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Abstract

Motivation: We introduce SneakySnake, a highly parallel and highly accurate pre-alignment filter that remarkably
reduces the need for computationally costly sequence alignment. The key idea of SneakySnake is to reduce the ap-
proximate string matching (ASM) problem to the single net routing (SNR) problem in VLSI chip layout. In the SNR
problem, we are interested in finding the optimal path that connects two terminals with the least routing cost on a
special grid layout that contains obstacles. The SneakySnake algorithm quickly solves the SNR problem and uses
the found optimal path to decide whether or not performing sequence alignment is necessary. Reducing the ASM
problem into SNR also makes SneakySnake efficient to implement on CPUs, GPUs and FPGAs.

Results: SneakySnake significantly improves the accuracy of pre-alignment filtering by up to four orders of magni-
tude compared to the state-of-the-art pre-alignment filters, Shouji, GateKeeper and SHD. For short sequences,
SneakySnake accelerates Edlib (state-of-the-art implementation of Myers’s bit-vector algorithm) and Parasail (state-
of-the-art sequence aligner with a configurable scoring function), by up to 37.7� and 43.9� (>12� on average), re-
spectively, with its CPU implementation, and by up to 413� and 689� (>400� on average), respectively, with FPGA
and GPU acceleration. For long sequences, the CPU implementation of SneakySnake accelerates Parasail and KSW2
(sequence aligner of minimap2) by up to 979� (276.9� on average) and 91.7� (31.7� on average), respectively. As
SneakySnake does not replace sequence alignment, users can still obtain all capabilities (e.g. configurable scoring
functions) of the aligner of their choice, unlike existing acceleration efforts that sacrifice some aligner capabilities.

Availabilityand implementation: https://github.com/CMU-SAFARI/SneakySnake.

Contact: alserm@ethz.ch or calkan@cs.bilkent.edu.tr or omutlu@ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

One of the most fundamental computational steps in most genomic
analyses is sequence alignment (Alser et al., 2020b; Senol Cali et al.,
2019). This step is formulated as an ASM problem (Navarro, 2001)
and it calculates: (i) edit distance between two given sequences, (ii)
type of each edit (i.e. insertion, deletion or substitution) and (iii) lo-
cation of each edit in one of the two given sequences. Edit distance
is defined as the minimum number of edits needed to convert one se-
quence into the other (Levenshtein, 1966). These edits result from
both sequencing errors (Firtina et al., 2020) and genetic variations
(Consortium et al., 2015). Edits can have different weights, based
on a user-defined scoring function, to allow favoring one edit type
over another (Wang et al., 2011). Sequence alignment involves a

backtracking step, which calculates an ordered list of characters rep-
resenting the location and type of each possible edit operation
required to change one of the two given sequences into the other. As
any two sequences can have several different arrangements of the
edit operations, we need to examine all possible prefixes of the two
input sequences and keep track of the pairs of prefixes that provide
a minimum edit distance. Therefore, sequence alignment approaches
are typically implemented as dynamic programming (DP) algorithms
to avoid re-examining the same prefixes many times (Alser et al.,
2020b; Eddy, 2004). DP-based sequence alignment algorithms, such
as Needleman-Wunsch (Needleman and Wunsch, 1970), are compu-
tationally expensive as they have quadratic time and space complex-
ity [i.e. O(m2) for a sequence length of m]. Many attempts were
made to boost the performance of existing sequence aligners. Recent

VC The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 5282

Bioinformatics, 36(22-23), 2020, 5282–5290

doi: 10.1093/bioinformatics/btaa1015

Advance Access Publication Date: 26 December 2020

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/22-23/5282/6033580 by guest on 16 January 2023

http://orcid.org/0000-0002-6117-3701
https://github.com/CMU-SAFARI/SneakySnake
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1015#supplementary-data
https://academic.oup.com/


attempts tend to follow one of two key directions, as we comprehen-
sively survey in (Alser et al., 2020a): (i) Accelerating the DP algo-
rithms using hardware accelerators and (ii) Developing pre-
alignment filtering heuristics that reduce the need for the DP algo-
rithms, given an edit distance threshold.

Hardware accelerators include building aligners that use (i)
multi-core and SIMD (single instruction multiple data) capable cen-
tral processing units (CPUs), such as Parasail (Daily, 2016). The
classical DP algorithms can also be accelerated by calculating a bit
representation of the DP matrix and processing its bit-vectors in par-
allel, such as Myers’s bit-vector algorithm (Myers, 1999). To our
knowledge, Edlib (�So�si�c and �Siki�c, 2017) is currently the best-
performing implementation of Myers’s bit-vector algorithm. Other
hardware accelerators include (ii) graphics processing units (GPUs),
such as GSWABE (Liu and Schmidt, 2015), (iii) field-programmable
gate arrays (FPGAs), such as FPGASW (Fei et al., 2018) or (iv)
processing-in-memory architectures that enable performing compu-
tations inside the memory chip and alleviate the need for transfer-
ring the data to the CPU cores, such as GenASM (Senol Cali et al.,
2020). However, many of these efforts either simplify the scoring
function as in Edlib, or only take into account accelerating the com-
putation of the DP matrix without performing the backtracking step
as in (Chen et al., 2014). Different and more sophisticated scoring
functions are typically needed to better quantify the similarity be-
tween two sequences (Wang et al., 2011). The backtracking step
involves unpredictable and irregular memory access patterns, which
pose a difficult challenge for efficient hardware implementation.

Pre-alignment filtering heuristics aim to quickly eliminate some
of the dissimilar sequences before using the computationally expen-
sive optimal alignment algorithms. Existing pre-alignment filtering
techniques are either: (i) slow and they suffer from a limited se-
quence length (� 128 bp), such as SHD (Xin et al., 2015), or (ii) in-
accurate after some edit distance threshold, such as GateKeeper
(Alser et al., 2017a) and MAGNET (Alser et al., 2017b). Highly
parallel filtering can also be achieved using processing-in-memory
architectures, as in GRIM-Filter (Kim et al., 2018). Shouji (Alser
et al., 2019) is currently the best-performing FPGA pre-alignment
filter in terms of both accuracy and execution time.

