al., “An Energy-efficient VLSI Architecture for Pattern Recognition
via Deep Embedding of Computation in SRAM,” in ICASSP, 2014.

[113] U. Kang et al., “Co-Architecting Controllers and DRAM to Enhance DRAM
Process Scaling,” in The Memory Forum, 2014.

[114] C. Keller et al., “Dynamic Memory-based Physically Unclonable Function for the
Generation of Unique Identifiers and True Random Numbers,” in ISCAS, 2014.

[115] S. Khan et al., “The Efficacy of Error Mitigation Techniques for DRAM Retention
Failures: A Comparative Experimental Study,” SIGMETRICS, 2014.

[116] S. Khan et al., “A Case for Memory Content-Based Detection and Mitigation of
Data-Dependent Failures in DRAM,” CAL, 2016.

[117] S. Khan et al., “PARBOR: An Efficient System-Level Technique to Detect Data-
Dependent Failures in DRAM,” in DSN, 2016.

[118] S. Khan et al., “Detecting and Mitigating Data-Dependent DRAM Failures by
Exploiting Current Memory Content,” MICRO, 2017.

[119] S. Khandelwal, “NethammerExploiting DRAM Rowhammer Bug Through Net-
work Requests,” https://thehackernews.com/2018/05/remote-rowhammer-attack.
html, May 2018.

[120] D.-H. Kim et al., “Architectural Support for Mitigating Row Hammering in
DRAM Memories,” IEEE CAL, 2015.

[121] D. Kim et al., “Variation-Aware Static and Dynamic Writability Analysis for
Voltage-Scaled Bit-Interleaved 8-T SRAMs,” in ISLPED, 2011.

[122] D. Kim et al., “Neurocube: A Programmable Digital Neuromorphic Architecture
with High-density 3D Memory,” in ISCA, 2016.

[123] G. Kim et al., “Toward Standardized Near-data Processing with Unrestricted Data
Placement for GPUs,” in SC, 2017.

[124] J. S. Kim et al., “GRIM-Filter: Fast Seed Location Filtering in DNA Read
Mapping using Processing-in-memory Technologies,” BMC Genomics, 2018.

[125] J. S. Kim et al., “Solar-DRAM: Reducing DRAM Access Latency by Exploiting
the Variation in Local Bitlines,” in ICCD, 2018.

[126] J. S. Kim et al., “The DRAM Latency PUF: Quickly Evaluating Physical
Unclonable Functions by Exploiting the Latency-Reliability Tradeoff in Modern
Commodity DRAM Devices,” in HPCA, 2018.

[127] J. S. Kim et al., “D-RaNGe: Using Commodity DRAM Devices to Generate True
Random Numbers with Low Latency and High Throughput,” in HPCA, 2019.

[128] M. Kim et al., “An Effective DRAM Address Remapping for Mitigating Rowham-
mer Errors,” TC, 2019.

[129] Y. Kim et al., “A case for subarray-level parallelism (SALP) in DRAM,” in ISCA,
2012.

[130] Y. Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL,
2015.

[131] Y. Kim et al., “RowHammer: Reliability Analysis and Security Implications,”
ArXiV, 2016.

[132] Y. Kim, “Architectural Techniques to Enhance DRAM Scaling,” Ph.D. dissertation,
Carnegie Mellon University, 2015.

[133] Y. Kim et al., “Flipping Bits in Memory Without Accessing Them: An Experi-
mental Study of DRAM Disturbance Errors,” in ISCA, 2014.

[134] D. Kline et al., “Sustainable Fault Management and Error Correction for Next-
generation Main Memories,” in IGSC, 2017.

[135] K. C. Knowlton, “A Fast Storage Allocator,” Communications of the ACM, 1965.
[136] P. Kocher et al., “Spectre Attacks: Exploiting Speculative Execution,” S&P, 2018.
[137] R. K. Konoth et al., “ZebRAM: Comprehensive and Compatible Software

Protection Against Rowhammer Attacks,” in OSDI, 2018.
[138] E. Kultursay et al., “Evaluating STT-RAM as an energy-efficient main memory

alternative,” in ISPASS, 2013.
[139] M. Kumar, “New Rowhammer Attack Can Hijack Computers Remotely Over the

Network,” https://thehackernews.com/2018/05/rowhammer-attack-exploit.html,
May 2018.