Our goal in this work is to significantly reduce the time spent on
calculating the sequence alignment of both short and long sequences
using very fast and accurate pre-alignment filtering. To this end, we
introduce SneakySnake, a highly parallel and highly accurate pre-
alignment filter that works on modern high-performance computing
architectures such as CPUs, GPUs and FPGAs. The key idea of
SneakySnake is to provide a highly accurate pre-alignment filtering
algorithm by reducing the ASM problem to the single net routing
(SNR) problem (Lee et al., 1976). The SNR problem is to find the
shortest routing path that interconnects two terminals on the boun-
daries of VLSI chip layout while passing through the minimum num-
ber of obstacles. Solving the SNR problem is faster than solving the
ASM problem, as calculating the routing path after facing an obs-
tacle is independent of the calculated path before this obstacle. This
provides two key benefits. (i) It obviates the need for using computa-
tionally costly DP algorithms to keep track of the subpath that pro-
vides the optimal solution (i.e. the one with the least possible
routing cost). (ii) The independence of the subpaths allows for solv-
ing many SNR subproblems in parallel by judiciously leveraging the
parallelism-friendly architecture of modern FPGAs and GPUs to
greatly speed up the SneakySnake algorithm.

The contributions of this paper are as follows:

• We introduce SneakySnake, the fastest and most accurate pre-

alignment filtering mechanism to date that greatly enables the

speeding up of genome sequence alignment while preserving its

accuracy. We demonstrate that the SneakySnake algorithm is (i)

correct and optimal in solving the SNR problem and (ii) it runs

in linear time with respect to sequence length and edit distance

threshold.

• We demonstrate that the SneakySnake algorithm significantly

improves the accuracy of pre-alignment filtering by up to four

orders of magnitude compared to Shouji, GateKeeper and SHD.
• We provide, to our knowledge, the first universal pre-alignment

filter for CPUs, GPUs and FPGAs, by having software as well as

software/hardware co-designed versions of SneakySnake.
• We demonstrate, using short sequences, that SneakySnake accel-

erates Edlib and Parasail by up to 37.7� and 43.9� (>12� on

average), respectively, with its CPU implementation, and by up

to 413� and 689� (>400� on average), respectively, with

FPGA and GPU acceleration. We also demonstrate, using long

sequences, that SneakySnake accelerates Parasail by up to 979�
(276.9� on average).

• We demonstrate that the CPU implementation of SneakySnake

accelerates the sequence alignment of minimap2 (Li, 2018), a

state-of-the-art read mapper, by up to 6.83� and 91.7� using

short and long sequences, respectively.

2 Materials and methods

2.1 Overview
The primary purpose of SneakySnake is to accelerate sequence align-
ment calculation by providing fast and accurate pre-alignment filter-
ing. The SneakySnake algorithm quickly examines each sequence
pair before applying sequence alignment and decides whether com-
putationally expensive sequence alignment is needed for two genom-
ic sequences. This filtering decision of the SneakySnake algorithm is
made based on accurately estimating the number of edits between
two given sequences. If two genomic sequences differ by more than
the edit distance threshold, then the two sequences are identified as
dissimilar sequences and hence identifying the location and the type
of each edit is not needed. The edit distance estimated by the
SneakySnake algorithm should always be less than or equal to the
actual edit distance value so that SneakySnake ensures reliable and
lossless filtering (preserving all similar sequences). To reliably esti-
mate the edit distance between two sequences, we reduce the ASM
problem to the SNR problem. That is, instead of calculating the se-
quence alignment, the SneakySnake algorithm finds the routing path
that interconnects two terminals while passing through the min-
imum number of obstacles on a VLSI chip. The number of obstacles
faced throughout the found routing path represents a lower bound
on the edit distance between two sequences (Theorem 2, Section
2.4) and hence this number of obstacles can be used for the reliable
filtering decision of SneakySnake. SneakySnake treats all obstacles
(edits) faced along a path equally (i.e. it does not favor one type of
edits over the others). This eliminates the need for examining differ-
ent possible arrangements of the edit operations, as in DP-based
algorithms, and makes solving the SNR problem easier and faster
than solving the ASM problem. However, users can still configure
the aligner of their choice for their desired scoring function.

2.2 Single net routing (SNR) problem
The SNR problem in VLSI chip layout refers to the problem of opti-
mally interconnecting two terminals on a grid graph while respect-
ing constraints. We present an example of a VLSI chip layout in
Figure 1. The goal is to find the optimal path—called signal net—
that connects the source and destination terminals through the chip
layout. We describe the special grid graph of the SNR problem and
define the optimal signal net as follows:

• The chip layout has two layers of evenly spaced metal routing

tracks. While the first layer allows traversing the chip horizontal-

ly through dedicated horizontal routing tracks (HRTs), the se-

cond layer allows traversing the chip vertically using dedicated

vertical routing tracks (VRTs).
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• The horizontal and vertical routing tracks induce a two dimen-

sional uniform grid over the chip layout. Each HRT can be

obstructed by some obstacles (e.g. processing elements in the

chip). For simplicity, we assume that VRTs cannot be obstructed

by obstacles. These obstacles allow the signal to pass horizontal-

ly through HRTs, but they induce a signal delay on the passed

signal. Each obstacle induces a fixed propagation delay, tobstacle,

on the victim signal that passes through the obstacle in the corre-

sponding HRT.
• A signal net often uses a sequence of alternating horizontal and

vertical segments that are parts of the routing tracks. Adjacent

horizontal and vertical segments in the signal net are connected

by an inter-layer via. We call a signal net optimal if it is both the

shortest and the fastest routing path (i.e. passes through the min-

imum number of obstacles).
• Alternating between horizontal and vertical segments is restricted

by passing a single obstacle. Thus, segment alternating strictly

delays the signal by tobstacle time.
• The terminals can be any of the I/O pads that are located on the

right-hand and left-hand boundaries of the chip layout. The

source terminal always lies on the opposite side of the destination

terminal.