[140] A. Kurmus et al., “From Random Block Corruption to Privilege Escalation: A
Filesystem Attack Vector for RowHammer-like Attacks,” in WOOT, 2017.

[141] M. Lanteigne, “How Rowhammer Could Be Used to Exploit Weaknesses in
Computer Hardware,” http://www.thirdio.com/rowhammer.pdf, March 2016.

[142] B. C. Lee et al., “Architecting Phase Change Memory as a Scalable DRAM
Alternative,” in ISCA, 2009.

[143] B. C. Lee et al., “Phase Change Memory Architecture and the Quest for
Scalability,” CACM, 2010.

[144] B. C. Lee et al., “Phase Change Technology and the Future of Main Memory,”
MICRO, 2010.

[145] D. Lee, “Reducing DRAM Latency by Exploiting Heterogeneity,” ArXiV, 2016.
[146] D. Lee et al., “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM

Architecture,” in HPCA, 2013.
[147] D. Lee et al., “Adaptive-Latency DRAM: Optimizing DRAM Timing for the

Common-Case,” in HPCA, 2015.
[148] D. Lee et al., “Reducing DRAM Latency by Exploiting Design-Induced Latency

Variation in Modern DRAM Chips,” ArXiV, 2016.
[149] D. Lee et al., “Decoupled Direct Memory Access: Isolating CPU and IO Traffic

by Leveraging a Dual-Data-Port DRAM,” in PACT, 2015.
[150] D. Lee et al., “Simultaneous Multi-Layer Access: Improving 3D-Stacked Memory

Bandwidth at Low Cost,” TACO, 2016.
[151] D. Lee et al., “Design-induced Latency Variation in Modern DRAM Chips:

Characterization, Analysis, and Latency Reduction Mechanisms,” POMACS, 2017.
[152] E. Lee et al., “TWiCe: Time Window Counter Based Row Refresh to Prevent

Row-Hammering,” CAL, 2018.
[153] J. H. Lee et al., “BSSync: Processing Near Memory for Machine Learning

Workloads with Bounded Staleness Consistency Models,” in PACT, 2015.
[154] Lenovo, “Row Hammer Privilege Escalation,” https://support.lenovo.com/us/en/

product security/row hammer, March 2015.
[155] S. Li et al., “Drisa: A DRAM-based Reconfigurable in-situ Accelerator,” in

MICRO, 2017.
[156] S. Li et al., “Pinatubo: A Processing-in-Memory Architecture for Bulk Bitwise

Operations in Emerging Non-Volatile Memories,” in DAC, 2016.
[157] C. Lim et al., “Active Precharge Hammering to Monitor Displacement Damage

Using High-Energy Protons in 3x-nm SDRAM,” IEEE Transactions on Nuclear
Science, 2017.

[158] M. Lipp et al., “Nethammer: Inducing Rowhammer Faults through Network
Requests,” arxiv.org, 2018.

[159] M. Lipp et al., “Meltdown: Reading Kernel Memory from User Space,” in
USENIX Security, 2018.

[160] J. Liu et al., “RAIDR: Retention-aware intelligent DRAM refresh,” ISCA, 2012.
[161] J. Liu et al., “An Experimental Study of Data Retention Behavior in Modern

DRAM Devices: Implications for Retention Time Profiling Mechanisms,” ISCA,
2013.

[162] Z. Liu et al., “Concurrent Data Structures for Near-memory Computing,” in SPAA,
2017.

[163] G. H. Loh et al., “A Processing in Memory Taxonomy and a Case for Studying
Fixed-function PIM,” in WoNDP, 2013.

[164] Y. Luo et al., “WARM: Improving NAND Flash Memory Lifetime with Write-
hotness Aware Retention Management,” MSST, 2015.

[165] Y. Luo et al., “Characterizing Application Memory Error Vulnerability to Optimize
Data Center Cost via Heterogeneous-Reliability Memory,” DSN, 2014.

[166] Y. Luo et al., “Enabling Accurate and Practical Online Flash Channel Modeling
for Modern MLC NAND Flash Memory,” JSAC, 2016.

[167] Y. Luo et al., “HeatWatch: Improving 3D NAND Flash Memory Device Reliability
by Exploiting Self-Recovery and Temperature Awareness,” in HPCA, 2018.

[168] Y. Luo et al., “Improving 3D NAND Flash Memory Lifetime by Tolerating Early
Retention Loss and Process Variation,” POMACS, 2018.

[169] J. Mandelman et al., “Challenges and Future Directions for the Scaling of
Dynamic Random-Access Memory (DRAM),” IBM Journal of Research and
Development, 2002.

[170] J. Meza et al., “A Case for Efficient Hardware-Software Cooperative Management
of Storage and Memory,” in WEED, 2013.

[171] J. Meza et al., “A Large-Scale Study of Flash Memory Errors in the Field,” in
SIGMETRICS, 2015.

[172] J. Meza et al., “Revisiting Memory Errors in Large-Scale Production Data Centers:
Analysis and Modeling of New Trends from the Field,” DSN, 2015.

[173] D.-S. Min et al., “Wordline Coupling Noise Reduction Techniques for Scaled
DRAMs,” in Symposium on VLSI Circuits, 1990.

[174] A. Morad et al., “GP-SIMD Processing-in-memory,” TACO, 2015.
[175] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” IMW, 2013.
[176] O. Mutlu, “The RowHammer Problem and Other Issues we may Face as Memory

Becomes Denser,” DATE, 2017.
[177] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in MemCon,

2013.
[178] O. Mutlu, “Error Analysis and Management for MLC NAND Flash Memory,” in

Flash Memory Summit, 2014.
[179] O. Mutlu, “RowHammer and Beyond,” in COSADE, 2019.
[180] O. Mutlu et al., “Enabling Practical Processing in and near Memory for Data-

Intensive Computing,” DAC, 2019.
[181] O. Mutlu et al., “Processing Data Where It Makes Sense: Enabling In-Memory

Computation,” MICPRO, 2019.
[182] O. Mutlu et al., “The Main Memory System: Challenges and Opportunities,”

Communications of the KIISE, 2015.
[183] O. Mutlu and L. Subramanian, “Research Problems and Opportunities in Memory

Systems,” SUPERFRI, 2014.
[184] L. Nai et al., “GraphPIM: Enabling Instruction-level Pim Offloading in Graph

Computing Frameworks,” in HPCA, 2017.
[185] P. Nair et al., “A Case for Refresh Pausing in DRAM Memory Systems,” in

HPCA, 2013.
[186] P. J. Nair et al., “XED: Exposing On-Die Error Detection Information for Strong

Memory Reliability,” in ISCA, 2016.
[187] E. Nashilov, “Scientists have made the Rowhammer more Dangerous,” https://

threatpost.ru/dutch-researchers-made-rowhammer-even-more-dangerous/29378/
?es p=8358650, November 2018.

[188] L. H. Newman, “An Ingenious Data Hack is more Dangerous than Anyone
Feared,” https : / /www.wired.com/story/ rowhammer- ecc- memory- data- hack/,

14



November 2018.
[189] S. Nichols, “3 is the Magic Number (of Bits): Flip ’em at Once and Your ECC

Protection can be Rowhammer’d,” https://www.theregister.co.uk/2018/11/21/
rowhammer ecc server protection/, November 2018.

[190] S. Oh and J. Kim, “Reliable Rowhammer Attack and Mitigation Based on Reverse
Engineering Memory Address Mapping Algorithms,” in WISA, 2018.

[191] T.-Y. Oh et al., “A 3.2Gbps/pin 8Gb 1.0V LPDDR4 SDRAM with Integrated
ECC Engine for sub-1V DRAM Core Operation,” in ISSCC, 2014.

[192] K. Park et al., “Experiments and Root Cause Analysis for Active-precharge
Hammering Fault in DDR3 SDRAM under 3× nm Technology,” Microelectronics
Reliability, 2016.