The general goal of this SNR problem is to find an optimal signal
net in the grid graph of the chip layout. For the simplicity of devel-
oping a solution, we call a horizontal segment that ends with at
most an obstacle an escape segment. The escape segment can also be
a single obstacle only. Also for simplicity, we call the right-hand side
of an escape segment a checkpoint. Next, we present how we can re-
duce the ASM problem to the SNR problem.

2.3 Reducing the ASM problem to the SNR problem
We reduce the problem of finding the similarities and differences
between two genomic sequences to that of finding the optimal sig-
nal net in a VLSI chip layout. Reducing the ASM problem to the
SNR problem requires two key steps: (i) replacing the DP table
used by the sequence alignment algorithm to a special grid graph
called chip maze and (ii) finding the number of differences between
two genomic sequences in the chip maze by solving the SNR prob-
lem. We replace the ðmþ 1Þ � ðmþ 1Þ DP table with our chip
maze, Z, where m is the sequence length (for simplicity, we assume
that we have a pair of equal-length sequences but we relax this as-
sumption in Section 2.4). The chip maze is a ð2Eþ 1Þ �m grid
graph, where E is the edit distance threshold in terms of the num-
ber of tolerable character differences, ð2Eþ 1Þ is the number of
HRTs, and m is the number of VRTs. The chip maze is an abstract

layout for the VLSI chip layout, as we show in Figure 2b for the
same chip layout of Figure 1. Each entry of the chip maze repre-
sents the pairwise comparison result of a character of one sequence
with another character of the other sequence. A pairwise mismatch
is represented by an obstacle (an entry of value ’1’) in the chip
maze and a pairwise match is represented by an available path (an
entry of value ’0’) in its corresponding HRT. Given two genomic
sequences, a reference sequence R½1 . . . m� and a query sequence
Q½1 . . . m�, and an edit distance threshold E, we calculate the entry
Z½i; j� of the chip maze, where 1 � i � ð2Eþ 1Þ and 1 � j � m,
as follows:

Z½i; j� ¼ f

0; if i ¼ Eþ 1; Q½j� ¼ R½j�;

0; if 1 � i � E; Q½j� i� ¼ R½j�;

0; if i > Eþ 1; Q½jþ i� E� 1� ¼ R½j�;

1; otherwise

(1)

We derive the four cases of Equation 1 by considering all pos-
sible pairwise matches and mismatches (due to possible edits) be-
tween two sequences. That is, each column of the chip maze stores
the result of comparing the jth character of the reference sequence,
R, with each of the corresponding 2Eþ 1 characters of the query
sequence, Q, as we show in Figure 2a. In the first case of
Equation 1, we compare the jth character of the reference se-
quence, R, with the jth character of the query sequence, Q, to de-
tect pairwise matches and substitutions. In the second case of
Equation 1, we compare the jth character of the reference sequence
with each of the E left-hand neighboring characters of the jth char-
acter of the query sequence, to accurately detect deleted characters
in the query sequence. In the third case of Equation 1, we compare
the jth character of the reference sequence with each of the E right-
hand neighboring characters of the jth character of the query se-
quence, to accurately detect inserted characters in the query se-
quence. Each insertion and deletion can shift multiple trailing
characters (e.g. deleting the character ‘N’ from ‘GENOME’ shifts
the last three characters to the left direction, making it ‘GEOME’).
Hence, in the second and the third cases of Equation 1, we need to
compare a character of the reference sequence with the neighbor-
ing characters of its corresponding character of the query sequence
to cancel the effect of deletion/insertion and correctly detect the
common subsequences between two sequences. In the fourth case
of Equation 1, we fill the remaining empty entries of each row with
ones (i.e. obstacles) to indicate that there is no match between the
corresponding characters. These four cases are essential to accur-
ately detect substituted, deleted and inserted characters in one or
both of the sequences. We present in Figure 2b an example of the
chip maze for two sequences, where a query sequence, Q, differs
from a reference sequence, R, by three edits.

The chip maze is a data-dependency free data structure as
computing each of its entries is independent of every other and
thus the entire grid graph can be computed all at once in a paral-
lel fashion. Hence, our chip maze is well suited for both sequen-
tial and highly parallel computing platforms (Seshadri et al.
(2017)). The challenge is now calculating the minimum number
of edits between two sequences using the chip maze. Considering
the chip maze as a chip layout where the rows represent the
HRTs and the columns represent the VRTs, we observe that we
can reduce the ASM problem to the SNR problem. Now, the
problem becomes finding an optimal set (i.e. signal net) of non-
overlapping escape segments. As we discuss in Section 2.2, a set
of escape segments is optimal if there is no other set that solves
the SNR problem and has both smaller number of escape seg-
ments and smaller number of entries of value ’1’ (i.e. obstacles).
Once we find such an optimal set of escape segments, we can
compute the minimum number of edits between two sequences
as the total number of obstacles along the computed optimal set.
Next, we present an efficient algorithm that solves this SNR
problem.

Fig. 1. Chip layout with processing elements and two layers of metal routing tracks.

In this example, the chip layout has 7 horizontal routing tracks (HRTs) located on

the first layer and another 12 vertical routing tracks (VRTs) located on the second

layer. The optimal signal net that is calculated using the SneakySnake algorithm is

highlighted in red using three escape segments. The first escape segment is connected

to the second escape segment using a VRT through vias. The second escape segment

is connected to the third escape segment without passing through a VRT as both es-

cape segments are located on the same HRT. The optimal signal net passes through

three obstacles (each of which is located at the end of each escape segment) and

hence the signal net has a total delay of 3� tobstacle
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2.4 Solving the SNR problem
The primary purpose of the SneakySnake algorithm is to solve the
SNR problem by providing an optimal signal net. Solving the SNR
problem requires achieving two key objectives: (i) achieving the low-
est possible latency by finding the minimum number of escape seg-
ments that are sufficient to link the source terminal to the
destination terminal and (ii) achieving the shortest length of the sig-
nal net by considering each escape segment just once and in mono-
tonically increasing order of their start index (or end index). The
first objective is based on a key observation that a signal net with
fewer escape segments always has fewer obstacles, as each escape
segment has at most a single obstacle (based on our definition in
Section 2.2). This key observation leads to a signal net that has the
least possible total propagation delay. The second objective restricts
the SneakySnake algorithm from ever searching backward for the
longest escape segment. This leads to a signal net that has non-
overlapping escape segments.

To achieve these two key objectives, the SneakySnake algorithm
applies five effective steps. (i) The SneakySnake algorithm first con-
structs the chip maze using Equation 1. It then considers the first col-
umn of the chip maze as the first checkpoint, where the first
iteration starts. (ii) At each new checkpoint, the SneakySnake algo-
rithm always selects the longest escape segment that allows the sig-
nal to travel as far forward as possible until it reaches an obstacle.
For each row of the chip maze, it computes the length of the first
horizontal segment of consecutive entries of value ’0’ that starts
from a checkpoint and ends at an obstacle or at the end of the cur-
rent row. The SneakySnake algorithm compares the length of all the
2Eþ 1 computed horizontal segments, selects the longest one and
considers it along with its first following obstacle as an escape seg-
ment. If the SneakySnake algorithm is unable to find a horizontal
segment (i.e. following a checkpoint, all rows start with an obs-
tacle), it considers one of the obstacles as the longest escape seg-
ment. It considers the computed escape segment as part of the
solution to the SNR problem. (iii) It creates a new checkpoint after
the longest escape segment. (iv) It repeats the second and third steps
until either the signal net reaches a destination terminal, or the total
propagation delay exceeds the allowed propagation delay threshold
(i.e. E� tobstacle). When the two input sequences are different in
length, we need to count the number of obstacles more conservative-
ly along the signal net. Doing so ensures a correct reduction of the
ASM problem. This means that we need to deduct the total number
of leading and trailing obstacles from the total count of edits be-
tween two input sequences before making the filtering decision, as
such obstacles can be caused by the fourth case of Equation 1. (v) If
SneakySnake finds the optimal net using the previous steps, then it
indicates that the edit distance between two input sequences is � E.
If so, sequence alignment is needed to know the exact number of
edits, type of each edit and location of each edit between the two
sequences using user’s favorite sequence alignment algorithm.
Otherwise, the SneakySnake algorithm terminates without perform-
ing computationally expensive sequence alignment, since the differ-
ences between sequences is guaranteed to be > E.

To efficiently implement the SneakySnake algorithm, we use an
implicit representation of the chip maze. That is, the SneakySnake
algorithm starts computing on-the-fly one entry of the chip maze
after another for each row until it faces an obstacle (i.e. Z[i, j] ¼ 1)
or it reaches the end of the current row. Thus, the entries that are ac-
tually calculated for each row of the chip maze are the entries that
are located only between each checkpoint and the first obstacle, in
each row, following this checkpoint, as we show in Figure 2c. This
significantly reduces the number of computations needed for the
SneakySnake algorithm. We provide the SneakySnake algorithm
along with analysis of its computational complexity (asymptotic run
time and space complexity) in Supplementary Section S5.

The SneakySnake algorithm is both correct and optimal in solv-
ing the SNR problem. The SneakySnake algorithm is correct as it al-
ways provides a signal net (if it exists) that interconnects the source
terminal and the destination terminal. In other words, it does not
lead to routing failure as signal will eventually reach its destination.

THEOREM 1. The SneakySnake algorithm is guaranteed to find a signal

net that interconnects the source terminal and the destination terminal

when one exists.

We provide the correctness proof for Supplementary Theorem S1 in

Supplementary Section S6.1. The SneakySnake algorithm is also optimal

as it is guaranteed to find an optimal signal net that links the source ter-

minal to destination terminal when one exists. Such an optimal signal

net always ensures that the signal arrives the destination terminal with

the least possible total propagation delay.

THEOREM 2. When a signal net exists between the source terminal and

the destination terminal, using the SneakySnake algorithm, a signal from

the source terminal reaches the destination terminal with the minimum

possible latency.

We provide the optimality proof for Supplementary Theorem S2 in

Supplementary Section S6.2.

Different from existing sequence alignment algorithms that are based on DP

approaches (Daily, 2016; Xin et al., 2013) or sparse DP (i.e. chaining exact

matches between two sequences using DP algorithms) approaches

(Chaisson and Tesler, 2012), SneakySnake (i) does not require knowing the

location and the length of common subsequences between the two input

sequences in advance, (ii) does not consider the vertical distance (i.e. the

number of rows) between two escape segments in the calculation of the min-

imum number of edits and (iii) does not build the entire dynamic program-

ming table; SneakySnake builds only a minimal portion of the chip maze

that is needed to provide an optimal solution. The first difference makes

SneakySnake independent of any algorithm that aims to calculate sequence

alignment, as SneakySnake quickly and efficiently calculates its own data

structure (i.e. chip maze) to find all common subsequences. The second dif-

ference helps to construct a data dependency-free chip maze and allows for

Fig. 2. (a) An example of how we build the 6th column of the chip maze, Z, using Equation 1 for a reference sequence R ¼ ‘GGTGCAGAGCTC’, a query sequence Q ¼
‘GGTGAGAGTTGT’ and an edit distance threshold (E) of 3. The 6th character of R is compared with each of its corresponding 2Eþ 1 characters of Q. The order of the

results of comparing R½6� with Q½3�; Q½4� and Q½5� is reversed to easily derive the second case of Equation 1. (b) The complete chip maze that is calculated using Equation 1,

which has 2Eþ 1 rows and m (length of Q) columns. (c) The actual chip maze that is calculated using the SneakySnake algorithm. The optimal signal net is highlighted in both

chip mazes in red. The signal net has three obstacles (each of which is located at the end of each escape segment) and hence sequence alignment is needed, as the number of dif-

ferences � E
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solving many SNR subproblems in parallel as calculating the routing path

after facing an obstacle is independent of the calculated path before this obs-

tacle. The third difference significantly reduces the number of computations

needed for the SneakySnake algorithm.

Different from existing edit distance approximation algorithms

(Chakraborty et al., 2018; Charikar et al., 2018) that sacrifice the opti-

mality of the edit distance solution (i.e. its solution � the actual edit dis-

tance of each sequence pair) for a reduction in time complexity, (e.g.