[193] K. Park et al., “Statistical Distributions of Row-hammering Induced Failures in
DDR3 Components,” Microelectronics Reliability, 2016.

[194] PassMark Software, “MemTest86: The Original Industry Standard Memory Di-
agnostic Utility,” http://www.memtest86.com/troubleshooting.htm, 2015.

[195] M. Patel et al., “Understanding and Modeling On-Die Error Correction in Modern
DRAM: An Experimental Study Using Real Devices,” in DSN, 2019.

[196] M. Patel et al., “The Reach Profiler (REAPER): Enabling the Mitigation of DRAM
Retention Failures via Profiling at Aggressive Conditions,” ISCA, 2017.

[197] A. Pattnaik et al., “Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities,” PACT, 2016.

[198] P. Pessl et al., “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks,”
in USENIX Security, 2016.

[199] D. Poddebniak et al., “Attacking Deterministic Signature Schemes using Fault
Attacks,” in EuroS&P, 2018.

[200] S. H. Pugsley et al., “NDC: Analyzing the Impact of 3D-stacked Memory+ Logic
Devices on MapReduce Workloads,” in ISPASS, 2014.

[201] R. Qiao and M. Seaborn, “A New Approach for Rowhammer Attacks,” in HOST,
2016.

[202] M. K. Qureshi et al., “Scalable high performance main memory system using
phase-change memory technology,” in ISCA, 2009.

[203] M. K. Qureshi et al., “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh
for DRAM Systems,” in DSN, 2015.

[204] M. K. Qureshi et al., “Enhancing Lifetime and Security of Phase Change
Memories via Start-Gap Wear Leveling,” in MICRO, 2009.

[205] A. Rahmati et al., “Probable Cause: The Deanonymizing Effects of Approximate
DRAM,” in ISCA, 2016.

[206] S. Raoux et al., “Phase-change Random Access Memory: A Scalable Technology,”
IBM Journal of Research and Development, 2008.

[207] K. Razavi et al., “Flip Feng Shui: Hammering a Needle in the Software Stack,”
USENIX Security, 2016.

[208] M. Redeker et al., “An Investigation into Crosstalk Noise in DRAM Structures,”
in MTDT, 2002.

[209] P. J. Restle et al., “DRAM Variable Retention Time,” ser. IEDM, 1992.
[210] S.-W. Ryu et al., “Overcoming the Reliability Limitation in the Ultimately Scaled

DRAM using Silicon Migration Technique by Hydrogen Annealing,” in IEDM,
2017.

[211] J. Sanders, “Every Android Device from the Last 6 Years may be at Risk to
RAMPage Vulnerability,” https://www.techrepublic.com/article/every- android-
device- from- the- last- 6- years- may- be- at- risk- to- rampage- vulnerability/, June
2018.

[212] A. Schaller et al., “Intrinsic Rowhammer PUFs: Leveraging the Rowhammer
Effect for Improved Security,” in HOST, 2017.

[213] R. Schilling et al., “Pointing in the Right Direction-Securing Memory Accesses
in a Faulty World,” in ACSAC, 2018.

[214] B. Schroeder et al., “Flash Reliability in Production: The Expected and the
Unexpected,” in USENIX FAST, 2016.

[215] M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer Bug to Gain
Kernel Privileges,” http://googleprojectzero.blogspot.com.tr/2015/03/exploiting-
dram-rowhammer-bug-to-gain.html, 2015.

[216] M. Seaborn and T. Dullien, “Exploiting the DRAM RowHammer Bug to Gain
Kernel Privileges,” BlackHat, 2016.

[217] V. Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and Initializa-
tion of Bulk Data,” in MICRO, 2013.

[218] V. Seshadri et al., “Gather-Scatter DRAM: In-DRAM Address Translation to
Improve the Spatial Locality of Non-unit Strided Accesses,” in MICRO, 2015.