Oðm1:647Þ instead of Oðm2Þ), SneakySnake does not overestimate the

edit distance as the calculated optimal signal net has always the min-

imum possible number of obstacles (Theorem 2). We take advantage of

the edit distance underestimation of SneakySnake by using our fast com-

putation method as a pre-alignment filter. Doing so ensures two key

properties: (i) allows sequence alignment to be calculated only for simi-

lar (or nearly similar) sequences and (ii) accelerates the sequence align-

ment algorithms without changing (or replacing) their algorithmic

method and hence preserving all the capabilities of the sequence align-

ment algorithms.

We next discuss further optimizations and new software/hardware co-

designed versions of the SneakySnake algorithm that can leverage FPGA

and GPU architectures for highly parallel computation.

2.5 Snake-on-Chip hardware architecture
We introduce an FPGA-friendly architecture for the SneakySnake al-
gorithm, called Snake-on-Chip. The main idea behind the hardware
architecture of Snake-on-Chip is to divide the SNR problem into
smaller non-overlapping subproblems. Each subproblem has a width
of t VRTs and a height of 2Eþ 1 HRTs, where 1 < t � m. We
then solve each subproblem independently from the other subpro-
blems. This approach results in three key benefits. (i) Downsizing
the search space into a reasonably small grid graph with a known di-
mension at design time limits the number of all possible solutions
for that subproblem. This reduces the size of the look-up tables
(LUTs) required to build the architecture and simplifies the overall
design. (ii) Dividing the SNR problem into subproblems helps to
maintain a modular and scalable architecture that can be imple-
mented for any sequence length and edit distance threshold. (iii) All
the smaller subproblems can be solved independently and rapidly
with high parallelism. This reduces the execution time of the overall
algorithm as the SneakySnake algorithm does not need to evaluate
the entire chip maze.

However, these three key benefits come at the cost of accuracy
degradation. As we demonstrate in Theorem 2, the SneakySnake al-
gorithm guarantees to find an optimal solution to the SNR problem.
However, the solution for each subproblem is not necessarily part of
the optimal solution for the main problem (with the original size of
ð2Eþ 1Þ �m). This is because the source and destination terminals
of these subproblems are not necessarily the same. The SneakySnake
algorithm determines the source and destination terminals for each
SNR subproblem based on the optimal signal net of each SNR sub-
problem. This leads to underestimation of the total number of
obstacles found along each signal net of each SNR subproblem. This
is still acceptable as long as the SneakySnake algorithm solves the
SNR problem quickly and without overestimating the number of
obstacles compared to the edit distance threshold. We provide the
details of our hardware architecture of Snake-on-Chip in
Supplementary Section S8.

2.6 Snake-on-GPU parallel implementation
We introduce our GPU implementation of the SneakySnake algo-
rithm, called Snake-on-GPU. The main idea of Snake-on-GPU is to
exploit the large number (typically few thousands) of GPU threads
provided by modern GPUs to solve a large number of SNR problems
rapidly and concurrently. In Snake-on-Chip, we explicitly divide the
SNR problem into smaller non-overlapping subproblems and then

solve all subproblems concurrently and independently using our spe-
cialized hardware. In Snake-on-GPU, we follow a different approach
than that of Snake-on-Chip by keeping the same size of the original
SNR problem and solving a massive number of these SNR problems
at the same time. Snake-on-GPU uses one single GPU thread to solve
one SNR problem (i.e. comparing one query sequence to one refer-
ence sequence at a time). This granularity of computation fits well
the amount of resources (e.g. registers) that are available to each
GPU thread and avoids the need for synchronizing several threads
working on the same SNR problem.

Given the large size of the sequence pair dataset that the GPU
threads need to access, we carefully design Snake-on-GPU to effi-
ciently (i) copy the input dataset of query and reference sequences
into the GPU global memory, which is the off-chip DRAM memory
of GPUs (NVIDIA, 2019a) and it typically fits a few GB of data and
(ii) allow each thread to store its own query and reference sequences
using the on-chip register file to avoid unnecessary accesses to the
off-chip global memory. Each thread solves the complete SNR prob-
lem for a single query sequence and a single reference sequence. We
provide the details of our parallel implementation of Snake-on-GPU
in Supplementary Section S9.

3 Results

We evaluate (i) filtering accuracy, (ii) filtering time and (iii) benefits
of combining our universal implementation of the SneakySnake al-
gorithm with state-of-the-art aligners. We provide a comprehensive
treatment of all evaluation results in the Supplementary Excel File
and on the SneakySnake GitHub page. We compare the perform-
ance of SneakySnake, Snake-on-Chip and Snake-on-GPU to four
pre-alignment filters, Shouji (Alser et al., 2019), MAGNET (Alser
et al., 2017b), GateKeeper (Alser et al., 2017a) and SHD (Xin et al.,
2015). We run the experiments that use multithreading and long
sequences on a 2.3 GHz Intel Xeon Gold 5118 CPU with up to 48
threads and 192 GB RAM. We run all other experiments on a
3.3 GHz Intel E3-1225 CPU with 32 GB RAM. We use a Xilinx
Virtex 7 VC709 board (Xilinx, 2013) to implement Snake-on-Chip
and other existing accelerator architectures (Shouji, MAGNET and
GateKeeper). We build the FPGA design using Vivado 2015.4 in
synthesizable Verilog. We use an NVIDIA GeForce RTX 2080Ti
card (NVIDIA, 2019b) with a global memory of 11 GB GDDR6 to
implement Snake-on-GPU. Both Snake-on-Chip and Snake-on-GPU
are independent of the specific FPGA and GPU platforms as they do
not rely on any vendor-specific computing elements (e.g. intellectual
property cores).

3.1 Evaluated datasets
Our experimental evaluation uses 4 different real datasets
(100bp_1, 100bp_2, 250bp_1 and 250bp_2) and 2 simulated data-
sets (10Kbp and 100Kbp). Each real dataset contains 30 million real
sequence pairs (text and query pairs). 100bp_1 and 100bp_2 have
sequences of length 100 bp, while 250bp_1 and 250bp_2 have
sequences of length 250 bp. We generate the 10Kbp dataset to have
100 000 sequence pairs, each of which is 10 Kbp long, while the
100Kbp dataset has 74 687 sequence pairs, each of which is
100 Kbp long. Supplementary Section S10.1 provides the details of
these datasets.