[219] V. Seshadri et al., “Fast Bulk Bitwise AND and OR in DRAM,” CAL, 2015.
[220] V. Seshadri et al., “Ambit: In-memory Accelerator for Bulk Bitwise Operations

using Commodity DRAM Technology,” in MICRO, 2017.
[221] V. Seshadri and O. Mutlu, “Simple Operations in Memory to Reduce Data

Movement,” in Advances in Computers, 2017.
[222] S. M. Seyedzadeh et al., “Counter-based Tree Structure for Row Hammering

Mitigation in DRAM,” CAL, 2017.
[223] A. Shafiee et al., “ISAAC: A Convolutional Neural Network Accelerator with

in-situ Analog Arithmetic in Crossbars,” ISCA, 2016.
[224] G. Singh et al., “NAPEL: Near-Memory Computing Application Performance

Prediction via Ensemble Learning,” DAC, 2019.
[225] SoftMC Source Code, https://github.com/CMU-SAFARI/SoftMC.
[226] M. Son et al., “Making DRAM Stronger Against Row Hammering,” in DAC,

2017.
[227] V. Sridharan et al., “Memory Errors in Modern Systems: The Good, The Bad,

and The Ugly,” in ASPLOS, 2015.
[228] V. Sridharan and D. Liberty, “A Study of DRAM Failures in the Field,” in SC,

2012.
[229] V. Sridharan et al., “Feng Shui of Supercomputer Memory: Positional Effects in

DRAM and SRAM Faults,” in SC, 2013.
[230] Z. Sura et al., “Data Access Optimization in a Processing-in-memory System,”

in CF, 2015.
[231] S. Sutar et al., “D-PUF: An Intrinsically Reconfigurable DRAM PUF for Device

Authentication and Random Number Generation,” in TECS, 2018.
[232] S. Sutar et al., “D-PUF: An Intrinsically Reconfigurable DRAM PUF for Device

Authentication in Embedded Systems,” in CASES, 2016.
[233] Q. Tang et al., “A DRAM Based Physical Unclonable Function Capable of

Generating > 1032 Challenge Response Pairs per 1Kbit Array for Secure Chip
Authentication,” in CICC, 2017.

[234] Y. Tang et al., “Understanding Adjacent Track Erasure in Discrete Track Media,”
Transactions on Magnetics, 2008.

[235] A. Tatar et al., “Throwhammer: Rowhammer Attacks over the Network and
Defenses,” USENIX ATC, 2018.

[236] A. Tatar et al., “Defeating Software Mitigations Against Rowhammer: A Surgical
Precision Hammer,” in RAID, 2018.

[237] F. Tehranipoor et al., “DRAM Based Intrinsic Physical Unclonable Functions for
System Level Security,” in GLVLSI, 2015.

[238] F. Tehranipoor et al., “Investigation of DRAM PUFs Reliability Under Device
Accelerated Aging Effects,” in ISCAS, 2017.

[239] L. Tung, “’Rowhammer’ DRAM Flaw could be Widespread, says Google,”
https:/ /www.zdnet.com/article/rowhammer- dram- flaw- could- be- widespread-
says-google/, March 2015.

[240] L. Tung, “Android Alert: This New Type of Rowhammer GPU Attack can Hijack
your Phone Remotely,” https://www.zdnet.com/article/android-alert- this-new-
type-of-rowhammer-gpu-attack-can-hijack-your-phone-remotely/, May 2018.

[241] V. van der Veen et al., “Drammer: Deterministic Rowhammer Attacks on Mobile
Platforms,” CCS, 2016.

[242] V. van der Veen et al., “GuardION: Practical Mitigation of DMA-Based Rowham-
mer Attacks on ARM,” in DIMVA, 2018.

[243] S. Vig et al., “Rapid Detection of Rowhammer Attacks using Dynamic Skewed
Hash Tree,” in HASP, 2018.