3.2 Filtering accuracy
We evaluate the accuracy of a pre-alignment filter by computing
its rate of falsely accepted and falsely rejected sequences before
performing sequence alignment. The false accept rate is the ratio
of the number of dissimilar sequences that are falsely accepted
by the filter and the number of dissimilar sequences that are
rejected by the sequence alignment algorithm. The false reject
rate is the ratio of the number of similar sequences that are
rejected by the filter and the number of similar sequences that
are accepted by the sequence alignment algorithm. A reliable
pre-alignment filter should always ensure both a 0% false reject
rate to maintain the correctness of the genome analysis pipeline

5286 M.Alser et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/22-23/5282/6033580 by guest on 16 January 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1015#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1015#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1015#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1015#supplementary-data


and an as-small-as-possible false accept rate to maximize the
number of dissimilar sequences that are eliminated at low per-
formance overhead.

We first assess the false accept rate of SneakySnake, Shouji,
MAGNET, GateKeeper and SHD across different four real data-
sets and edit distance thresholds of 0–10% of the sequence length.
In Figure 3, we provide the false accept rate of each of the five fil-
ters. We use Edlib to identify the ground-truth truly accepted
sequences for each edit distance threshold. Based on Figure 3, we
make four key observations. (i) SneakySnake provides the lowest
false accept rate compared to all the four state-of-the-art pre-align-
ment filters. SneakySnake provides up to 31412�, 20603� and
64.1� less number of falsely accepted sequences compared to
GateKeeper/SHD (using 250bp_2, E¼10%), Shouji (using
250bp_2, E¼10%) and MAGNET (using 100bp_1, E¼1%), re-
spectively. (ii) MAGNET provides the second lowest false accept
rate. It provides up to 25552� and 16760� less number of falsely
accepted sequences compared to GateKeeper/SHD (using
250bp_2, E¼10%) and Shouji (using 250bp_2, E¼10%), re-
spectively. (iii) All five pre-alignment filters are less accurate in
examining 100bp_1 and 250bp_1 than the other datasets,
100bp_2 and 250bp_2. This is expected as the actual number of
edits of most of the sequence pairs in 100bp_1 and 250bp_1 data-
sets is very close to the edit distance threshold (Supplementary
Table S4) and hence any underestimation in calculating the edit
distance can lead to falsely accepted sequence pairs (i.e. estimated
edit distance � E). (iv) GateKeeper and SHD become ineffective
for edit distance thresholds of greater than 8% and 3% for se-
quence lengths of 100 and 250 characters, respectively, as they ac-
cept all the input sequence pairs. This causes a read mapper using
them to examine each sequence pair unnecessarily twice (i.e. once
by GateKeeper or SHD and once by the sequence alignment
algorithm).

Second, we find that SneakySnake has a 0% false reject rate (not
plotted). This observation is in accord with our theoretical proof of
Theorem 2. It is also demonstrated in (Alser et al., 2019) that Shouji
and GateKeeper have a 0% false reject rate, while MAGNET can
falsely reject some similar sequence pairs.

We conclude that SneakySnake improves the accuracy of pre-
alignment filtering by up to four orders of magnitude compared to
the state-of-the-art pre-alignment filters. We also conclude that
SneakySnake is the most effective pre-alignment filter, with a very
low false accept rate and a 0% false reject rate across a wide range
of both edit distance thresholds and sequence lengths.

3.3 Effect of SneakySnake on short sequence alignment
We analyze the benefits of integrating CPU-based pre-alignment filters,
SneakySnake and SHD with the state-of-the-art CPU-based sequence
aligners, Edlib and Parasail. We evaluate all tools using a single CPU
core and single thread environment. Figure 4a and b present the nor-
malized end-to-end execution time of SneakySnake and SHD, each
combined with Edlib and Parasail, using our four real datasets over edit
distance thresholds of 0–10% of the sequence length. We make four
key observations. (i) The addition of SneakySnake as a pre-alignment
filtering step significantly reduces the execution time of Edlib and
Parasail by up to 37.7� (using 250bp_2, E¼0%) and 43.9� (using
250bp_2, E¼2%), respectively. We also observe a similar trend as the
number of CPU threads increases from 1 to 40, as we show in
Supplementary Section S10.2. To explore the reason for this significant
speedup, we need to check how fast SneakySnake examines the se-
quence pairs compared to sequence alignment, which we observe next.
(ii) SneakySnake is up to 43� (using 250bp_1, E¼0%) and 47.2�
(using 250bp_1, E¼2%) faster than Edlib and Parasail, respectively,
in examining the sequence pairs. (iii) SneakySnake provides up to 8.9�
and 40� more speedup to the end-to-end execution time of Edlib and
Parasail compared to SHD. This is expected as SHD produces a high
false accept rate (as we show earlier in Section 3.2). (iv) The addition of
SHD as a pre-alignment step reduces the execution time of Edlib and
Parasail for some of the edit distance thresholds by up to 17.2� (using
100bp_2, E ¼ 0%) and 34.9� (using 250bp_2, E¼3%), respectively.
However, for most of the edit distance thresholds, we observe that
Edlib and Parasail are faster alone than with SHD combined as a pre-
alignment filtering step. This is expected as SHD becomes ineffective in
filtering for E>8% and E>3% for m¼100 bp and m¼250 bp, re-
spectively, (as we show earlier in Section 3.2).

We conclude that SneakySnake is the best-performing CPU-
based pre-alignment filter in terms of both speed and accuracy.
Integrating SneakySnake with sequence alignment algorithms is al-
ways beneficial for short sequences and reduces the end-to-end exe-
cution time by up to an order of magnitude without the need for
hardware accelerators. We also conclude that SneakySnake’s per-
formance scales well over a wide range of edit distance thresholds,
number of CPU threads and sequence lengths.

Fig. 3. False accept rates of SHD, GateKeeper, Shouji, MAGNET and SneakySnake

across four real datasets of short sequences. We use a wide range of edit distance

thresholds (0–10% of the sequence length) for sequence lengths of 100 and 250 bp

Fig. 4. Normalized end-to-end execution time of SneakySnake and SHD, each com-

bined with (a) Edlib and (b) Parasail. The execution time values in (a) and (b) are

normalized to that of Edlib and Parasail, respectively, without pre-alignment filter-

ing. We use four datasets over a wide range of edit distance thresholds (E¼0–10%

of the sequence length) for sequence lengths (m) of 100 bp (100bp_1 and 100bp_2)

and 250 bp (250bp_1 and 250bp_2). We present two speedup values for E¼0%

and E¼10% of each dataset and some other E values highlighted by arrows. The

top speedup value (in black) represents the end-to-end speedup that is gained from

combining the pre-alignment filtering step with the alignment step. It is calculated

as A=ðBþ CÞ, where A is the execution time of the sequence aligner before adding

SneakySnake (not plotted in graphs), B is the execution time of SneakySnake and C

is the execution time of the sequence aligner after adding SneakySnake. The bottom

speedup value (in blue) is calculated as A/B
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3.4 Effect of Snake-on-Chip and Snake-on-GPU on se-

quence alignment
We analyze the benefits of integrating Snake-on-Chip and Snake-on-
GPU with the state-of-the-art sequence aligners, designed for differ-
ent computing platforms in Figure 5. We compare the effect of com-
bining Snake-on-Chip and Snake-on-GPU with an existing sequence
aligner to that of two state-of-the-art FPGA-based pre-alignment fil-
ters, Shouji and GateKeeper. We also select four state-of-the-art se-
quence aligners that are implemented for CPU (Edlib and Parasail),
GPU (GSWABE) and FPGA (FPGASW). We use 100bp_1 and
100bp_2 in this evaluation, as GSWABE, Shouji and GateKeeper
work for only short sequences. GSWABE and FPGASW are not
open-source and not available to us. Therefore, we scale their
reported number of computed entries of the DP matrix per second
(i.e. GCUPS) as follows: (number of sequence pairs in 100bp_1 or
100bp_2)/(GCUPS/1002). We design the hardware architecture of
Snake-on-Chip for a sub-maze’s width of eight VRTs (t¼8) and
three module instances (y¼3) per each sub-maze. We select this de-
sign choice as it allows for low FPGA resource utilization while
maintaining a low false accept rate, based on our analysis of differ-
ent y and t values on the false accept rate of Snake-on-Chip (these
results are reported in the Supplementary Excel File and on the
SneakySnake GitHub page).

Based on Figure 5, we make two key observations. (i) The execu-
tion time of Edlib and Parasail reduces by up to 321� (using
100bp_2 and E¼5%) and 536� (using 100bp_2 and E¼5%), re-
spectively, after the addition of Snake-on-Chip as a pre-alignment
filtering step and by up to 413� (using 100bp_2 and E¼5%) and
689� (using 100bp_2 and E¼5%), respectively, after the addition
of Snake-on-GPU as a pre-alignment filtering step. That is 40�
(321/8) to 51� (689/13.39) more speedup than that provided by
adding SneakySnake as a pre-alignment filter, using 100bp_2 and
E¼5%. It is also up to 2� more speedup compared to that provided
by adding Shouji and GateKeeper as a pre-alignment filter, using
100bp_1 and E¼5% for Snake-on-Chip and using 100bp_2 and
E¼5% for Snake-on-GPU. (ii) Snake-on-GPU provides up to 27.7�
(using 100bp_2 and E¼5%) and 5.1� (using 100bp_2 and
E¼5%) reduction in the end-to-end execution time of GSWABE
and FPGASW, respectively. This is up to 1.3� more speedup than
that provided by Snake-on-Chip, using 100bp_2. That is also up to
1.7� more speedup than that provided by adding Shouji and
GateKeeper as a pre-alignment filter. The speedup provided by
Snake-on-GPU and Snake-on-Chip to GSWABE and FPGASW is

less than that observed in Edlib and Parasail. This is due to the low
execution time of hardware accelerated aligners.

We conclude that both Snake-on-Chip and Snake-on-GPU pro-
vide the highest speedup (up to two orders of magnitude) when com-
bined with the state-of-the-art CPU, FPGA and GPU based sequence
aligners over edit distance thresholds of 0–5% of the sequence
length.

3.5 Effect of SneakySnake on long sequence alignment
We examine the benefits of integrating SneakySnake with Parasail
(Daily, 2016) and KSW2 (Li, 2018; Suzuki and Kasahara, 2018) for
long sequence alignment (100Kbp). We run Parasail as nw_banded.
We run KSW2 as extz2_sse, a global alignment implementation that
is parallelized using the Intel SSE instructions. KSW2 uses heuristics
(Suzuki and Kasahara, 2018) to improve the alignment time. We
run SneakySnake with Parasail using 40 CPU threads. We run
SneakySnake with KSW2 using a single CPU thread (as KSW2 does
not support multithreading). We use a wide range of edit distance
thresholds, up to 20% of the sequence length.

Based on Table 1, we make two key observations. (i)
SneakySnake accelerates Parasail and KSW2 by 50.9–979� and
3.8–91.7�, respectively, even at high edit distance thresholds (up to
E¼5010 (5%), which results in building and examining a chip
maze of 10 021 rows for each sequence pair). (ii) As the number of
similar sequence pairs increases, the performance benefit of integrat-
ing SneakySnake with Parasail and KSW2 in reducing the end-to-
end execution time reduces. When Parasail and KSW2 examine
94% and 73% of the input sequence pairs (SneakySnake filters out
the rest of the sequence pairs), respectively, SneakySnake provides
slight or no performance benefit to the end-to-end execution time of
the sequence aligner alone. This is expected, as each sequence pair
that passes SneakySnake is examined unnecessarily twice (i.e. once
by SneakySnake and once by sequence aligner). We provide more
details on this evaluation for both 10Kbp and 100Kbp in
Supplementary Section S10.3. We observe that SneakySnake acceler-
ates Parasail and KSW2 by 276.9� and 31.7� on average, respect-
ively, when sequence alignment examines at most 73% of the input
sequence pairs.