[244] P. Vila et al., “Theory and Practice of Finding Eviction Sets,” S&P, 2019.
[245] Y. Wang et al., “Detect DRAM Disturbance Error by Using Disturbance Bin

Counters,” CAL, 2019.
[246] Wikipedia, “Row hammer,” https://en.wikipedia.org/wiki/Row hammer.
[247] H.-S. P. Wong et al., “Phase Change Memory,” Proceedings of the IEEE, 2010.
[248] H.-S. P. Wong et al., “Metal-Oxide RRAM,” in Proceedings of the IEEE, 2012.
[249] R. Wood et al., “The Feasibility of Magnetic Recording at 10 Terabits Per Square

Inch on Conventional Media,” Transactions on Magnetics, 2009.
[250] X.-C. Wu et al., “Protecting Page Tables from RowHammer Attacks using

Monotonic Pointers in DRAM True-Cells,” ASPLOS, 2019.
[251] Y. Xiao et al., “One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks

and Privilege Escalation,” USENIX Sec., 2016.
[252] W. Xiong et al., “Run-time Accessible DRAM PUFs in Commodity Devices,” in

CHES, 2016.
[253] D. Yaney et al., “A Meta-stable Leakage Phenomenon in DRAM Charge Storage

- Variable Hold Time,” ser. IEDM, 1987.
[254] T. Yang and X.-W. Lin, “Trap-assisted DRAM Row Hammer Effect,” EDL, 2019.
[255] H. Yoon et al., “Row Buffer Locality Aware Caching Policies for Hybrid

Memories,” in ICCD, 2012.
[256] H. Yoon et al., “Efficient Data Mapping and Buffering Techniques for Multi-Level

Cell Phase-Change Memories,” TACO, 2014.
[257] D. Yun et al., “Study of TID Effects on One Row Hammering using Gamma in

DDR4 SDRAMs,” in IRPS, 2018.
[258] S. Zeitouni et al., “It’s Hammer Time: How to Attack (Rowhammer-based)

DRAM-PUFs,” in DAC, 2018.
[259] D. Zhang et al., “TOP-PIM: Throughput-oriented Programmable Processing in

Memory,” in HPDC, 2014.
[260] Z. Zhang et al., “Triggering Rowhammer Hardware Faults on ARM: A Revisit,”

in ASHES, 2018.
[261] P. Zhou et al., “A Durable and Energy Efficient Main Memory using Phase Change

Memory Technology,” in ISCA, 2009.
[262] Q. Zhu et al., “Accelerating Sparse Matrix-matrix Multiplication with 3D-stacked

Logic-in-memory Hardware,” in HPEC, 2013.

Onur Mutlu is a Professor of Com-
puter Science at ETH Zurich. He is also
a faculty member at Carnegie Mellon
University, where he previously held the
Strecker Early Career Professorship. His
current broader research interests are in
computer architecture, systems, hardware
security, and bioinformatics. A variety
of techniques he, along with his group
and collaborators, has invented over the

years have influenced industry and have been employed in

15



commercial microprocessors and memory/storage systems. He
obtained his PhD and MS in ECE from the University of
Texas at Austin and BS degrees in Computer Engineering
and Psychology from the University of Michigan, Ann Arbor.
He started the Computer Architecture Group at Microsoft
Research (2006-2009), and held various product and research
positions at Intel Corporation, Advanced Micro Devices,
VMware, and Google. He received the inaugural IEEE Com-
puter Society Young Computer Architect Award, the inaugural
Intel Early Career Faculty Award, US National Science Foun-
dation CAREER Award, Carnegie Mellon University Ladd
Research Award, faculty partnership awards from various
companies, and a healthy number of best paper or ”Top Pick”
paper recognitions at various computer systems, architecture,
and hardware security venues. He is an ACM Fellow ”for
contributions to computer architecture research, especially in
memory systems”, IEEE Fellow for ”contributions to computer
architecture research and practice”, and an elected member of
the Academy of Europe (Academia Europaea). His computer
architecture and digital circuit design course lectures and
materials are freely available on YouTube, and his research
group makes a wide variety of software and hardware artifacts
freely available online. For more information, please see his
webpage at https://people.inf.ethz.ch/omutlu/.

Jeremie S. Kim received the BS and
MS degrees in Electrical and Computer
Engineering from Carnegie Mellon Uni-
versity in Pittsburgh, Pennsylvania, in
2015. He is currently working on his
PhD with Onur Mutlu at Carnegie Mellon
University and ETH Zurich. His current
research interests are in computer archi-
tecture, memory latency/power/reliability,

hardware security, and bioinformatics, and he has several
publications on these topics.

16

View publication stats

https://www.researchgate.net/publication/332946042