We conclude that when SneakySnake filters out more than 27%
of the input sequence pairs, integrating SneakySnake with long se-
quence aligners is always beneficial and sometimes reduces the end-
to-end execution time by one to two orders of magnitude (depending
on the edit distance threshold and how fast the sequence aligner
examines the input sequence pairs compared to SneakySnake) with-
out the need for hardware accelerators.

3.6 Effect of SneakySnake on read mapping
After confirming the benefits of the different implementations of the
SneakySnake algorithm, we evaluate the overall benefits of integrat-
ing SneakySnake with minimap2 (2.17-r974-dirty, 22 January
2020) (Li, 2018). We select minimap2 for two main reasons. (i) It is
a state-of-the-art read mapper that includes efficient methods (i.e.
minimizers and seed chaining) for accelerating read mapping. (ii) It
utilizes a banded global sequence alignment algorithm (KSW2,

Fig. 5. Normalized end-to-end execution time of a pre-alignment filter (Snake-on-

Chip, Snake-on-GPU, Shouji and GateKeeper) combined with a sequence aligner

(Edlib, Parasail, GSWABE and FPGASW). Each execution time value is normalized

to that of the corresponding sequence aligner without pre-alignment filtering. We

use two datasets, (a) 100bp_1 and (b) 100bp_2, over a wide range of edit distance

thresholds (0%-10% of the sequence length, 100 bp). We present two end-to-end

speedup values for edit distance thresholds of 0% and 5%. The top speedup value

(in orange) is the speedup gained from integrating Snake-on-GPU with the corre-

sponding sequence aligner. The bottom speedup value (in blue) represents the

speedup gained from integrating Snake-on-Chip with the corresponding sequence

aligner

Table 1. The end-to-end execution time (in seconds) of

SneakySnake integrated with Parasail (40 CPU threads) and KSW2

(single threaded) using long reads (100 Kbp)

E Parasail SSþParasail KSW2 SSþKSW2 SS accept rate

0.01% 84.0 0.23 1380.2 15.1 0%

0.3% 2756.3 2.8 8215.5 135.4 0%

5.0% 37 492.3 736.5 100 178.3 26 261.4 0%

10.7% 81 881.6 49 322.1 204 135.3 184 312.5 57%

10.8% 82 646.1 63 756.0 206 041.4 225 815.2 73%

11.0% 84 098.7 83 437.5 209 662.8 287 206.8 94%

12.0% 91 744.1 95 533.6 228 723.1 325 966.0 100%

20.0% 152 906.8 157 982.0 381 205.1 544 282.1 100%
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implemented as extz2_sse) that is parallelized and accelerated using
both the Intel SSE instructions and heuristics (Suzuki and Kasahara,
2018) to improve the alignment time. We map all reads from

ERR240727_1 (100 bp) to GRCh37 with edit distance thresholds of
0% and 5% of the sequence length. We run minimap2 using —sr
mode (short read mapping) and the default parameter values. We re-
place the seed chaining of minimap2 with SneakySnake. In these
experiments, we ensure that we maintain the same reported map-

pings for both tools. We make two observations. (i) SneakySnake
and the minimap2’s aligner (KSW2) together are at least 6.83�
(from 246 to 36 s) and 2.51� (from 338 to 134.67 s) faster than the
minimap2’s seed chaining and the minimap2’s aligner together for
edit distance thresholds of 0% and 5%, respectively. (ii) The map-

ping time of minimap2 reduces by a factor of up to 2.01� (from 418
to 208 s) and 1.66� (from 510 to 306.67 s) after integrating

SneakySnake with minimap2 for edit distance thresholds of 0% and
5%, respectively.

We conclude that SneakySnake is very beneficial even for mini-

map2, a state-of-the-art read mapper, which uses minimizers, seed
chaining and SIMD-accelerated banded alignment. This promising

result motivates us to explore in detail accelerating minimap2 using
Snake-on-GPU and Snake-on-Chip in our future research.

4 Discussion and future work

We demonstrate that we can convert the approximate string match-
ing problem into an instance of the single net routing problem. We

show how to do so and propose a new algorithm that solves the sin-
gle net routing problem and acts as a new pre-alignment filtering al-
gorithm, called SneakySnake. SneakySnake offers the ability to

make the best use of existing aligners without sacrificing any of their
capabilities (e.g. configurable scoring functions and backtracking),

as it does not modify or replace the alignment step. SneakySnake
improves the accuracy of pre-alignment filtering by up to four orders
of magnitude compared to three state-of-the-art pre-alignment fil-

ters, Shouji, GateKeeper and SHD. The addition of SneakySnake as
a pre-alignment filtering step significantly reduces the execution

time of state-of-the-art CPU-based sequence aligners by up to an
order and two orders of magnitude using short and long sequences,
respectively. We introduce Snake-on-Chip and Snake-on-GPU, effi-

cient and scalable FPGA and GPU based hardware accelerators of
SneakySnake, respectively. Snake-on-Chip and Snake-on-GPU

achieve up to one order and two orders of magnitude speedup over
state-of-the-art CPU- and hardware-based sequence aligners,
respectively.

One direction to further improve the performance of Snake-on-
Chip is to discover the possibility of performing the SneakySnake

calculations near where huge amounts of genomic data resides.
Conventional computing requires the movement of genomic se-
quence pairs from the memory to the CPU processing cores (or to

the GPU or FPGA chips), using slow and energy-hungry buses, such
that cores can apply sequence alignment algorithm on the sequence

pairs. Performing SneakySnake inside modern memory devices via
processing in memory (Ghose et al., 2019; Mutlu et al., 2019) can
alleviate this high communication cost by enabling simple arithmet-

ic/logic operations very close to where the data resides, with high
bandwidth, low latency and low energy. However, this requires re-

designing the hardware architecture of Snake-on-Chip to leverage
the supported operations in such modern memory devices.
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